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Transgenic plants with improved salt and drought stress tolerance have been developed
with a large number of abiotic stress-related genes. Among these, the most extensively
used genes are the glycine betaine biosynthetic codA, the DREB transcription factors,
and vacuolar membrane Na+/H+ antiporters. The use of codA, DREBs, and Na+/H+

antiporters in transgenic plants has conferred stress tolerance and improved plant
phenotype. However, the future deployment and commercialization of these plants
depend on their safety to the environment. Addressing environmental risk assessment
is challenging since mechanisms governing abiotic stress tolerance are much more
complex than that of insect resistance and herbicide tolerance traits, which have been
considered to date. Therefore, questions arise, whether abiotic stress tolerance genes
need additional considerations and new measurements in risk assessment and, whether
these genes would have effects on weediness and invasiveness potential of transgenic
plants? While considering these concerns, the environmental risk assessment of abiotic
stress tolerance genes would need to focus on the magnitude of stress tolerance, plant
phenotype and characteristics of the potential receiving environment. In the present
review, we discuss environmental concerns and likelihood of concerns associated with
the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the
uses of these genes in domesticated crop plants are safe for the environment. Risk
assessment, however, should be carefully conducted on biofeedstocks and perennial
plants taking into account plant phenotype and the potential receiving environment.

Keywords: abiotic stresses, transgenic plants, codA, DREBs, antiporters, biosafety assessment

INTRODUCTION

Abiotic stresses such as salt, drought and extreme temperatures are serious threats to agriculture,
and account for more than 50% of average yield losses for most of the major crop plants worldwide
(Vahdati and Leslie, 2013). Abiotic stresses induce changes at the morphological, physiological,
biochemical and molecular level that adversely affect plant growth and productivity (Fraire-
Velázquez and Balderas-Hernández, 2013). Salt and drought stresses, in particular, exert adverse
effects on plant physiology and developmental processes mainly by disrupting the ionic and
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osmotic homeostasis (Smirnoff, 1998; Ruan and Teixeira da Silva,
2011). In response to these stress conditions, plants induce signal
perception, signal transduction and expression of stress-related
genes which lead to changes in metabolic processes (Rensink
et al., 2005; Ruan and Teixeira da Silva, 2011).

With progress in identification of genome sequence
information and tools for functional genomics, several crop
plants have been engineered to enhance their abiotic stress
tolerance (Blumwald, 2003; Peleg et al., 2011). Particularly,
the genes encoding transcription factors, ion transporters and
enzymes of osmoprotectants biosynthetic pathways have been
used in transgenic plants to enhance their tolerance to multiple
abiotic stresses (Vinocur and Altman, 2005; Bhatnagar-Mathur
et al., 2008; Peleg et al., 2011).

In addition to the efforts to improve stress tolerance,
addressing environmental concerns over the use of these genes in
transgenic plants remains a debatable issue for future deployment
and commercialization. There is wide consensus that the current
risk assessment procedures are equally applicable to more
complex traits such as abiotic stress tolerance (Wolt, 2009;
Sammons et al., 2014). However, based on the more complex
nature of abiotic stress tolerance trait, further investigations are
needed to target the plant phenotype, the magnitude of stress
tolerance and potential impact on non-target environment. An
important consideration in the environmental risk assessment
is to check whether extra measures are required for these genes
and the conferred trait. In the present study, we review the
need for further considerations based on properties of proteins
encoded by these genes, underlying mechanisms, phenotype of
the transgenic plant and the potential receiving environment.

UTILIZATION OF IMPORTANT GENES IN
PLANT ABIOTIC STRESS TOLERANCE

Glycine Betaine and the codA Gene
Glycine betaine (GB) is one of the most important
osmoprotectants that provides protection to vital cellular
organelles during plant adaptation to abiotic stress (Bohnert
et al., 1995). The protective role of GB has been demonstrated in
a number of transgenic plants engineered with genes involved in
various biosynthetic pathways of GB (Chen and Murata, 2008;
Khan et al., 2009, 2015b). Among all genes of the GB biosynthetic
pathway, the codA gene has been reported with comparatively
better results toward GB accumulation, overall protection in
vegetative and reproductive parts and tolerance to multiple
abiotic stresses (Sulpice et al., 2003; Park et al., 2004). Several
transgenic plants with the codA expression exhibited multiple
abiotic stress tolerance (Table 1). The usefulness of codA gene
is evident from the fact that its expression under constitutive
promoters exerted no penalties in terms of growth retardation
(Park et al., 2007b). Rather, increased GB accumulation as a
result of constitutive expression of codA in transgenic plants
improved reproductive organs. Transgenic tomato plants with
the codA gene showed chilling stress tolerance and increased
fruit set by 10–30% (Park et al., 2007b). Further, the protective
effects of GB were investigated on reproductive organs such as

flowers and fruits (Park et al., 2007a). Transgenic tomato plants
with constitutive expression of the codA gene exhibited large
flowers and 54% heavier fruits compared to the non-transgenic
control plants.

DREB-Transgenic Plants
DREB genes encode transcription factors which act as master
switches to regulate the expression of many down-stream abiotic
stress tolerance-responsive genes (Agarwal et al., 2006). An
important observation of the DREB-transgenic plants was the
associated stunted phenotype when expressed under constitutive
promoters (Liu et al., 1998; Kasuga et al., 2004). However, the use
of stress-inducible promoters to express DREB genes recovered
the normal phenotype.

A limited number of transgeic plants engineered with
DREB transcription factors have been evaluated and tested
under realistic field conditions for their agronomic and yield
performance under stress conditions. Some notable studies in
several crops such as wheat, rice, peanut and soybean have
revealed the effects of DREBs on several aspects of plant growth,
stress tolerance and yield components (Xiao et al., 2009; Bihani
et al., 2011; Saint Pierre et al., 2012; Bhatnagar-Mathur et al.,
2014; de Paiva Rolla et al., 2014) (Table 1). Saint Pierre et al.
(2012) conducted experiments on transgenic wheat lines with
AtDREB1A gene to evaluate survival, recovery from stress as
well as water use-efficiency under green-house conditions. Under
these conditions, the transgenic lines performed well in terms
of recovery from stress compared to control plants. Under field
conditions, the transgenic lines did not outperform the control
lines in terms of grain yield under drought stress. However,
some transgenic lines which were selected for improved water
use-efficiency had an acceptable yield even higher under well
irrigated conditions. The authors concluded that although the
transgenic lines did not show improved yield than control
under stress condition, high yielding transgenic lines would
be possible provided adequate transformation and screening
protocols. Transgenic rice lines with sorghum DREB2 gene
were evaluated under water stress condition and showed a
significantly higher number of panicles as compared to wild
type plants under water stress condition (Bihani et al., 2011).
Although the mean grain weight in both transgenic and wild
type plants was the same under stress condition, the transgenic
lines appeared to show improved yield due to an increase in
the number of panicles rather than improved grain yield traits,
the authors concluded. Bhatnagar-Mathur et al. (2014) reported
significantly higher yield increase in transgenic DREB1A peanut
lines under water stress condition in field experiments. This
is the first report where the DREB transgenic lines showed a
significant yield increase than wild type under stress conditions.
Transgenic lines showed higher pod and seed yield than wild
type under drought stress across all field trials. In another
study, de Paiva Rolla et al. (2014) evaluated the agronomic
performance of transgenic DREB-soybean lines under both
greenhouse and field conditions. In these experiments, the
transgenic lines did not outperform the wild type, but under
drought stress, the transgenic lines showed improvement in
some growth components such as number of seeds, number of

