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Nicotiana otophora is a wild parental species of Nicotiana tabacum, an interspecific

hybrid of Nicotiana tomentosiformis and Nicotiana sylvestris. However, N. otophora

is least understood as an alternative paternal donor. Here, we compared the fully

assembled chloroplast (cp) genome of N. otophora and with those of closely related

species. The analysis showed a cp genome size of 156,073 bp and exhibited a typical

quadripartite structure, which contains a pair of inverted repeats separated by small

and large single copies, containing 163 representative genes, with 165 microsatellites

distributed unevenly throughout the genome. Comparative analysis of a gene with

known function across Nicotiana species revealed 76 protein-coding sequences, 20

tRNA sequences, and 3 rRNA sequence shared between the cp genomes. The analysis

revealed that N. otophora is a sister species to N. tomentosiformis within the Nicotiana

genus, and Atropha belladonna and Datura stramonium are their closest relatives. These

findings provide a valuable analysis of the complete N. otophora cp genome, which can

identify species, elucidate taxonomy, and reconstruct the phylogeny of genus Nicotiana.

Keywords: Nicotiana, cp genome, repeat analysis, phylogeny, sequence divergence, SSRs

INTRODUCTION

Chloroplasts contain a circular DNA with approximately 130 genes, with a size ranging from
72 to 217 kb (Sugiura, 1995; Moore et al., 2007). Most cp genomes have a typical quadripartite
structure consisting of a small single copy region (SSC), large single copy region (LSC), and a
pair of inverted repeats (IRs) (Yurina and Odintsova, 1998; Wang et al., 2015). These inverted
repeats (IRs) might influence the length of various cp genomes (Chang et al., 2006; Guisinger
et al., 2011). The chloroplast (cp) DNA of green plants is exceptionally conserved in gene content
and organization, providing sufficient resources for genome-wide evolutionary studies. Recent
efforts have demonstrated the potential to resolve phylogenetic relationships at different taxonomic
levels, and understand structural and functional evolution, by using the whole chloroplast genome
sequences (Jansen et al., 2007; Moore et al., 2010). Because of the generally conservative nature
of the cp genome structure, cp genome data is used most often to address phylogenetic and
evolutionary questions at or above the species level.

Tobacco leaf is one of the most economically important parts of the common tobacco plant
(Occhialini et al., 2016). Analyzing the composition and structure of the cp genome for such
an economically important crop can explore novel genetic and evolutionary variations, which
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could improve plant traits (Jin and Daniell, 2015). Of the
tobacco species, Nicotiana tabacum is one of the most widely
grown commercial crops in different regions of the world. It
is also a typical model organism for research in basic and
important biological processes (Zhang et al., 2011). Nicotiana
tabacum provides a key source of BY-2 plant cell lines for
molecular research studies related to plant pathology and disease
resistance (Nagata et al., 1992). Furthermore, considerable
interest has focused on understanding the origin, organization
and evolution of N. tabacum genome. It is stands out as a
complex allotetraploid with large genome 4.5 GB with significant
proportion of repeats (Renny-Byfield et al., 2011). As a species,
N. tobacum evolved through the interspecific hybridization of the
ancestors of Nicotiana sylvestris (maternal donor and Nicotiana
tomentosiformis (paternal donor) about 200,000 year ago (Leitch
et al., 2008). However, based on mitochondria and chloroplast
sequence data, the chromosome segregation morphology of the
flowers, and the presence of an S genome in tobacco, is thought
to originate from the N. sylvestris ancestor (Sperisen et al.,
1991; Murad et al., 2002). Development in modern genomics
and the genome sequences of modern varieties of ancestral
species were previously reported (Sierro et al., 2013), and limited
evidence suggests that N. otophora is an alternative paternal
donor (Gazdova et al., 1995; Riechers and Timko, 1999).

