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Phakopsora pachyrhizi is a biotrophic fungus provoking SBR disease. SBR poses a
major threat to global soybean production. Though several R genes provided soybean
immunity to certain P. pachyrhizi races, the pathogen swiftly overcame this resistance.
Therefore, fungicides are the only current means to control SBR. However, insensitivity
to fungicides is soaring in P. pachyrhizi and, therefore, alternative measures are needed
for SBR control. In this article, we discuss the different approaches for fighting SBR and
their potential, disadvantages, and advantages over other measures. These encompass
conventional breeding for SBR resistance, transgenic approaches, exploitation of
transcription factors, secondary metabolites, and antimicrobial peptides, RNAi/HIGS,
and biocontrol strategies. It seems that an integrating approach exploiting different
measures is likely to provide the best possible means for the effective control of SBR.

Keywords: Asian soybean rust, Phakopsora pachyrhizi, fungicide insensitivity, host resistance, non-host
resistance, plant breeding, plant biotechnology

INTRODUCTION

SBR is currently the most severe soybean (Glycine max) disease. SBR is caused by Phakopsora
pachyrhizi. The biotrophic basidiomycete threatens soybean production all over the globe, but
the threat is most severe in the major soybean growing areas in South America. In Brazil SBR
has caused crop losses of more than US$ 10 billion since its first endemic outbreak in 2001
(Yorinori et al., 2005; da Silva et al., 2014). Currently, three major strategies serve to manage
SBR (Figure 1). First, applying chemical fungicides. Second, breeding or engineering of SBR-
resistant soybean cultivars, and third, employing specific cultivation practices, such as planting
early ripening varieties, monitoring fields, eliminating secondary hosts, and introducing soybean-
free growth periods (60–90 days) in the threatened areas (Hartman et al., 2005; Godoy, 2011;
Kendrick et al., 2011). Here, we elaborate on these strategies, and we also discuss the potential
of AMPs, RNAi/HIGS, and biocontrol measures for controlling SBR. A detailed description of the
life cycle, host range and distribution of P. pachyrhizi has been provided earlier (Goellner et al.,
2010).

Abbreviations: AMP, Antimicrobial peptide; CRISPR, Clustered regularly interspersed short palindromic repeats; DMI,
Demethylation inhibitor; dsRNA, Double stranded RNA; ETI, Effector-triggered immunity; FRAC, Fungicide Resistance
Action Committee; HESP, Haustoria-expressed secreted protein; HIGS, Host-induced gene silencing; IAP, Intragenic
antimicrobial peptide; JA, Jasmonic acid; MDR, Muldidrug resistance; NB-LRR, Nucleotide-binding leucine-rich repeat;
NHR, non-host resistance; PDR, Partial disease resistance; QoI, Quinone outside inhibitor; R gene, Resistance gene;
RNAi, RNA interference; Rpp, Resistance to P. pachyrhizi; S gene, Susceptibility gene; SA, Salicylic acid; SAR, Systemic
acquired resistance; SBR, Asian soybean rust; SDHI, Succinate dehydrogenase inhibitor; siRNA, Small interfering RNA; TF,
Transcription factor; TILLING, Targeting induced local lesions in genomes; VIGS, Virus-induced gene silencing.
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FIGURE 1 | Strategies for controlling SBR. Exploitation of different genetic resources (host and non-host plants), biocontrol agents, and chemical fungicides to
combat Phakopsora pachyrhizi. ap, appressorium; gt, germ tube; sp, uredospore.
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Chemical Control of SBR
Fungicide use is the most effective means for controlling SBR
these days. In Brazil, at least three fungicide applications are
needed per season thus raising costs of ∼US$2 billion for soybean
disease control annually (Godoy et al., 2015). In contrast to
multisite fungicides (e.g., mancozeb) with comparatively low
performance, the DMI and the QoI classes of fungicide are
prime chemicals for fighting P. pachyrhizi. Since 2013, fungicides
of the highly active SDHI class are available for SBR control
(Guicherit et al., 2014). Because this new fungicide class performs
extraordinarily well, the number of available SDHI fungicides and
the intensity of their use is likely to steadily increase over the next
couple of years (Godoy et al., 2015). However, the excessive use
of fungicides increases the chance of fungal strains with evolved
insensitivity to the fungicides in use. In the recent past, this was
true for the azole-class fungicides to which P. pachyrhizi and
other fungal pathogens have become insensitive (Godoy, 2012).
The FRAC assigned rust fungi, including P. pachyrhizi, to the
low-risk group of fungi (Brent and Holloman, 2007). However,
P. pachyrhizi and other causes of polycyclic plant diseases are
highly likely to evolve fungicide insensitivity because of the high
number of spores they produce (Bradley, 2007).