Frontiers in Plant Science | www.frontiersin.org 2 June 2016 | Volume 7 | Article 792

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00792 June 24, 2016 Time: 10:28 # 3

Khan et al. Abiotic Stress Tolerance in Plants

TABLE 1 | Transgenic plants engineered with genes conferring abiotic stress tolerance.

Transgene Source Target plant Tolerance Physiological effect Reference

DREB1A Arabidopsis thaliana Arachis hypogaea Drought Yield improvement of up to
24% in drought trials

Bhatnagar-Mathur et al., 2014

codA Arthrobacter globiformis E. globulus Salt – Yu et al., 2009

DREB1A A. thaliana G. max Drought Improvement in number of
seeds, number of pods

de Paiva Rolla et al., 2014

AVP1 A. thaliana G. hersutum Salt,
drought

20% higher fibre yield in
transgenic lines than that of
wild-type under filed condition

Pasapula et al., 2011

TaNHX2 T. aestivum M. sativa Salt High antiporters activity under
200 mM NaCl

Zhang et al., 2012

AlNHX1 Aeluropus littoralis N. tabaccum Salt More Na+ accumulation in
roots. High K+/Na+ ratio in
shoots. About 150% increase
in dry weight/plant

Zhang et al., 2008

codA A. globiformis N. tabaccum Salt – Jingjia et al., 2013

PgDREB2A P. glaucum N. tabacum Salt, osmotic Fourfold higher germination at
200 mM NaCl. 50% higher
seed germination under
400 mM mannitol

Agarwal et al., 2010

COX Arthrobacter pascens O. sativa Salt – Su et al., 2006

AtDREB1A A. thaliana O. sativa Drought Improved rice spikelet (42%
higher), grain yield (11% higher)

Xiao et al., 2009

SbDREB2 Sorghum bicolor O. sativa Drought Significantly higher
number of panicles

Bihani et al., 2011

codA A. globiformis Solanum lycopersicum Chilling – Park et al., 2004

codA A. globiformis S. lycopersicum Salt, drought – Goel et al., 2011

codA A. globiformis Solanum tuberosum Salt, drought – Ahmad et al., 2008

codA A. globiformis S. tuberosum Drought – Cheng et al., 2013

TaDREB2/
TaDREB3

T. aestivum T. aestivum Drought – Office of the Gene Technology
Regulator [OGTR], 2010

AtDREB1A A. thaliana T. aestivum Drought Improved WUE and acceptable
yield under field conditions

Saint Pierre et al., 2012

OsNHX1 O. sativa Z. mays Salt Increased biomass production Chen et al., 2007

(–) information are not known; WUE, water use-efficiency.

pods with seeds and the total number of pods. The authors
concluded that further studies to target full characterization of
the soil and atmospheric conditions and interactions could result
in transgenic plants that outperform the non-transgenic plants
under stress conditions.

Na+/H+ Antiporter Genes in GM Plants
In the wake of increasing soil and water salinization, the role
of Na+/H+ antiporters is of tremendous importance. Over the
last several years, transgenic plants with expression of antiporter
genes demonstrated improved salt tolerance with or without
the anticipated effects on plant growth and productivity (Khan,
2011b; Khan et al., 2015a). Some of the prominent results
with antiporter genes are shown (Table 1). Transgenic plants
expressing antiporter genes have shown promising results in
cotton (Pasapula et al., 2011), maize (Chen et al., 2007), and
tobacco (Zhang et al., 2008). In addition to the initial stress
tolerance at the early plant growth stages with antiporter genes,
durable stress tolerance may be achieved with positive effects
on the overall plant growth and productivity under realistic
field conditions. Strategies may involve regulation of antiporters

specialized mechanisms in halophytes, use of superior alleles, and
gene-stacking may be used (Khan et al., 2015a).

POTENTIAL FOR HARM ASSOCIATED
WITH CANDIDATE ABIOTIC STRESS
TOLERANCE GENES AND THEIR
ASSESSMENT

The regulatory decision making on the uses and deliberate
environmental release of abiotic stress tolerance genes such
as codA, DREBs and Na+/H+ antiporters depends on their
safety to the environment and biodiversity. The environmental
risk assessment of transgenic plants requires a case-by-case
evaluation based on the information of the transgene, host
plant and cultivation environment (Watanabe et al., 2005). The
environmental risk assessment of these genes will be based on
information on (1) specific nature of the gene, (2) type of stress
tolerance, it confers, (3) specific plant phenotype, conferred
by the gene, (4) underlying mechanisms controlled by these
genes, (5) the nature of the host plant, and (6) characteristics
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of the potential receiving environment where the transgenic
plants will be grown. Abiotic stress tolerance involves molecular,
physiological and metabolic changes at the whole plant level.
Therefore, the risk assessment process would focus on the whole
plant and the potential receiving environment (Chaves et al.,
2003).

In comparison to the insect resistance and herbicide tolerance
genes, expression of abiotic stress tolerance genes could affect
a wide range of plant growth and developmental functions
(Chua and Tingey, 2006). As a result, the transgenic plants may
show enhanced fitness advantage under selective pressure in
agricultural and natural environment. This selective advantage
may increase persistence and weediness potential in agricultural
environment and may pose a challenge to the prevalent tillage
and weed control practices (Warwick et al., 2009; Rudelsheim
and Smets, 2010; BCH, 2011). The increased fitness advantage
may have ecological impact by extending the spread of transgenic
plants beyond their cultivation areas to natural environment
(Chan et al., 2012). However, due to the limited available data
on the ability of abiotic stress tolerance genes to confer enhanced
fitness advantage, ecological impact assessment is difficult to
predict (Chan et al., 2012). In addition, the risk assessment
of abiotic stress tolerant transgenic plants may also encounter
challenges such as choice of the comparator, behavior of the
potential receiving environment and combination of selection
pressures (Liang et al., 2014). Abiotic stress tolerance genes
would require careful assessment as to what extent they confer
fitness advantage and secondary effects and how it could be
associated with weediness and invasiveness tendencies. With
increasing number of transgenic plants entering field trials
and environmental risk assessment studies, issues related to
weediness and invasiveness would be easier to address.