Plastids of N. otophora leaf tissue are fundamental organelles
for photosynthesis and metabolic functioning. These are
thought to have originated through endosymbiosis of
free-living cyanobacteria with eukaryotic cells (Rodriguez-
Ezpeleta et al., 2005), and remnants of cyanobacterial genes
were transferred to the nucleus (Timmis et al., 2004). The
angiosperm plastome has a uniparental inheritance and
stable structure, making it a more informative and valuable
source for phylogenetic analysis at different taxonomic levels
(Ravi et al., 2008) than are mitochondrial genomes (Timmis
et al., 2004). Previously, phylogenetic analyses were based
on sequencing one or a few loci from plastomes of various
taxa. The availability of complete chloroplast sequences,
and advances in next generation sequencing techniques, has
made whole plastome analysis achievable with greater and
more valuable information, which could produce noteworthy
results, and reduce sampling error (Martin et al., 2005). This
whole genome approach may help clarify previous ambiguous
phylogenetic relationships (Jansen et al., 2007; Moore et al.,
2010). Recently, high–throughput sequencing technologies
enabled the sequencing of hundreds of plastid genomes for
terrestrial plants (Wu, 2015). Therefore, various organelle
genomes from various important medicinal plants have been
reported, and some are still being analyzed (Michael and Jackson,
2013).

In this study, we sequenced and analyzed the first complete
chloroplast genome of N. otophora. The complete cp genome of
N. otophora, in conjunction with previously reported cp genomes
sequences, will improve our understanding of the evolutionary
history of Nicotiana genus within Solanaceae, especially
regarding the position of N. otophora in evolution and plant
systematics. Hence, we analyzed the fully assembled chloroplast
(cp) genome of N. otophora and compared its relationship with

closely related species, such as N. tomentosiformis, N. tabacum,
N. sylvestris, and N. undulata.

MATERIALS AND METHODS

Genome Sequencing and Assembly
A standard protocol of DNA extraction was followed as described
in detailed by Sierro et al. (2014). The pure DNA was sequenced
using on an Illumina HiSeq-2000. About 67,460,219 raw reads
were demultiplexed, trimmed and filtered using CLC Genomics
Workbench v7.0 (CLC Bio, Aarhus, Denmark). Filtered reads
were assembled using N. tabacum (NC001879) as a reference
genome by following the method described by Wu (2015, 2016).

Genome Annotation and Sequence
Statistics
The online program (DOGMA) was used to annotate the
N. otophora cp genome (Wyman et al., 2004). The annotation
results were checkedmanually and codon positions were adjusted
by comparing to a previously homologs gene from various
chloroplast genomes present in the database. Furthermore, the
tRNAscan-SE version1.21 (Schattner et al., 2005) was used
to verify all transfer RNA genes using default settings. The
OGDRAW program (Lohse et al., 2007) was used to draw a
circular map of the N. otophora cp genome. GC content and
codon usage were analyzed by the MEGA 6 software (Kumar
et al., 2008). The mVISTA software was used to compere the
N. otophora cp genome with four other cp genomes using the
N. otophora annotation as reference (Frazer et al., 2004).

Repeat Sequence Characterization and
SSRs
To identify repeat sequences, including palindromic, reverse,
and direct repeats within the cp genome, REPuter software was
used (Kurtz et al., 2001). The following conditions for repeat
identification were used in REPuter: (1) Hamming distance of 3,
(2) 90% or greater sequence identity, (3) and a minimum repeat
size of 30 bp. Phobos software (Leese et al., 2008) was used to
detect (SSRs) within the cp genome, with the parameters set at
ten repeat units ≥10 for mononucleotides, eight repeat units ≥8
for dinucleotides, four repeat units ≥4 for trinucleotides and
tetranucleotides, and three repeat units ≥3 for pentanucleotide
and hexanucleotide SSRs. Furthermore, tandem repeats in the
N. otophora cp genome were identified using the Tandem Repeats
Finder version 4.07 b (Benson, 1999), with default settings.