The mechanism of fungal insensitivity to DMIs is highly
complex and variable. After several years of fungicide use,
a significant reduction in DMI efficacy to P. pachyrhizi was
detected in Brazil (Scherm et al., 2009; Barbosa et al., 2013;
Reis et al., 2015). The insensitivity is caused either by point
mutations in the fungal cyp51 gene or by cyp51 overexpression
(Schmitz et al., 2014). The major mechanism of QoI and SDHI
insensitivity is by point mutations in the cyt b and sdh b/c/d
genes, respectively. These mutations were reported for many
plant-pathogenic fungi (Kim et al., 2003; Grasso et al., 2006a;
Sierotzki et al., 2007; Sierotzki and Scalliet, 2013). The most
common mutation for QoI insensitivity [substitution of glycine
to alanine at position 143 of Cyt b] was not yet detected in
rusts probably because of presence of a type-I intron after codon
143 (Grasso et al., 2006a,b,c; Oliver, 2014; Klosowski et al.,
2015). Nucleotide substitutions in this codon would prevent
intron splicing thus leading to a defective Cyt b protein (Grasso
et al., 2006a). However, another cyt b mutation (F129L) was
reported to confer QoI insensitivity in various fungi including
P. pachyrhizi (Leiminger et al., 2014; Klosowski et al., 2015).
For P. pachyrhizi SDHI insensitivity was not reported yet.
However, the increased use of SDHIs is likely to further enhance
the selection pressure for SDHI insensitivity in P. pachyrhizi
(Godoy et al., 2015). MDR, as reported for Botrytis cinerea and
other fungi (Kretschmer et al., 2009) also was not observed in
P. pachyrhizi so far. To assess the risk and impact of fungicide-
insensitive isolates, we recommend generating insensitive fungal
mutants in the laboratory. Investigating such mutants is likely
to disclose mechanisms underlying fungicide insensitivity, enable
recommendations for avoiding selection of insensitive fungal
populations, and developing novel mode-of-action fungicides.
Applying fungicides preventively or as early as possible in the
diseases cycle before or shortly after P. pachyrhizi infection is
crucial for effective SBR control (Mueller et al., 2009; Godoy,

2012). Therefore, early SBR detection and precise forecasts are
required for efficient SBR disease management.

Probably the best and most sustainable control of SBR is
by providing soybean genotypes resisting P. pachyrhizi (see
below). Growth of SBR resistant genotypes is likely to be
associated with reduced fungicide use. This then might decrease
soybean production costs, improve the CO2 footprint of soybean
products, and minimize the potential risk of ecological and
sanitary actions resulting from extensive use of fungicides
(Maltby et al., 2009; Verweij et al., 2009; Wightwick et al., 2010).

Resources of SBR Resistance in
Soybean
R Genes, R Gene Pyramids, and Engineered R Genes
Analysis of soybean genotypes disclosed six dominant R
genes conferring immunity (no visible symptoms) or resistance
(reddish brown lesions and reduced sporulation) to specific
P. pachyrhizi isolates. Those loci were referred to as Rpp 1–6
genes (Bromfield and Hartwig, 1980; McLean and Byth, 1980;
Bromfield and Melching, 1982; Hartwig and Bromfield, 1983;
Hartwig, 1986; Garcia et al., 2008; Li et al., 2012). However, Rpp
genes provide resistance exclusively to individual P. pachyrhizi
isolates (race-specific disease resistance). Therefore, no currently
available soybean genotype would ward off all P. pachyrhizi
isolates (Monteros et al., 2007). In addition, Rpp gene-mediated
resistance was swiftly overcome in the field (Yorinori et al., 2005;
Garcia et al., 2008). Employing recessive R genes might represent
another approach for providing stable SBR resistance (Calvo
et al., 2008). In fact, three recessive R genes to P. pachyrhizi have
been identified in the soybean genotypes PI 200456, PI 224270,
and BR01-18437 (Calvo et al., 2008; Pierozzi et al., 2008). These
genes are now awaiting exploitation in breeding and genetic
engineering for SBR resistance.

Developing elite lines and varieties requires breeders to
combine traits from multiple parents, a process called gene
pyramiding or stacking (Francis et al., 2012). Pyramiding R genes
into a single genetic background is another proposed strategy for
conferring soybean resistance to multiple P. pachyrhizi isolates
(Hartman et al., 2005; Garcia et al., 2008; Lemos et al., 2011;
Maphosa et al., 2012; Yamanaka et al., 2013, 2015; Bhor et al.,
2014). The SBR resistant Japanese soybean cultivar Hyuuga
represents a natural example of R gene pyramiding (Kendrick
et al., 2011). In line with this finding, soybean genotypes
harboring two pyramided Rpp genes exhibited higher SBR
resistance than their ancestors containing only single R genes
(Maphosa et al., 2012; Bhor et al., 2015). Synergistic effects
were also observed when three R genes were bred into a
single soybean genotype (Lemos et al., 2011; Yamanaka et al.,
2013, 2015). Remarkably, a combination of multiple R genes
conferred resistance to different P. pachyrhizi isolates from
various origin (including two highly virulent strains from Brazil;
Yamanaka et al., 2015). Although molecular markers facilitate
breeding approaches, traditional breeding is still time consuming,
and introducing unwanted traits (Salomon and Sessa, 2012).
Furthermore, SBR resistance based on static R gene pyramids
will likely be overcome upon longer use in the field (McDonald,
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2014) as has been reported for other crops like wheat or
barley (McDonald and Linde, 2002). Therefore, transforming
expression cassettes with alternative R gene combinations into
elite soybean lines and dynamic turnover of such lines in
the field might represent a promising strategy for providing
sustainable and effective SBR resistance (McDonald and Linde,
2002). However, for cloning and utilization of such multi R
gene expression cassettes the identity of Rpp genes needs to be
revealed. Although SBR resistance loci have been mapped to
different linkage groups on various chromosomes (reviewed by
Bhor et al., 2014), the identity of Rpp genes has remained largely
unknown. One exception is represented by the NB-LRR encoding
gene Rpp4C4 that is likely responsible for Rpp4-mediated SBR
resistance (Meyer et al., 2009).