The Type of Transgene, Effects on
Fitness, Weediness and Allelopathic
Potential of Transgenic Plants
The codA Gene
The codA gene is isolated from the soil bacterium, Arthrobacter
globiformis, and is salt tolerance-inducing in transgenic plants.
The underlying mechanism of codA is production of GB that
has a diverse role in plant tolerance and cellular protection
from the damaging effects of salt stress (Khan et al., 2009). In
some plants such as wheat and Arabidopsis, the GB application
resulted in expression of genes which influenced diverse stress
adaptation mechanisms (Allard et al., 1998; Einset et al., 2007).
In addition, Kathuria et al. (2009) reported up-regulation of
several stress responsive genes in the codA transgenic rice. The
enhanced tolerance due to codA in transgenic plants might
be attributed to the effects of GB and partly to other stress-
related mechanisms. On the whole, the codA gene confers
a selective advantage and improves plant phenotype under
salt stress. The selective advantage and increased fitness in
transgenic plants may confer enhanced volunteer and persistence
potential in agricultural environment and invasiveness in natural
environments (Lu, 2008). However, the codA-conferred stress
tolerance and fitness advantage under stress condition may

reduce yield losses of transgenic plant as compared to that of
conventional plant. The selective advantage is limited under
salt stress that may not change the persistence or volunteer
potential of crop plants and their wild relatives. Nevertheless,
the well-recognized principles for environmental risk assessment
call for case specific consideration of potential for harm to the
surrounding plant vegetation, rhizosphere microbial activities
and ecological consequences if the transgene integrates in wild
and weedy relatives of crop plants (Table 2).

Allelopathic effect of the codA-encoded protein on the
surrounding plant vegetation and soil microbes is an important
element of the risk assessment process, practiced in some
regulatory regimes in the world. The codA-encoded protein
and the GB have no known direct effects on the surrounding
plant vegetation, diversity of soil microbes and their enzymatic
activities. Crop plants may not affect or compete with
surrounding plant vegetation through allelopathic activity as
these plants, mainly lack allelochemicals due to the process
of domestication and selection (Leather, 1983). The potential
impact of the codA gene on soil microbial communities and their
enzymatic activities could be viewed in relation to the improved
stress tolerance that may alter the transgenic plant capability
to uptake water and nutrients from the soil. A number of
factors have been reported in the literature which may influence
the soil microbial diversity and their functions. These include
factors such as changes in plant root exudates, type of plant,
soil condition and plant physiological state (Bossio et al., 1998;
Griffiths et al., 1999; Yang and Crowley, 2000; Butler et al.,
2003; Green et al., 2007). While conducting environmental risk
assessment of the codA gene, assessment of allelopathic effects
on soil microbial communities and their activities would be
element of the central focus. A more logical approach would be
to first consider agronomic performance (improved phenotype)
to determine if there is indeed a detectable change in water
use and nutrient uptake (salt tolerance) by the codA-transgenic
plant compared to that of the non-transgenic conventional
counterpart.

The DREB Genes
The environmental concerns/risks associated with the use of
DREB transcription factors are summarized (Table 2). DREB
transcription factors are of plant origin and may not have
direct adverse effects on the surrounding vegetation, rhizosphere
microbes and non-target organisms. The DREBs trigger the
expression of a large number of down-stream genes, working
in different stress and developmental response mechanisms
in plants (Agarwal et al., 2006, 2010). The resultant effects
other than the intended stress tolerance may also include cross
tolerance (Yoshioka and Shinozaki, 2009; Warwick et al., 2009)
unintended effects both on plant metabolism and physiological
profiles and on the overall phenotype of the plant (Ortiz et al.,
2007; Chan et al., 2012). The intended stress tolerance, cross
tolerance and associated unintended effects may increase fitness
of the transgenic plants (Beckie et al., 2006; Beckie and Owen,
2007). The increased fitness may result into increased persistence,
competitive ability and weediness potential under agriculture
environment, and broader ecological impact, if the gene transfers
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TABLE 2 | Environmental risks and likelihood of risks on the use of candidate abiotic stress tolerance genes in transgenic plants.

Transgene/protein Potential hazard/risk Likelihood of risks

codA (encoded protein/Glycine betaine) Confers selective advantage, fitness, better
plant growth may increase competitive potential
of crop plants
Allelopathic effect on surrounding plant
vegetation and soil microbe diversity and
functions
Changes in salt tolerance may affect structure
and functions of soil microbes

Selective advantage is limited, only under stress
condition
No competitiveness, weediness in crop plants
No known adverse/allelopathic effects
Metabolic changes, allelochemicals may have
effects
Unknown effects on rhizosphere microbes
through changed salt tolerance, water and
nutrients

DREBs/transcription factor proteins Confers selective advantage under stress
condition
May have cross tolerance
May have unintended effects
These all factors may increase plant fitness

DREBs have no direct effects on plant diversity
Selective advantage is limited and only under
stress condition
Cross tolerance may involve physiological,
metabolic burdens, reduced fitness
Increased fitness or differences in fitness and
weediness traits, may not affect biodiversity
May affect microbe diversity through changed
soil abiotic condition

Na+/H+ antiporters May confer selective advantage, improved
phenotype
Increased fitness may increase persistence and
competitive ability of crop plants
Selective advantage and improved phenotype
may affect rhizosphere microbes and their
functions

These genes and the encoded proteins are
native to plants
Selective advantage is limited that may not
change persistence and volunteer potential
Changed salt tolerance may have effects on soil
microbes through changed water and nutrients

to wild relatives (Bigelow, 2013). The underlying changes in plant
metabolites and other unintended changes may also have the
potential to affect soil microbes and their activities.