Chloroplast Genome Analysis by Sliding
Window
After aligning the sequences using MAFFT (Katoh and
Standley, 2013), BioEdit software (http://www.mbio.
ncsu.edu/bioedit/bioedit.html) was used to adjust the sequences
manually. Furthermore, a sliding window analysis was conducted
for variability (Pi) evaluation in LSC, SSC, and IR regions of
the cp genome using the DnaSP version 5.1 software (Librado
and Rozas, 2009). The step size was set to 200 bp, with a 600-bp
window length.
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TABLE 1 | Summary of complete chloroplast genomes for five Nicotiana species.

N. otophora N. sylvestris N. tabacum N. tomentosiformis N. undulata

Total 156,073 155,941 155,943 155,745 155,863

Large single copy (LSC, bp) 86,621 86,684 86,686 86,392 86,633

Inverted repeat (IR, bp) 25,888 25,342 25,343 25,429 25,331

Small single copy (SSC, bp) 17,677 18,573 18,571 18,495 18,568

GC% 37.7 37.8 37.8 37.8 37.9

Total 163 140 144 140 156

Protein coding genes 110 111 98 111 110

tRNA 45 37 37 37 37

rRNA 8 8 8 8 8

FIGURE 1 | Gene map of the N. otophora chloroplast genome. Genes drawn inside the circle are transcribed clockwise, and those outside are

counterclockwise. Genes belonging to different functional groups are color-coded. The darker gray in the inner circle corresponds to GC content, and the lighter gray

corresponds to AT content.

Sequence Divergence and Phylogenetic
Analysis
We used LSC, SSC, and IR regions to analyze the average
pair wise sequence divergence for four Nicotiana species: N.
sylvestris, N. tabacum, N. tomentosiformis, and N. undulata cp
genomes. The missing and ambiguous gene annotations were

reconfirmed by comparative sequence analysis after a multiple

sequence alignment and gene order comparison. These regions

were aligned using the Clustal W software (Thompson et al.,
1994). Furthermore, Kimura’s two parameter (K2P) model was

selected to calculate the pairwise sequence divergences (Kimura,

1980). To elucidate the N. otophora phylogenetic position within
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TABLE 2 | Genes in the sequenced N. otophora chloroplast genome.

Category Group of genes Name of genes

Self-replication Large subunit of ribosomal

proteins

rpl2, 14, 16, 20, 22, 23,

32, 33, 36

Small subunit of ribosomal

proteins

rps2, 3, 7, 8, 11, 12, 14,

15, 16, 18, 19

DNA dependent RNA

polymerase

rpoA, B, C1, C2

rRNA genes RNA

tRNA genes trnA-UGC, C-GCA,

D-GUC, E-UUC, F-GAA,

fM-CAU, G-UCC, H-GUG,

I-CAU, L-CAA, M-CAU,

N-GUU, P-GGG, P-UGG,

Q-UUG, R-ACG, R-UCU,

S-GCU, S-GGA, S-UGA,

T-GGU, T-UGU, V-GAC,

V-UAC, W-CCA, Y-GUA

Photosynthesis Photosystem I psaA, B, C, I, J

Photosystem II psbA, B, C, D, E, F, H, I, J,

K

NadH oxidoreductase ndhA, B, C, D, E, F

Cytochrome b6/f complex petA, B, D, G, L, N

ATP synthase atpA, B, E, F, H, I

Rubisco rbcL, rbcLr

Other genes Translational initiation factor infA

Maturase matK

Protease clpP

Envelop membrane protein cemA

Subunit Acetyl-

CoA-Carboxylate

accD

c-type cytochrome synthesis

gene

ccsA

Unknown Conserved Open reading

frames

ycf1, 2, 3, 4, 15, 68

TABLE 3 | Base composition in the N. otophora chloroplast genome.