Another possibility to enhance the resistance of soybean to
SBR is to identify and exploit R genes conferring resistance
to multiple pathogens. Several examples of such broadly active
R genes exist in nature (Nombela et al., 2003; Narusaka
et al., 2009; Atamian et al., 2012; Lozano-Torres et al., 2012).
A complementary approach for broadened pathogen effector
recognition uses random mutagenesis or rational design of
synthetic NB-LRR immune receptors. Editing the potato NB-
LRR receptor R3a at a single amino acid significantly expanded
its response to Phytophthora infestans-derived effectors (Segretin
et al., 2014). Effectively mutating the R3a orthologue I2 in
tomato enhanced the response to the P. infestans AVR3a effector,
conferred partial immunity to potato blight, and expanded the
response spectrum to Fusarium oxysporum f. sp. lycopersici
effectors compared to tomato plants expressing the wild-type I2
gene (Giannakopoulou et al., 2015). R gene engineering might
also succeed in exploiting multiple Rpp genes for conferring an
expanded response to multiple P. pachyrhizi isolates. Rpp4C4
(Meyer et al., 2009) may serve for engineering such R gene
variants by untargeted protein evolution. Furthermore, genome
editing may be used for the targeted evolution of NB-LRRs.
In fact, genome-wide sequence analysis predicted nearly all
soybean NB-LRR-encoding genes an be targeted specifically by
CRISPR/Cas9 (Xie et al., 2014).

Signaling Components of R Gene-Mediated SBR
Resistance
Several studies reported differential defense responses to SBR
attack in susceptible and resistant soybean genotypes. The studies
included analysis of transcriptional dynamics, proteome changes,
or metabolic alterations to identify loci, genes, proteins, and
metabolites associated with ETI to P. pachyrhizi in soybean.

Signaling network hubs and phytohormones
Transcriptome analysis disclosed different components of Rpp2-
mediated resistance to SBR in soybean (van de Mortel et al., 2007;
Pandey et al., 2011). Of 140 candidates tested by VIGS, eleven
genes clearly contributed to Rpp2-mediated SBR resistance. The
genes encompassed GmEDS1, GmPAD4, and GmNPR1.

NPR1 is a master regulator of SAR in Arabidopsis thaliana
and some other plants (reviewed by Fu and Dong, 2013). When
overexpressed in Arabidopsis, rice, tobacco, or apple, NPR1
enhances resistance to infectious oomycetes, bacteria, and fungi

(including obligate biotrophic fungi such as powdery mildew;
Cao et al., 1998; Chern et al., 2005; Chen et al., 2012). Because of
possible side effects of NPR1 overexpression (Chern et al., 2005),
such as yield reduction, the potential of this gene for generating
SBR-resistant soybean varieties awaits assessment.

EDS1 and PAD4 are key regulators of several types of plant
disease resistance (basal, R gene-mediated, and NHR). The two
proteins are required for accumulation of SA, and they control
various SA-dependent defense pathways (Falk et al., 1999; Jirage
et al., 1999; Nawrath et al., 2002; Lipka et al., 2005; Wiermer
et al., 2005; Langenbach et al., 2013; Wang et al., 2014). Because
silencing of GmEDS1 or GmPAD4 lead to susceptibility of
otherwise resistant soybean lines carrying Rpp2, EDS1 and PAD4
seem to control also Rpp2-mediated SBR resistance in soybean
(Pandey et al., 2011). SA accumulation is thus likely to limit the
growth and reproduction of P. pachyrhizi in soybean. Because
PAD4 is also required for Arabidopsis postinvasion NHR to
P. pachyrhizi (Langenbach et al., 2013), SA-associated defense
responses seem to be highly effective in antagonizing SBR disease.
However, overexpression of SA biosynthesis genes is likely not to
provide a realistic agronomical solution for SBR control because
constitutive SA accumulation often causes dwarfism (Bowling
et al., 1994; Li et al., 2001).

In Arabidopsis and soybean, P. pachyrhizi activates expression
of JA-responsive genes at early stages of infection (Loehrer et al.,
2008; Alves et al., 2015) and before actual penetration [likely by
secreted P. pachyrhizi effectors (Campe et al., 2014)]. Since JA
is considered eliciting immune responses against necrotrophic
pathogens (Pieterse et al., 2012) P. pachyrhizi pretends being
a necrotroph at initial stages of colonization. By doing so,
it may circumvent effective SA-dependent defense signaling
which is known to be crucial to ward off biotrophic pathogens.
Thus, engineering soybean plants for the fast and robust
accumulation of SA, or exploiting SA-activated downstream
signaling components for resistance might be a suited strategy
for providing soybean varieties resisting SBR at low risks for
energetic tradeoffs.

Transcription factors
The importance of TFs in conferring SBR resistance became
obvious when van de Mortel et al. (2007) and Schneider
et al. (2011) found that TF genes are being overrepresented
among genes whose expression is activated in the biphasic
transcriptional response in SBR-resistant soybean genotypes
harboring Rpp2 or Rpp3. Amongst others, genes encoding
WRKY, bHLH, and MYB TFs were activated in incompatible,
but not compatible, soybean-P. pachyrhizi interactions. When
GmWRKY36, GmWRKY40, GmWRKY45, and GmMYB84 were
individually silenced using VIGS, Rpp2-mediated SBR resistance
was gone (Pandey et al., 2011). Several other studies also
revealed differential expression of TFs in incompatible or
compatible soybean-P. pachyrhizi interactions (Panthee et al.,
2009; Morales et al., 2013; Aoyagi et al., 2014). In fact, there
seems to be considerable overlap of TF activity in Rpp2, Rpp3,
and Rpp4-mediated soybean disease resistance (Morales et al.,
2013). Therefore, these TFs seem to be excellent candidates
for engineering SBR resistance. However, manipulation of TF
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balance may affect agronomic traits because TFs regulate a
diverse array of loci.