In comparison to other abiotic stress tolerance genes, DREBs
may have broader impact due to regulation of the expression
of a large number of stress-responsive genes that in turn may
bring metabolic and physiological alterations. However, while
using genes for stress tolerance in transgenic plants, the plant
phenotype as the final product should be considered irrespective
of the transgene type, the end products and the underlying
physiological and metabolic changes. In addition, the increased
fitness in transgenic crop plants is an intended trait and may
not increase the competitive ability of crop plants as they lack
such potential. In case of gene flow to wild relatives of crop
plants, DREBs may have environmental and ecological risks
(Lu, 2008). These risks may not arise due to two reasons.
First, the cross tolerance due to DREBs may have metabolic
and physiological burdens and the wild relatives may not show
enhanced fitness advantage. Second, the other environmental
factors may still regulate the survival and spread of these wild
relatives. Moreover, fitness traits may not be confused with
weediness traits, and the stress tolerance and fitness advantage
due to DREBs may still fall within the natural range of varietal
differences of crop plants for the trait. Many plants naturally
contain DREB genes and adaptation to abiotic stresses may
involve the same physiological and metabolic effects. Questions
regarding the unintended effects in the form of transcriptomic
or metabolomic changes have been raised but have never been
reported based on current scientific knowledge and molecular
tools (Ricroch et al., 2011; Simó et al., 2014). A few research
studies have been conducted on the effects of selected transgenes

(ABF3, DREB1A and mannose-6-phosphate reductase, M6PR)
on transcritome profiles in drought and salt tolerant transgenic
Arabidopsis (Abdeen et al., 2010; Chan et al., 2012). These
studies concluded that transcriptome analysis reveals absence of
unintended effects or it may be a poor predictor of secondary
phenotypic or fitness effects in transgenic plants modified with
salt and drought tolerance genes. Transcriptome profiling may be
a helpful tool in the future to predict unintended effects, but may
not be a substitute of the phenotypic comparison in the potential
receiving environment.

Potential impact on rhizosphere microbial communities could
be anticipated due to the multi-faceted role of DREBs on plant
fitness. Alterations in plant phenotype and improved water
use-efficiency due to DREB expression may potentially impact
microbial community structure and their enzymatic activities.
The rhizosphere microbial structural and functional diversity
may be affected by a number of factors, including abiotic
conditions (Bossio et al., 1998). This consideration could be
of significance in the environmental risk assessment once it
is established that the DREB expression in a particular plant
increases water use-efficiency and nutrient uptake from the soil.
After then, the meaningful differences may be used to draw
hypothesis as to how the changed water use-efficiency could
impact the microbial community structure and their activities.

Na+/H+ Antiporters
The antiporter genes and their encoded proteins are from
the plant origin and have no known harmful effects. These
proteins mediate transmembrane movement of Na+ and K+
ions; maintain cellular homeostasis and their overproduction
may alter plant fitness under abiotic stress. The transgenic
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plants engineered with antiporters genes, so far, have not
shown very high salt tolerance that may make them as
strong competitors and may extend their range of cultivation
to natural environment or making their wild relatives more
invasive (Table 2). Conventional breeding approaches have
utilized a natural variation at the intra-specific, inter-specific
and inter-generic levels to develop salt tolerant varieties (Ashraf
and Akram, 2009). Some of the developed varieties such as
Alfalfa (Dobrenz, 1999) and bread wheat (Hollington, 2000)
were tested under natural field conditions. It is obvious that
these varieties might also have involved antiporter genes as
major contributors to the conferred stress tolerance. Despite
that, the risk assessment should deal these genes on a case-
by-case basis, taking into account the biology of the parent
plant and the potential receiving environment. The Na+/H+
antiporters-induced salt tolerance and improved phenotype
may have effects on rhizosphere microbial diversity and
functions through changed water and nutrient uptake. However,
this consideration could only be taken in environmental
risk assessment if transgenic plant outperforms the non-
transgenic in terms of meaningful changes in agronomic
characteristics, and improved water and nutrient uptake from the
soil.

The Type of Plant Engineered with
Candidate Abiotic Stress Tolerance
Genes
Based on the biological characteristics, plants have been
distributed in three categories. These are domesticated crop
plants, trees, and perennial grasses. Characteristics of these three
groups have to be taken into consideration while assessing the
environmental effects of the transgenes.

Domesticated Crop Plants
Biology of the crop plant is well known. The crop plants
have been passed through a long process of domestication,
during which they have lost weediness characteristics (Figure 1).
A number of OECD consensus documents are available
on the biology of crop plants (Organization for Economic
Cooperation and Development [OECD], 2012). According to
these documents, crop plants have very low or negligible weedy
characteristics and may not compete with grasses, trees and
shrubs and also cannot establish as invasive in non-agricultural
environments (Organization for Economic Cooperation and
Development [OECD], 2006; Campbell and Snow, 2009).
The improved abiotic stress tolerance and fitness advantage
may not have an ecological impact because the improved
plant growth and phenotype due to increased abiotic stress
tolerance falls within the natural range of varietal differences
for the stress tolerance trait. Conventional breeding approaches
have long been used to exploit the varietal differences for
genetic variation to improve abiotic stress tolerance in crop
plants (Singh et al., 2014). Therefore, modification with fitness
enhancing abiotic stress tolerance genes may not make them
potential weeds or to cause them invasive in non-agricultural
environments.

Trees
Tree plantation for both forest and non-forest purposes has been
practiced for a long time. In the recent past, the tree plantation
for forests has been increased by about 5 Mha annually during
the period from 2005 to 2010 (FAO, 2010). This rapid increase
in tree plantation was achieved under highly managed practices
such as land preparation, fertilization, weed control and the use of
improved genotypes (Evans and Turnball, 2004; Fox et al., 2007).
In many respects, the silvicultural practices resemble those used
for crop plants in agricultural environments.

Recently, some tree species have been engineered with genes
conferring abiotic stress tolerance and these examples are
reviewed (Gambino and Gribaudo, 2012; Osakabe et al., 2012).
The important tree species with salt and drought tolerance traits
are pines, poplars and eucalyptus (Kikuchi et al., 2006, 2009;
Tang et al., 2007; Li et al., 2009; Yu et al., 2009, 2013a,b).
Field trials and risk assessment studies have been conducted
on some forest and non-forest trees in the USA, New Zealand,
Australia and Japan and these information and data are available
(APHIS, 2012; Japan Biosafety Clearing-House [J-BCH], 2012;
NZEPA, 2012; Office of the Gene Technology Regulator [OGTR],
2012b).

Many of the trees for forest or non-forest plantation have
been extensively studied with a lot of information generated
on their biology (Organization for Economic Cooperation and
Development [OECD], 2012). Consensus documents on the
biology of tree species under the OECD include some important
trees such as spruce, poplars, pines, white birch, douglas-fir, and
fruit trees such as stone fruits, papaya and banana. In addition
to the OECD documents, individual contributions from several
countries are available for several tree species (Organization
for Economic Cooperation and Development [OECD], 2006;
Craig et al., 2008). These data and information are valuable
sources and may also be used for the environmental risk
assessment of transgenic trees with salt and drought tolerance
genes. Moreover, much is known about the biology of the trees
and the potential receiving environment where these are under
cultivation (Haggman et al., 2013). Based on these facts, the
overall information and data collected from field trials and ERA
of stress tolerant transgenic crop plants are equally applicable
to the ERA of transgenic trees modified with salt and drought
tolerance genes.