T/U C A G Length (bp)

Genome 31.5 19.2 30.8 18.5 156,073

LSC 32.8 18.3 31.5 17.5 86,621

SSC 34.3 16.8 33.7 15.2 17,677

IR 28.6 22.3 28.4 20.7 25,888

tRNA 25.8 22.7 22.7 28.9 1268

rRNA 18.8 23.6 26.1 31.5 4524

Protein Coding genes 29.8 18.7 29.7 21.8 80,379

1st position 23.38 20.66 26.77 26.65 26,883

2nd position 32.38 20.34 29.4 17.89 26,883

3rd position 35.25 13.9 31.58 15.8 26,883

the Solanaceae family, multiple alignments were performed
using 75 protein-coding genes shared by the cp genomes of
12 Solanaceae members representing five genera. Two species,

Citrus aurantifolia and Citrus sinensis, were designated as out-
groups. Maximum parsimony (MP) analysis was executed using
MEGA 6 (Tamura et al., 2013), and for Maximum likelihood
(ML) analysis, the GTR + I + G nucleotide substitution
model was selected. Furthermore, Bayesian inference (BI) was
implemented withMrBayes 3.12 using setting (MCMC algorithm
for 1,000,000 generations with 4 incrementally heated chains,
starting from random trees and sampling one out of every 100
generations) fromWu et al. (2015).

RESULTS AND DISCUSSION

Chloroplast Genome Organization of
N. otophora
N. otophora Cp genome were assembled by mapping all Illumina
reads to the draft cp genome sequence, using CLC Genomics
Workbench v7.0. A total of 1,877,281 reads were obtained, with
an average length of 101 bp, thus yielding 341.885x coverage
of the cp genome. The consensus sequence for a specific
position was generated by assembling reads mapped to the
position and used to construct the complete sequence of N.
otophora cp genome. The size of the complete N. otophora
cp genome (156,073 bp) was found to be within the range of
other angiosperms (Yang et al., 2010). The cp genome exhibited
a distinctive quadripartite structure, which includes a pair of
inverted repeats (IRa and IRb 25,888 bp), and separate SSC
(17677 bp) and LSC (86621 bp) regions (Table 1, Figure 1).
The GC content (37.7%) of the N. otophora cp genome is very
similar to otherNicotiana species cp genomes (Table 1; Sugiyama
et al., 2005; Yukawa et al., 2006). The GC contents of the LSC
and SSC regions (35.8 and 32%) are lower than that of the IR
regions (43%). This high GC percentage in the IR regions is due
to the presence of eight ribosomal RNA (rRNA) sequences in
these regions. Current results are similar to data that previously
reported a high GC percentage in the IR regions, which could be
due to the presence of ribosomal RNA (Qian et al., 2013).

A total of 163 genes were found in theN. otophora cp genome,
of which 116 are unique, including 110 protein-coding genes,
45 tRNA genes, and 8 rRNA genes (Figure 1, Table 1). Fourteen
protein coding, four rRNA, and nine tRNA genes are repeated in
the IR regions. The LSC region comprises 96 protein coding and
26 tRNA genes, whereas the SSC region comprises 15 protein-
coding genes and 1 tRNA gene. The protein-coding genes present
in the N. otophora cp genome include nine genes for large
ribosomal proteins (rpl2, 14, 16, 20, 22, 23, 32, 33, 36), 11 genes
for small ribosomal proteins (rps2, 3, 7, 8, 11, 12, 14, 15, 16, 18,
19), 5 genes for photosystem I (psaA, B, C, I, J), and 10 genes
related to photosystem II. Furthermore, there are six genes (atpA,
B, E, F, H, I) for ATP synthase and the electron transport chain
in the N. otophora cp genome (Table 2). A similar pattern of
protein coding genes was also shown by Sugiyama et al. (2005)
and Yukawa et al. (2006) for N. tabbacum and N. sylvestris,
respectively.