In another approach, Cooper et al. (2011) compared nuclear
proteome changes in a resistant vs. susceptible genotype at 24 h
after inoculation with P. pachyrhizi. Their analysis disclosed more
than 200 proteins that specifically accumulated in the nucleus
of SBR-resistant soybean plants harboring Rpp1 (Cooper et al.,
2011). Silencing two predicted soybean TFs (Glyma14g11400,
PHD superfamily and Glyma12g30600, zinc finger TF) via VIGS
partially compromised Rpp1-conferred SBR resistance (Cooper
et al., 2013). Similarly, Bencke-Malato et al. (2014) demonstrated
that accumulation of mRNA transcripts for several WRKY TFs
was faster and more robust in a resistant than susceptible
soybean accession. Consistently, the simultaneous silencing of
four identified WRKY genes rendered soybean plants more
susceptible to SBR disease. Because the authors did not succeed
in producing WRKY-overexpressing soybean lines (Bencke-
Malato et al., 2014), the potential of WRKY overexpression
for providing SBR resistance to susceptible soybean genotypes
remained unclear.

Secondary metabolism
Plants can halt or slow down infection by constitutive or
inducible accumulation of antimicrobial and/or cell wall-
fortifying secondary metabolites (Chiang and Norris, 1983;
Hahlbrock and Scheel, 1989; Chang et al., 1995; Dixon et al.,
2002; Boerjan et al., 2003; La Camera et al., 2004; Vogt,
2010). Secondary metabolites also contribute to the outcome of
the soybean–P. pachyrhizi interaction. Daidzein, genistein, and
glyceollin are isoflavonoids that accumulate in both resistant
and susceptible soybean genotypes upon P. pachyrhizi infection
(Lygin et al., 2009). Glyceollin efficiently reduces P. pachyrhizi
uredospore germination in vitro (Lygin et al., 2009). Further
evidence for a role of phytoalexins in SBR resistance was
provided by Bilgin et al. (2009). The authors disclosed that SBR
resistance in a Glycine tomentella accession correlated with the
presence of a flavonoid that also inhibited P. pachyrhizi spore
germination (Chung and Singh, 2008). The high potential of
phytoalexins in defeating SBR is further supported by medicarpin
accumulating in P. pachyrhizi-infected Medicago truncatula, a
non-host of P. pachyrhizi. Consistently, medicarpin inhibits
P. pachyrhizi spore germination (Ishiga et al., 2015). Providing
such comparative large-scale metabolic profiles from resistant
vs. susceptible soybean varieties, or other SBR-resistant species
would likely identify more secondary metabolites inhibiting
SBR. Genes in their biosynthesis pathways could be used to
engineer SBR resistance in transgenic soybean. Alternatively,
the compound(s) themselves could serve as natural fungicides
in spray application, especially if they can be produced at
low costs and in sufficient quantities for use in agriculture.
In a variety of studies, genes in the phenylpropanoid and
flavonoid metabolism were overrepresented when analyzing
the transcriptional response of infected soybean genotypes
with SBR resistance (van de Mortel et al., 2007; Choi et al.,
2008; Panthee et al., 2009; Schneider et al., 2011). Overall,
activation of these genes was faster and stronger in SBR-resistant
accessions than in susceptible ones (van de Mortel et al., 2007;

Schneider et al., 2011). Functional evidence for the importance of
phenylpropanoid pathway genes in soybean’s SBR resistance was
provided by Pandey et al. (2011). The authors demonstrated that
silencing of soybean phenylalanine ammonia-lyase (GmPAL) or
O-methyl transferase1 (GmOMT1) compromised Rpp2-mediated
SBR resistance. OMT1 silencing also partially impaired Rpp1-
mediated SBR resistance (Cooper et al., 2013) and significantly
decreased lignin content (Pandey et al., 2011). The latter result
points to an important role of lignification in rejecting SBR.

Susceptibility Genes and Effector Targets
Different from dominant R genes conferring effective, but
exclusively race-specific and non-durable resistance (Yorinori
et al., 2005; Garcia et al., 2008), the loss of functional S genes can
eventually provide durable disease resistance (Pavan et al., 2010;
Gawehns et al., 2013). For example, in barley absence of the S
gene Mlo results in an incompatible interaction with Blumeria
graminis f. sp. hordei that resembles NHR (Humphry et al., 2006).
S genes function either as susceptibility factors or suppressors of
plant defense. Thus they are potential targets of fungal effectors.
Consistent with this assumption knocking out S genes leads to
recessive resistance with effectivity to multiple races of a given
pathogen (Pavan et al., 2010). This type of resistance is very stable.
The resistance of plants harboring recessive alleles of Mlo (barley)
or eIF4E (pepper) has not been overcome in the field for 30–
50 years (Lyngkjær et al., 2000; Kang et al., 2005). Breeding for
S gene variants insensitive to manipulation by pathogen effectors
therefore has huge potential for durable, broad-spectrum disease
resistance; although loss-of-function mutations in S genes may
be associated with pleiotropic detrimental effects (Büschges et al.,
1997).