Perennial Grasses
Perennial grasses have more weediness and invasiveness
tendencies than annual food crops. Some of the important
perennial grasses such as turfgrass, forages and biofuel grasses are
the important contributors in agriculture development (Wang
and Brummer, 2012). Some examples of biofuel grasses are switch
grass, jatropha, joint reed and miscanthus. In the recent past,
many of these perennial plants have been transformed with genes
conferring drought and salt tolerance (Wang and Brummer,
2012). Some biofuel plant species are considered as weeds in
some parts of the world (Low and Booth, 2007; Crosty, 2009),
and these plants such as jatropha may have the potential to
become invasive (Executive Secretary, 2007). Few members of
these grasses such as miscanthus, switchgrass, Johnson grass and
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FIGURE 1 | Elements of ERA paradigm and needs for additional considerations. The environmental risk assessment of transgenic plants requires information
about the gene or trait, host plant biology and potential receiving environment.

others are placed on the invasive and the noxious plant list in the
United States (Low and Booth, 2007; Wang and Brummer, 2012).
There have been concerns of increased weediness, invasiveness
and gene flow to close wild relatives and broader ecological
impact associated with genetic improvement of perennial grasses,
particularly with fitness enhancing traits (Kausch et al., 2010).
So far, there are no documents available from the OECD on
the biology of these perennial grasses. Some species such as
perennial rye-grass, bluejoint reed-grass and miscanthus have
been documented by the OGTR and the USDA. As these plants
are mostly outcrossing, gene flow and ecological impact as a
result of fitness enhancing abiotic stress tolerance genes would
be important in the environmental risk assessment.

Potential Receiving Environment
The transgenic plants with these genes will be disseminated to
agricultural fields as the potential receiving environment, affected
by abiotic stress (Figure 1). Familiarity with the conditions of
agricultural fields is well established. In case of any volunteers
or persistence of transgenic plants, agricultural management
practices would be used in the same way as those for conventional
non-transgenic crop plants. Moreover, crop plants are poor

competitors in natural environments and may not compete with
wild plant populations (Sala, 2000). Wild relatives contain more
genetic diversity than their domesticated crop plants (Jarvis et al.,
2008). The adaptation process to environmental stresses seems to
be much more complex in wild plant populations. In addition,
multiple selection pressures exist in natural environment that
regulate the spread of wild relatives. As a result of introgression,
selective advantage to one or two stresses with a single gene
may not confer fitness advantage to that level that could affect
the spread and invasiveness of a wild relative (Kwit et al.,
2011; Ellstrand et al., 2013). Unlike domesticated crop plants
and trees, perennial grasses with fitness enhancing abiotic
stress tolerance genes are more prone to pose weediness and
invasiveness issues upon escape to the natural environment.
Therefore, characteristics of the potential receiving environment
need careful consideration in the risk assessment process.

EXAMPLES OF FIELD TRIALS AND RISK
ASSESSMENT STUDIES

A number of transgenic plants with genes conferring abiotic
stress tolerance, particularly salt and drought are under field trials
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for environmental risk assessment studies (Table 3). Monsanto
conducted risk assessment studies on transgenic maize with the
CspB gene under drought stress (APHIS, 2011). In its first report
regarding the evaluation data, the USDA concluded that the
MON 87460 performs better than its conventional counterpart
under limited water conditions. In addition, the transgenic
maize is no different from the conventional maize in terms
of weediness and invasiveness potential, cross-tolerance, other
unintended/pleiotropic effects and overall ecological impact.
Recently, Sammons et al. (2014) further characterized the
MON 87460 and its conventional maize for agronomic and
phenotypic data generation and subsequent use of the data
for environmental risk assessment. The generated data were
used to analyze the potential of transgenic maize for increased
persistence, weediness, invasiveness, crossability, and other
unintended effects that may collectively affect agricultural and
natural environments. Based on the agronomic and phenotypic

characterization, no significant and meaningful changes were
found between the MON 87460 and its conventional counterpart
that could affect persistence or volunteer potential. The
transgenic maize behaved no different than its conventional
maize except the intended trait of low yield loss under limited
water conditions. They further concluded that the environmental
risk assessment strategies which were used for insect resistance
and herbicide tolerant plants are equally applicable to abiotic
stress tolerant plants such as MON 87460.

In Australia, risk assessment studies were conducted on
several transgenic plants such as wheat, barley, sugarcane, maize,
and cotton under abiotic stresses and the results were submitted
to OGTR for further approvals. The OGTR risk assessment and
risk management plan concluded that the transgenes in these
plants confer selected advantage under stress condition. Both
the transgenic and non-transgenic plants are equivalent under
non-stress conditions. The selective advantage may not change

TABLE 3 | Examples of abiotic stress tolerant transgenic crop plants and trees under field trials for risk assessment studies.

Abiotic stress
tolerance

Transgene Host Target crop
plants/Trees

Implementing
organization

Reference

Drought CspB B. subtilis Z. mays Monsanto APHIS, 2011

Drought OsDREB1A,
ZmDof1

O. sativa,
Z. mays

S. officinarum BSES
Limited, Aus

Office of the Gene
Technology Regulator
[OGTR], 2009

Drought TaDREB2/
TaDREB
AtAVP1

T. aestivum,
A. thaliana

T. aestivum,
H. vulgare

University
of Adelaide

Office of the Gene
Technology Regulator
[OGTR], 2010, 2012a

Drought CCI – T. aestivum VDPI Office of the Gene
Technology Regulator
[OGTR], 2008a, 2013

Drought Asr1, PEPC Z. mays,
Sorghum

Z. mays Biogemma SBC-Schenkelaars
Biotechnology Consultancy
(2007)

Salt Ornithine
aminotransferase

– T. aestivum Grain
Biotech Aus

Office of the Gene
Technology Regulator
[OGTR], 2005

Salt codA A. globiformis E. camaldulensis Tsukuba
University

Japan Biosafety
Clearing-House [J-BCH],
2005;
Kikuchi et al., 2009

Salt codA A. globiformis E. globulus Tsukuba
University

Yu et al., 2013a,b

WUE/NUE AtMYB2, Zmdof1 A. thaliana,
Z. mays

S. officinarum BSES
Limited, Aus

Office of the Gene
Technology Regulator
[OGTR], 2007

WUE CCI – G. hirsutum Monsanto Office of the Gene
Technology Regulator
[OGTR], 2008b

Water logging
tolerance

Adh, Pdc G. hirsutum,
A. thaliana

G. hirsutum CSIRO Aus Office of the Gene
Technology Regulator
[OGTR], 2008c

Cold CBF2 – Eucalyptus ArborGen APHIS, 2012, 2009a,b

ARC, Agriculture Research Council; BSES, Bureau of Sugar Experiment Stations; Aus, Australia; CCI, confidential commercial information; CSIRO, Commonwealth
Scientific and Industrial Research Organization; WUE, water use-efficiency; NUE, nitrogen use efficiency; VDPI, Victorian Department of Primary Industries; Asr1, abscisic
acid stress ripening; PEPC, phosphoenolpyruvate carboxylase (Modified from Khan, 2011a).

Frontiers in Plant Science | www.frontiersin.org 8 June 2016 | Volume 7 | Article 792

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00792 June 24, 2016 Time: 10:28 # 9

Khan et al. Abiotic Stress Tolerance in Plants

other characteristics of the plant. However, any unintended
pleiotrophic effects could be judged during the pre-trial stage
or through further monitoring and containment measures.
The RARMP concluded that for future large scale release,
additional information regarding weediness characteristics such
as tolerance to multiple abiotic stresses changed reproductive
capacity and disease susceptibility will be required in the risk
assessment.

One of the prominent examples is the risk assessment
studies on transgenic eucalyptus tree with the codA gene
for salt tolerance. Transgenic Eucalyptus camaldulensis and
Eucalyptus globules showed salt tolerance under semi-confined
conditions (Kikuchi et al., 2006; Yu et al., 2009). Several
rounds of risk assessment studies have been completed on
transgenic eucalyptus in the greenhouse and field levels. The
effect of codA gene was determined on allelopathic potential,
soil microbial activities, weediness and competitiveness potential
and cross-ability. No significant effect was found between the
transgenic and non-transgenic lines of E. camaldulensis for
the tested parameters (Kikuchi et al., 2009). Similar results
were found in E. globules when assessed for allelopathic
potential and soil microbe investigations (Yu et al., 2008;
Lelmen et al., 2009). In addition, a 4 years filed trial
was carried out for transgenic E. globules with the codA
gene and the non-transgenic plants to analyze the impact
on biomass production, soil microbial communities and
surrounding vegetation (Oguchi et al., 2014). No significant
effect was found on the tested parameters between transgenic
and non-transgenic lines. These results revealed that the salt
tolerance conferred by the codA gene has no significant
impact on environmental aspects under environmental risk
assessment.

Transgenic eucalyptus hybrid clone (Eucalyptus
grandis × Eucalyptus urophylla) engineered with the CBF
transgene that confers cold/freeze tolerance is under vigorous
field trials and risk assessment studies in the United States (Nehra
and Pearson, 2011). The ArbrGen has submitted petitions for
transgenic eucalyptus to the USDA/APHIS for interstate
movement and field trials at various locations. Approvals have
been granted for interstate movement and confined field trials.
Based on the biological characteristics and the nature of the
transgene and the conferred tolerance, the APHIS considered
that it is unlikely that the introduced gene and the cold tolerance
trait would make the eucalyptus tree as weedy or invasive
(APHIS, 2009a,b, 2012). In addition, the APHIS concluded
that the confined release would not affect biodiversity upon the
transgenic eucalyptus trees reaching to maturity and flowering.

ELEMENTS OF ERA PARADIGM AND
NEED FOR ADDITIONAL
CONSIDERATIONS

Most of the abiotic stress tolerance genes including DREBs
and Na+/H+ antiporters and the underlying stress tolerance
mechanisms are not new to plants. Conventional breeding
approaches which have been used to date have relied on

the same abiotic stress tolerance genes and the underlying
mechanisms. While considering the adverse ecological impacts,
the nature of the novel phenotype is important irrespective
of the method of modification either through conventional
breeding or genetic engineering approaches (Wolt et al., 2015).
In case of transgenic plants with abiotic stress tolerance, the
magnitude of the conferred stress tolerance would be given
the central focus as a potential hazard that may affect non-
target organisms. The amount of stress tolerance could be
checked by comparing the transgenic plant with a non-transgenic
conventionally developed variety in the target environment.
Therefore, environmental risk assessment should focus plant
phenotype and the potential receiving environment rather
than the nature of the introduced gene and the underlying
mechanisms. Changes in agronomic performance and plant
phenotype that could have an ecological impact needs careful
consideration in the problem formulation step. The transgenic
plants developed with abiotic stress tolerance genes so far
have shown limited stress tolerance under greenhouse and
field studies (Tables 2 and 3). In addition, the risk assessment
studies conducted under the OGTR and Monsanto also reported
limited stress tolerance in transgenic plants. The stress tolerance
conferred these plants an overall growth and yield advantage
that was prominent only under stress conditions. Therefore,
the limited stress tolerance and fitness advantage may not
have an ecological impact. Despite these few examples of
risk assessment studies, the recently adopted trend of using
gene stacking approach for more durable stress tolerance
may result transgenic plants with fitness costs and benefits
than their non-transgenic control plants (Londo et al., 2011).
Uncertainties over the potential of increased stress tolerance and
fitness advantage and the resulting ecological impact may be
countered through continuous monitoring. Unlike food crops,
the biofeedstock crops and the perennial grasses are expected
to pose ecological concerns due to their comparatively more
weediness tendencies and also an extension of their cultivation in
marginal areas. While advancing environmental risk assessment
for transgenic biofeedstock crops, Wolt (2009) mentioned
that the ERA for these crops with abiotic stress tolerance
genes should focus on the weediness and invasiveness related
aspects. Here, the question arises whether enough information
on weediness and invasiveness are available for biofeedstock
perennial grasses, forages and biofuel plants? This question
could be answered through revisiting the problem formulation
step of risk assessment which has already been described for
drought tolerant maize (Nickson, 2008). It could be further
strengthened by putting increased information on the weediness
and invasiveness potential of these plants and their phenotypic
and agronomic characterization in the potential receiving
environment. An appropriate comparative approach and sound
analysis plan would be necessary to focus on key aspects related
to persistence, weediness and invasiveness tendencies. Moreover,
emphasis should be placed on identification of meaningful
differences, prevalence of multiple abiotic stresses, choice of
the comparator and response of the conventional plant to
the target stress, optimal conditions and potential receiving
environment.
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CONCLUSION