Soybean S genes to SBR have not been identified so far.
However, several approaches might identify potential S gene
alleles for SBR resistance in soybean. Because most S genes
of agricultural value were identified in screens for recessive
resistance in wild species of plant (Bai et al., 2005), searching for
such a resistance in wild Glycine might similarly provide genetic
resources for breeding or engineering SBR resistance in G. max.

Another option for identifying soybean S genes to SBR is
via sequence homology search to known S genes. Functional
analysis can be done using, for example, soybean insertion
mutants (Mathieu et al., 2009), performing VIGS (Zhang and
Ghabrial, 2006; Zhang et al., 2010, 2013; Pandey et al., 2011),
TILLING (Cooper et al., 2008), or applying targeted genome
editing techniques such as CRISPR/Cas9 (Jacobs et al., 2015).
However, currently only one gene [the Cys(2)His(2) zinc finger
TF palmate-like pentafoliata1, PALM1] that would classify as
an SBR S gene is known from M. truncatula (Uppalapati et al.,
2012). Alternatively, fungal effectors might serve as guides to
identify novel S genes in soybean and other plants since several
effectors of bacteria, fungi, or oomycetes were shown to target
plant S genes (reviewed by Gawehns et al., 2013). Although
various analyses identified stage-specific rust proteins that might
have bona-fide effector function (Loehrer and Schaffrath, 2011;
Stone et al., 2012; Link et al., 2014), their role as virulence
factors awaits functional confirmation. Identification of effector
proteins and corresponding S gene targets was likely hampered by
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missing P. pachyrhizi genome information (Loehrer et al., 2014).
Transformation protocols enabling generation of P. pachyrhizi
knockout mutants are also missing.

Another approach for identifying S gene alleles conferring SBR
resistance is via screening of mutagenized soybean populations
for loss-of-susceptibility mutants. The tetraploid nature of the
soybean crop and the potential existence of multiple S gene
copies might hamper this approach. Because 12 duplicated
copies of a given DNA region might be present in the soybean
genome (Cannon and Shoemaker, 2012), mutagenesis-induced
phenotypic variation might be buffered by gene redundancy
(Bolon et al., 2014). However, fast neuron irradiation recently
provided more than 27,000 unique soybean mutants with
significant phenotypic variation (Bolon et al., 2011, 2014).
The mutants may facilitate genetic screens for loss of SBR
susceptibility mutants with interesting resistance phenotypes
similar to the M. truncatula irg1 mutant (Ishiga et al., 2015).
Identified S gene alleles for SBR resistance in soybean might be
engineered in elite soybean lines via genome editing (Jacobs et al.,
2015).

Genes Providing Quantitative SBR Resistance or
Tolerance
Forward genetic screens using activation-tagged soybean plants
(Mathieu et al., 2009) could identify genes and loci that
quantitatively contribute to SBR resistance. Genes and loci for
SBR resistance can potentially also be found exploiting fungal
effectors targeting proteins with a role in apoplastic immunity
[e.g., the Ustilago maydis effector Pit2 targets maize apoplastic
cysteine proteases (Mueller et al., 2013)].

PDR to SBR is found in ‘slow rusting’ soybean accessions such
as SRE-Z-11A, SRE-Z-11B, and SRE-Z-15A (Tukamuhabwa
and Maphosa, 2010). These genotypes can potentially provide
useful genes and loci for quantitative SBR resistance. PDR is
characterized by low infection frequency, long-lasting latency,
small lesions, and reduced spore production per uredinium.
Thus, PDR reduces SBR epidemics (Tukamuhabwa and
Maphosa, 2010). Since PDR is polygenic and effective to multiple
pathogen races (Long et al., 2006), identification, and transfer
of genes from partially resistant to susceptible soybean varieties
might provide only partial but durable resistance to diverse
P. pachyrhizi isolates. Because of PDR’s polygenic nature and the
time-consuming process for selecting partially resistant progeny,
such soybean varieties have not attracted much attention as
sources for SBR resistance in the past (Hartman et al., 2005).

Besides soybean genotypes with partial resistance, SBR-
tolerant accessions also have not been a subject of molecular
research. Although susceptible to SBR, these genotypes do better
tolerate the presence of P. pachyrhizi and produce reasonably
high yield even when severely infected. Yield may increase
by 30–60% using SBR-tolerant varieties in the presence of
P. pachyrhizi (Tukamuhabwa and Maphosa, 2010). Furthermore,
planting tolerant varieties does not pose selection pressure on
P. pachyrhizi, thus minimizing the risk of selecting adapted
pathogen races (Arias et al., 2008). However, SBR disease
tolerance of a given soybean accession is assessed with respect to
its yield capacity. This requires multi-site field trials and hinders

evaluation of a genotype’s tolerance and commercial value at
small scale laboratory conditions (Tukamuhabwa and Maphosa,
2010). Nonetheless, identification of genes for SBR tolerance
using, e.g., comparative transcriptome or proteome analysis, may
enable provision of soybean varieties with capacity for enhanced
yield at high SBR pressure.

Antimicrobial Peptides
AMPs can provide disease resistance to plants (Rahnamaeian,
2011). However, AMPs did not serve to fight SBR so far. Brand
et al. (2012) introduced a method for the identification and
employment of putative AMPs encrypted in soybean protein
sequences. This approach was meant to provide an alternative
to transgenic approaches that expressed AMPs from other
organisms. Using in situ assays, Brand et al. (2012) found that
IAPs conferred SBR resistance in a manner similar to AMPs from
Phyllomedusa ssp. (dermaseptin SI) or Drosophila melanogaster
(penetratin) when co-incubated with fungal uredospores on
susceptible soybean leaves. In addition, soybean plants expressing
a putative antimicrobial fragment of the G. max D-myo-inositol
3-phosphate synthase [IAP gb|ABM17058.1| (213–231)] showed
enhanced resistance to P. pachyrhizi (Brand et al., 2012). These
findings illustrate the feasibility of trans- or cisgenic AMP
expression for SBR resistance.

Alternative Sources of SBR Resistance
Wild Glycine Species and Other Alternative Hosts
Wild perennial Glycine species might serve as valuable resources
of germplasm for SBR resistance. This is because Glycine
clandestina, Glycine canescens, Glycine tabacina, Glycine
tomentella, and Glycine argyrea all display pathotype-specific
resistance to P. pachyrhizi (Burdon and Speer, 1984; Burdon,
1987, 1988; Jarosz and Burdon, 1990). In G. clandestina,
G. canescens, and G. argyrea differential SBR resistance
phenotypes are linked to presence or absence of single or
multiple (pyramided) R genes (Burdon and Speer, 1984;
Burdon, 1987, 1988; Jarosz and Burdon, 1990). The resistance
of G. tomentella accession PI 441001 to P. pachyrhizi, however,
was associated with accumulation of an antifungal flavonoid
inhibiting P. pachyrhizi spore germination (Chung and Singh,
2008). Because Singh and Nelson (2015) obtained fertile SBR-
resistant plants from crosses of G. max and G. tomentella,
transfer of R genes from wild perennial species to commercial
soybean varieties via intersubgenic hybridization seems to be
a powerful strategy for SBR resistance. The novel hybrid plant
is still to be analyzed for its yield and resistance to multiple
P. pachyrhizi isolates which will disclose the commercial value of
the hybrid.

Other SBR resistance traits are present in G. soja. The species is
closer related to G. max than its above mentioned wild perennial
relatives (Bromfield, 1984). However, because of presence of
undesired traits, generating hybrids for commercialization using
G. soja or the wild, perennial Glycine species will likely
require elaborate backcrossing and selection. Identifying the
genetic basis of SBR resistance in wild species followed by
engineered transfer of genes and/or traits to elite varieties
might represent an alternative, more promising strategy for SBR
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resistance. The approach circumvents the drawbacks associated
with hybridization strategies. However, only few attempts (e.g.,
Soria-Guerra et al., 2010) identified gene candidates to condition
SBR resistance in wild Glycine species.

Kudzu (Pueraria lobata) is a leguminous weed that hosts
P. pachyrhizi and could provide traits for SBR resistance. Genetic
variation is high among different kudzu populations but low
within a same population (Sun et al., 2005). As a consequence,
individual kudzu plants are resistant/immune or susceptible
to diverse P. pachyrhizi isolates (Bonde et al., 2009). In a
kudzu genotype with immunity to SBR the early abrogation
of P. pachyrhizi infection correlated with cell wall appositions
and cell death in the leaf epidermis (Jordan et al., 2010). This
finding suggests presence of early, effective defense responses
in immune kudzu genotypes. Big differences in the response
to P. pachyrhizi infection were also seen in several other
legume species (Slaminko et al., 2008). Vigna adenantha PI
312898, for instance, is immune to SBR as are individual bean
(Phaseolus vulgaris) cultivars (Miles et al., 2007; Souza et al.,
2014). However, lack of genomic information and low genetic
accessibility of alternative P. pachyrhizi hosts impede candidate
gene identification and gene transfer.

Non-host Plants
Over the past decade, employing non-host plants has become
a promising approach for identifying resistance traits. Due
to the pervasive nature of NHR, the strategy explores a
vast genetic resource. NHR is a multi-layered, complex type
of plant disease resistance that shares signaling and defense
mechanisms with host resistance (Schulze-Lefert and Panstruga,
2011). Classification of a given plant species as a host or non-host
can be difficult because there seems to be a gradual continuum
from host to non-host with many intermediate resistances
(Bettgenhaeuser et al., 2014). Exploring the molecular basis of this
variety of resistances and pyramiding underlying genes and loci
in the soybean crop may represent a powerful approach for SBR
resistance and provide an alternative to chemical fungicides and
traditional breeding.

Arabidopsis and M. truncatula are the best described plants
in terms of NHR to P. pachyrhizi. Since P. pachyrhizi does
not produce macroscopic symptoms on any of 28 wild-type
accessions tested, Arabidopsis can be considered a true non-
host for P. pachyrhizi (Loehrer et al., 2008). Although initial
stages of P. pachyrhizi development are identical on Arabidopsis
and soybean, proliferation of P. pachyrhizi hyphae into the
leaf mesophyll is rare in Arabidopsis (Loehrer et al., 2008). To
determine the molecular basis of the preinvasion resistance to
P. pachyrhizi in this plant, Loehrer et al. (2008) used Arabidopsis
mutants with known compromised resistance to other non-
adapted fungal pathogens. Colonization of the mesophyll
occurred in Arabidopsis penetration mutant pen1, pen2, and pen3.
However, despite hyphal growth and rarely observed haustoria
in the mesophyll of pen mutants, the fungus failed to successfully
colonize the plant. It also did not complete its life cycle, indicative
of functional postinvasion resistance to P. pachyrhizi in these
mutants. The postinvasion resistance was compromised in the
Arabidopsis triple mutant pen2 pad4 sag101 in which P. pachyrhizi

frequently developed haustoria (Langenbach et al., 2013).
However, extensive mesophyll colonization and sporulation did
not occur in any Arabidopsis mutants tested.