The environmental risk assessment process on candidate abiotic
stress tolerance genes should be simple and straightforward and
would take into account the long history of crop domestication,
crop husbandry, agricultural management practices and natural
variation of stress tolerance among crop varieties. Although
a limited number of transgenic plants with abiotic stress
tolerance genes have been evaluated for environmental risk
assessment under field conditions, these studies have revealed
no adverse effects of the transgenic plants to the environment
and biodiversity. As more transgenic plants with abiotic stress
tolerance genes enter field trials for agronomic performance and
overall stress tolerance, more data will be generated that would
help answer questions regarding uncertainties over the weediness
and invasiveness issues. So far, in comparison to commercial
traits such as insect resistance BT and Ht genes, the use of
codA, DREBs and Na+/H+ antiporters do not need additional
considerations or new and changed measurements in assessing
the environmental effects of these genes. No specific assessment
methodologies or techniques such as “omics” (transcriptome,
proteome and metabolome analysis) are required to assess the
increased fitness or related secondary effects. In regulatory
decision-making on the deliberate environmental release of these
genes, the final plant phenotype should be the prime target,

not the transformation process and the diverse mechanisms that
these genes may influence. Moreover, the use of these genes
in transgenic plants and release into the environment should
be considered on the risk-benefit-based analysis. In case of
transgenic perennial grasses and biofeedstocks with more fitness
enhancing abiotic stress tolerance genes, the environmental risk
assessment would carefully consider the potential ecological
impact.
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Park, E. J., Jeknić, Z., Pino, M. T., Murata, N., and Chen, T. H. (2007b).
Glycinebetaine accumulation is more effective in chloroplasts than in the
cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell
Environ. 230, 994–1005. doi: 10.1111/j.1365-3040.2007.01694.x

Park, E. J., Jeknic, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N., et al.
(2004). Genetic engineering of glycinebetaine synthesis in tomato protects
seeds, plants, and flowers from chilling damage. Plant J. 40, 474–487. doi:
10.1111/j.1365-313X.2004.02237.x

Pasapula, V., Shen, G., Kuppu, S., Paez-Valencia, J., Mendoza, M., Hou, P.,
et al. (2011). Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene
(AVP1) in cotton improves drought- and salt tolerance and increases fibre
yield in the field conditions. Plant Biotechnol. J. 9, 88–99. doi: 10.1111/j.1467-
7652.2010.00535.x

Peleg, Z., Apse, M. P., and Blumwald, E. (2011). Engineering salinity and water
stress tolerance in crop plants: getting closer to the field. Adv. Bot. Res. 57,
406–432.

Rensink, W., Hart, A., Liu, J., Ouyang, S., Zismann, V., and Buell, C. R. (2005).
Analyzing the potato abiotic stress transcriptome using expressed sequence
tags. Genome 48, 598–605. doi: 10.1139/g05-034

Ricroch, A. E., Berge, J. B., and Kuntz, M. (2011). Evaluation of genetically
engineered crops using transcriptomic, proteomic, and metabolomic
profiling techniques. Plant Physiol. 155, 1752–1761. doi: 10.1104/pp.111.17
3609

Ruan, C. J., and Teixeira da Silva, J. A. (2011). Metabolomics: creating new
potentials for unraveling the mechanisms in response to salt and drought
stress and for the biotechnological improvement of xero-halophytes. Crit. Rev.
Biotechnol. 31, 153–169. doi: 10.3109/07388551.2010.505908

Rudelsheim, P. L. J., and Smets, G. (2010). Anticipating the Environmental Risk
Assessment of Crops Modified to Enhance or Preserve Yield. Available at:
http://www.cogem.net/index.cfm/nl/publicaties/publicatie/anticipatingtheenv
ironmental-risk-assessment-of-crops-modified-toenhance-orpreserve-yield

Saint Pierre, C., Crossa, J. L., Bonnett, D., Yamaguchi-Shinozaki, K., and Reynolds,
M. P. (2012). Phenotyping transgenic wheat for drought resistance. J. Exp. Bot.
63, 1799–1808. doi: 10.1093/jxb/err385

Sala, F. (2000). “Safety considerations when planning genetically modified plants
that produce vaccines,” in Seminars on Nuclear War and Planetary Emergencies,
ed. R. Ragini (Singapore: World Scientific Publishing Co. Pte. Ltd.), 91.

Sammons, B., Whitsel, J., Stork, L. G., Reeves, W., and Horak, M.
(2014). Characterization of drought-tolerant Maize MON 87460 for

Frontiers in Plant Science | www.frontiersin.org 12 June 2016 | Volume 7 | Article 792

http://www.health.gov.au/internet/ogtr/publishing.nsf/Content/dir053-2004
http://www.ogtr.gov.au
http://www.health.gov.au/internet/ogtr/publishing.nsf/Content/dir080-2007
http://www.health.gov.au/internet/ogtr/publishing.nsf/Content/dir080-2007
http://www.health.gov.au/internet/ogtr/publishing.nsf/Content/dir081-2007
http://www.health.gov.au/internet/ogtr/publishing.nsf/Content/dir081-2007
http://www.health.gov.au/internet/ogtr/publishing.nsf/Content/dir083-2007
http://www.health.gov.au/internet/ogtr/publishing.nsf/Content/dir095
http://www.health.gov.au/internet/ogtr/publishing.nsf/Content/dir095
http://www.ogtr.gov.au
http://www.ogtr.gov.au
http://www.ogtr.gov.au
http://www.ogtr.gov.au
http://www.cogem.net/index.cfm/nl/publicaties/publicatie/anticipatingtheenvironmental-risk-assessment-of-crops-modified-toenhance-orpreserve-yield
http://www.cogem.net/index.cfm/nl/publicaties/publicatie/anticipatingtheenvironmental-risk-assessment-of-crops-modified-toenhance-orpreserve-yield
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00792 June 24, 2016 Time: 10:28 # 13

Khan et al. Abiotic Stress Tolerance in Plants

use in environmental risk assessment. Crop Sci. 54, 719–729. doi:
10.2135/cropsci2013.07.0452

SBC-Schenkelaars Biotechnology Consultancy (2007). Novel Aspects of the
Environmental Risk Assessment of Drought-Tolerant Genetically Modified Maize
and Omega-3 Fatty Acid Genetically Modified Soybean (Commissioned by the
GMO Office of the National Institute for Public Health and the Environment, the
Netherlands, 2007). Available at: https://bch.cbd.int/database/record.shtml?doc
umentid=45858

Simó, C., Ibáñez, C., Valdés, A., Cifuentes, A., and García-Cañas, V. (2014).
Metabolomics of genetically modified crops. Int. J. Mol. Sci. 15, 18941–18966.
doi: 10.3390/ijms151018941

Singh, R. K., Redona, E., and Refuerzo, L. (2014). “Varietal improvement for abiotic
stress tolerance in crop plants: special reference to salinity in rice,” in Abiotic
Stress Adaptation in Plants, eds A. Pareek, S. K. Sopory, H. J. Bohnert and
Govindjee (Berlin: Springer), 387–415.