To identify components of Arabidopsis postinvasion resistance
to P. pachyrhizi, Langenbach et al. (2013, 2016) performed
comparative transcriptional profiling of genes specifically
activated upon P. pachyrhizi infection in pen2 (a mutant with
intact postinvasion resistance) but not pen2 pad4 sag101 (with
compromised postinvasion resistance). The screen identified
BRIGHT TRICHOMES 1 (BRT1), an UDP-glycosyltransferase
in the phenylpropanoid metabolism. Postinvasion resistance
to P. pachyrhizi was impaired in the pen2 brt1 double mutant.
In this genotype the fungus developed more haustoria than in
pen2. Since brt1 mutants were not affected in preinvasion SBR
resistance (Langenbach et al., 2013), BRT1 seems to specifically
contribute to postinvasion NHR to the disease.

To identify more genes that function in Arabidopsis NHR
to SBR, Langenbach et al. (2016) searched for genes co-
regulated with BRT1. Upon confirming the genes’ importance
in Arabidopsis postinvasion resistance, the authors expressed
these genes in soybean. Four so-called postinvasion-induced
NHR genes (PINGs) indeed reduced SBR disease severity.
The supposed function of individual PING proteins is quite
diverse and includes an EARLI4-like phospholipase (PING4),
a group I receptor-like kinase (PING5), a GDSL-like lipase
(PING7), and a germin-like protein (PING9). The exact mode
of action of PINGs in conferring resistance to P. pachyrhizi
has remained elusive (Langenbach et al., 2016). However, the
study discloses that interspecies gene transfer is a promising
strategy for conferring SBR resistance to soybean. Gene donor
and receiver plant obviously do not need to be closely related,
although it is likely that the successful transfer of a protein’s
function from one species to another implies conservation or
convergence of its physiological environment (e.g., signaling
networks). Thus, employing phylogenetically related non-hosts
might further enhance the success of interspecies NHR gene
transfer as a means for SBR resistance. Because P. pachyrhizi
infects many plants, non-hosts to the fungus are rare, especially
in the legume family of plants. M. truncatula is the only reported
leguminous non-host as sporulation of P. pachyrhizi has not
been observed on this plant (Uppalapati et al., 2012; Ishiga
et al., 2015). The former authors did a forward genetic screen
to identify M. truncatula mutants with altered resistance to
P. pachyrhizi. Because of its diploid genome, M. truncatula is
better suited for forward genetic screening than the allopolyploid
soybean crop (Gill et al., 2009). Furthermore, there is highly
conserved microsynteny between soybean and M. truncatula
(Yan et al., 2003). The screen by Uppalapati et al. (2012)
identified an inhibitor of rust germ tube differentiation (irg)1
mutant on which P. pachyrhizi failed to promote preinfection
structures. It turned out that the loss of abaxial epicuticular
wax crystals and the reduced surface hydrophobicity inhibited
fungal development on irg1 (Uppalapati et al., 2012). The
mutation was mapped to PALM1 encoding a Cys(2)His(2)
zinc finger TF controlling the expression of genes involved in
long-chain fatty acid biosynthesis and transport (Uppalapati
et al., 2012).
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To further investigate the role of surface hydrophobicity
or epicuticular waxes on P. pachyrhizi development, Ishiga
et al. (2013) recorded the fungal transcriptome during
germination on a hydrophobic surface (glass slides coated
with epicuticular wax from wild-type plants and irg1/palm1
mutants) and on the leaf surface of M. truncatula wild-type
plants and the irg1/palm1 mutant. They found expression
of kinase family genes was activated on the hydrophobic
surface and on the M. truncatula wild type but not on
irg1/palm1. This result suggested that leaf hydrophobicity
or epicuticular waxes may trigger expression of P. pachyrhizi
genes involved in pre-penetration structure formation (Ishiga
et al., 2013). Importance of cutin or cuticular waxes to
both, germination and appressoria formation has also been
reported for other fungal pathogens of plants (Mendoza-
Mendoza et al., 2009; Hansjakob et al., 2011; Weidenbach
et al., 2014). Further characterization of the irg1/palm1
mutant may help better understand asymmetric epicuticular
wax loading on leaf surfaces and its importance to plant-
pathogen interactions. Additionally, identifying IRG1/PALM1
orthologues and/or modifying epicuticular wax composition
in soybean might be useful to conferring resistance to
P. pachyrhizi.

Transcriptome analysis of the M. truncatula–P. pachyrhizi
interaction revealed induction of many genes in the
phenylpropanoid, flavonoid, and isoflavonoid pathways (Ishiga
et al., 2015). Accompanying metabolome studies disclosed
accumulation of the isoflavonoid derivative medicarpin and
its intermediates in P. pachyrhizi-inoculated plants. Because
medicarpin inhibited the germination and differentiation of
P. pachyrhizi uredospores in vitro (Ishiga et al., 2015), the
phytoalexin might contribute to NHR to P. pachyrhizi in
M. truncatula. Various studies with P. pachyrhizi hosts also
pointed to a role of phytoalexins in the interaction of plants
with the fungus (Chung and Singh, 2008; Lygin et al., 2009). As
the expression of genes in the secondary metabolism is strongly
affected upon P. pachyrhizi infection in soybean (van de Mortel
et al., 2007; Choi et al., 2008; Panthee et al., 2009; Schneider et al.,
2011), secondary metabolites seem to be crucial to both host
resistance and NHR to SBR.

RNA Interference and Host-Induced
Gene Silencing
Another option for controlling SBR is by using RNAi to
specifically silence essential P. pachyrhizi genes. HIGS, a specific
RNAi technique, provided protection from sucking insects,
nematodes, fungi, oomycetes, bacteria, and viruses (Koch and
Kogel, 2014). To our knowledge there is not a single report on
the application of HIGS in soybean for fighting SBR or other
fungal diseases. However, knockdown of nematode genes by
siRNAs expressed in soybean was demonstrated (Steeves et al.,
2006; Li et al., 2010; Niu et al., 2012; Youssef et al., 2013).
Moreover, the successful silencing of fungal genes, including
those of the rust fungi Puccinia striiformis, P. triticina, and
P. graminis in other crops (Yin et al., 2010; Panwar et al., 2013)
is testament to the huge potential of this approach for fighting

SBR. Various stage-specifically expressed fungal genes that may
represent potential HIGS targets (e.g., genes encoding putative
effectors like HESPs, kinase family proteins, cell wall degrading
enzymes, metabolism-linked genes, succinate dehydrogenase,
etc.) have already been identified in P. pachyrhizi (Posada-
Buitrago and Frederick, 2005; Stone et al., 2012; Tremblay
et al., 2012, 2013; Ishiga et al., 2013; Link et al., 2014). Since
external application of dsRNAs has proven effective for the
control of insect pests (Hunter et al., 2012), this approach might
present a non-transgenic alternative to HIGS-mediated SBR
control.

Biocontrol
In vitro studies and greenhouse and field trials reported
protection by beneficial microbes with antagonistic properties
to P. pachyrhizi. The fungus Simplicillium lanosoniveum
preferentially colonizes P. pachyrhizi uredinia on infected
soybean leaves and thereby significantly reduces SBR
development in the field (Ward et al., 2012). Similarly,
Kumar and Jha (2002) observed hypertrophy and shrinkage
of P. pachyrhizi uredospores when colonized with Trichothecium
rosae. Moreover, several strains of Bacillus spp. reduce SBR
severity (Dorighello et al., 2015). One Bacillus strain that is
the active ingredient in the organically approved commercial
fungicide Ballad R© provides SBR control. Besides antagonistic
organisms, plant volatiles, such as farnesyl-acetate, can be
used for biocontrol of SBR (Mendgen et al., 2006). Same is
true for coffee oil and essential oils from Hyptis marrubioides,
Aloysia gratissima, and Cordia verbenacea which suppressed
spore germination in vitro and reduced SBR severity under
greenhouse and/or field conditions (da Silva et al., 2014;
Dorighello et al., 2015). Moreover, acibenzolar-S-methyl
treatment or soil application of silicon reduced SBR severity
on soybean leaves (da Cruz et al., 2013). Silicon most likely
acts in two ways. First, it establishes a physical penetration
barrier when deposited in the subcuticular layer and second, it
primes plants for enhanced defense (Ma and Yamaji, 2006; da
Cruz et al., 2013). Furthermore, soil application of saccharin
and shale water were reported to induce SBR resistance in
soybean (Srivastava et al., 2011; Mehta et al., 2015). These
examples illustrate the potential of SBR biocontrol. However, the
cost-benefit ratio and feasibility of field scale biocontrol needs
to be determined to estimate the actual agronomic value of such
approaches.

CONCLUSION

Phakopsora pachyrhizi is the causal agent of SBR and thus a major
threat to global soybean production. Novel compounds in the
SDHI class of fungicides hold promise for successful SBR control
in the upcoming years, but P. pachyrhizi is likely to become
increasingly insensitive to SDHI action as it has been observed for
DMI and QoI fungicides. Similarly, the SBR resistance conferred
by individual R genes was swiftly overcome in the field, but the
pyramiding (stacking) of known and yet to be identified R genes
might overcome traditional R gene inefficacy. Exploiting pathway

Frontiers in Plant Science | www.frontiersin.org 8 June 2016 | Volume 7 | Article 797

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00797 June 4, 2016 Time: 11:44 # 9

Langenbach et al. Fighting Asian Soybean Rust

components for the major plant defense hormones, SA and
JA, seems not to be a realistic option for SBR control because
component overexpression often impairs plant growth and yield.
By contrast, transcription coactivator utilization could have
huge potential but their efficacy for effective SBR control is
still awaiting assessment in both the lab and field. Synthetic
biology approaches to engineer R genes and phytoalexin
biosynthesis pathways are promising, especially because several
phytoalexins antagonize P. pachyrhizi both in vitro and in
situ. Loss or elimination of S genes also is promising for
SBR control but this approach has rarely been followed up.
Same is true for the exploitation of soybean accessions with
tolerance or PDR to SBR. Though promising, their potential
for SBR control is currently unclear. Wild Glycine species,
alternative P. pachyrhizi hosts, and especially non-host plants
are promising sources of germplasm for SBR resistance while
AMPs, RNAi/HIGS, and biocontrol approaches hold promise
for sustainable soybean production in the future. It seems that
an integrated approach exploiting different measures is likely
to provide the best possible means for the effective control of
SBR.
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