Smirnoff, N. (1998). Plant resistance to environmental stress. Curr. Opin.
Biotechnol. 9, 214–219. doi: 10.1016/S0958-1669(98)80118-3

Su, J., Hirji, R., Zhang, L., He, C., Selvaraj, G., and Wu, R. (2006). Evaluation of the
stress-inducible production of choline oxidase in transgenic rice as a strategy
for producing the stress-protectant glycine betaine. J. Exp. Bot. 57, 1129–1135.
doi: 10.1093/jxb/erj133

Sulpice, R., Tsukaya, H., Nonaka, H., Mustardy, L., Chen, T. H., and Murata, N.
(2003). Enhanced formation of flowers in salt-stressed Arabidopsis after genetic
engineering of the synthesis of Glycine betaine. Plant J. 36, 165–176. doi:
10.1046/j.1365-313X.2003.01873.x

Tang, W., Newton, R. J., Li, C., and Charles, T. M. (2007). Enhanced stress tolerance
in transgenic pine expressing the pepper CaPF1 gene is associated with the
polyamine biosynthesis. Plant Cell Rep. 26, 115–124. doi: 10.1007/s00299-006-
0228-0

Vahdati, K., and Leslie, C. (2013). Abiotic Stress-Plant Responses and Applications
in Agriculture. Rijeka: Janeza Trdine.

Vinocur, B., and Altman, A. (2005). Recent advances in engineering plant tolerance
to abiotic stress: achievements and limitations. Curr. Opin. Biotechnol. 16,
123–132. doi: 10.1016/j.copbio.2005.02.001

Wang, Z. Y., and Brummer, E. C. (2012). Is genetic engineering ever going to take
off in forage, turf and bioenergy crop breeding? Ann. Bot. 110, 1317–1325. doi:
10.1093/aob/mcs027

Warwick, S. I., Beckie, H. J., and Hall, L. M. (2009). “Gene flow, invasiveness, and
ecological impact of genetically modified crops,” in Year in Evolutionary Biology,
eds C. D. Schlichting and T. A. Mousseau (New York: Academic Science),
72–99.

Watanabe, K. N., Sassa, Y., Suda, E., Chen, C. H., Inaba, M., and Kikuchi, A.
(2005). Global political, economic, social and technological issues on transgenic
crops. Plant Biotechnol. 22, 515–522. doi: 10.5511/plantbiotechnology.
22.515

Wolt, J. D. (2009). Advancing environmental risk assessment for transgenic
biofeedstock crops. Biotechnol Biofuels. 2:27. doi: 10.1186/1754-6834-2-27

Wolt, J. D., Wang, K., and Yang, B. (2015). The regulatory status of genome-edited
crops. Plant Biotechnol. J. 14, 510–518. doi: 10.1111/pbi.12444

Xiao, B. Z., Chen, X., Xiang, C. B., Tang, N., Zhang, Q. F., and Xiong, L. Z.
(2009). Evaluation of seven function-known candidate genes for their effects
on improving drought resistance of transgenic rice under field conditions. Mol.
Plant 2, 73–83. doi: 10.1093/mp/ssn068

Yang, C. H., and Crowley, D. E. (2000). Rhizosphere microbial community
structure in relation to root location and plant iron nutritional status.
Appl. Environ. Microbiol. 66, 345–351. doi: 10.1128/AEM.66.1.345-351.
2000

Yoshioka, K., and Shinozaki, K. (2009). Signal Crosstalk in Plant Stress Responses.
Hoboken, NJ: Wiley-Blackwell.

Yu, X., Kikuchi, A., Lelmen, E., Ahmad, D., Matsunaga, E., Shimada, T.,
et al. (2008). “Environmental biosafety assessments of transgenic Eucalyptus
conferring salt tolerance in Japan,” in Proceeding of the 10th International
Symposium on the Biosafety of Genetically Modified Organisms, November
16th-21st, 2008. Wellington.

Yu, X., Kikuchi, A., Matsunaga, E., Morishita, Y., Nanto, K., Sakurai, N., et al.
(2009). Establishment of the evaluation system of salt tolerance on transgenic
woody plants in the special netted-house. Plant Biotechnol. 26, 135–141. doi:
10.5511/plantbiotechnology.26.135

Yu, X., Kikuchi, A., Matsunaga, E., Morishita, Y., Nanto, K., Sakurai, N., et al.
(2013a). The choline oxidase gene codA confers salt tolerance to transgenic
Eucalyptus globulus in a semi-confined condition. Mol. Biotechnol. 54, 320–330.
doi: 10.1007/s12033-012-9575-y

Yu, X., Kikuchi, A., Shimazaki, T., Yamada, A., Ozeki, Y., Matsunaga, E., et al.
(2013b). Assessment of the salt tolerance and environmental biosafety of
Eucalyptus camaldulensis harboring a mangrin transgene. J. Plant Res. 126,
141–150. doi: 10.1007/s10265-012-0503-9

Zhang, G. H., Su, Q., An, L. J., and Wu, S. (2008). Characterization and expression
of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus
littoralis. Plant Physiol Biochem. 46, 117–126. doi: 10.1016/j.plaphy.2007.10.022

Zhang, Y. M., Liu, Z. H., Wen, Z. Y., Zhang, H. M., Yang, F., and Guo, X. L.
(2012). The vacuolar Na+/H+ antiport gene TaNHX2 confers salt tolerance
on transgenic alfalfa (Medicago sativa). Funct. Plant Biol. 39, 708–716. doi:
10.1071/FP12095

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Khan, Khan and Ahmad. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 13 June 2016 | Volume 7 | Article 792

https://bch.cbd.int/database/record.shtml?documentid=45858
https://bch.cbd.int/database/record.shtml?documentid=45858
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance
	Introduction
	Utilization Of Important Genes In Plant Abiotic Stress Tolerance
	Glycine Betaine and the codA Gene
	DREB-Transgenic Plants
	Na+/H+ Antiporter Genes in GM Plants

	Potential For Harm Associated With Candidate Abiotic Stress Tolerance Genes And Their Assessment
	The Type of Transgene, Effects on Fitness, Weediness and Allelopathic Potential of Transgenic Plants
	The codA Gene
	The DREB Genes
	Na+/H+ Antiporters

	The Type of Plant Engineered with Candidate Abiotic Stress Tolerance Genes
	Domesticated Crop Plants
	Trees
	Perennial Grasses

	Potential Receiving Environment

	Examples Of Field Trials And Risk Assessment Studies
	Elements Of Era Paradigm And Need For Additional Considerations
	Conclusion
	Author Contributions
	Acknowledgment
	References