Protein, rRNAs, and tRNAs are encoded by 51.5, 5.79, and
1.86% of the whole chloroplast genome, respectively, and the
remaining 40.85% is non-coding regions. The 29 unique tRNA
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FIGURE 2 | Amino acid frequencies of the N. otophora cp protein coding sequences. The frequencies of amino acids were calculated for all 110

protein-coding genes from the start to the stop codon.

genes encode all of the 20 amino acids essential for protein
biosynthesis. Furthermore, protein-coding sequences (CDS) are
80,379 bp in length and comprise 110 protein genes, which
code for 26,793 codons (Tables 1, 3). The N. otophora cp
genome codon usage frequency was determined by tRNA and
protein-coding gene sequences (Table S1). Interestingly, leucine
(10.6%) and cysteine (1.2%) were the maximum and minimum
commonly coded amino acids, respectively (Figure 2). Among
these, the maximum and minimum codons used were ATT
(1087), encoding isoleucine, and ATT (1) encoding methionine,
respectively. The AT content was 50.15, 61.72, and 66.83% at
the 1st, 2nd, and 3rd codon positions within the CDS region
(Table 3). The preference for a high AT content at the 3rd codon
position is due to the A and T concentration reported in various
terrestrial plant cp genomes (Morton, 1998; Tangphatsornruang
et al., 2010; Nie et al., 2012; Qian et al., 2013).

Repeat Analysis of N. otophora cp Genome
Repeat sequences are very helpful in phylogenetic study, and
play a vital role in genome rearrangement (Cavalier-Smith,
2002; Nie et al., 2012). Furthermore, analysis of the various cp
genomes concluded that repeat sequences are essential to induce

indels and substitutions (Yi et al., 2013). For repeat analysis, 20
palindromic repeats, 19 forward repeats, and 18 tandem repeats
were identified in the N. otophora cp genome (Figure 3A).
Among these, 17 forward repeats had a size of 30–44 bp in length,
whereas only two tandem repeats were found to be same length,
and 16 were 15–29 bp in length (Figures 3A–D). Similarly, 17
palindromic repeats were 30–44 bp, and two repeats were 45–
59 bp in length (Figure 3B). Overall, 57 repeats were found
in the N. otophora cp genome. Similarly, 56, 57, 53, 51 repeat
pairs were found in previously reported N. sylvestris, N. tabacum,
N. tomentosiformis, and N. undulata (Figure 3A; Yukawa et al.,
2006) genomes, respectively, when compared with N. otophora
(Figure 3A). About 29.4% of these repeats were distributed in
protein coding regions (Table S2). Previous reports suggested
that sequence variation and genome rearrangement occurs due
to the slipped strandmispairing and the improper recombination
of these repeat sequences (Cavalier-Smith, 2002; Asano et al.,
2004; Timme et al., 2007). Furthermore, the presence of these
repeats indicates that the region is a crucial hotspot for genome
reconfiguration (Gao et al., 2009). Additionally, these repeats
are an informative source for developing genetic markers for
phylogenetic and population genetics studies (Nie et al., 2012).
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FIGURE 3 | Analysis of repeated sequences in five Nicotiana chloroplast genomes. (A), Total of three repeat types; (B), Frequency of the palindromic repeat

by length; (C), frequency of the direct repeat by length; and (D), Frequency of tandem repeat by length.

SSR Analysis of N. otophora cp Genome
Simple sequence repeats (SSRs), or microsatellites, are 1–6
bp repeating sequences, which are distributed throughout the
genome. Due to a high polymorphism rate at the species
level, SSRs have been recognized as one of the main sources
of molecular markers, and have been extensively researched
in phylogenetic investigations and population genetics (Powell
et al., 1995; Provan et al., 1997; Pauwels et al., 2012). In this study,
we detected perfect SSRs over 10 bp in N. otophora together with
four other Nicotiana species cp genomes (Figure 4A). Certain
parameters were set, because SSRs of 10 bp or longer are prone
to slipped strand mispairing, which is believed to be the main
mutational mechanism for polymorphism (Rose and Falush,
1998; Raubeson et al., 2007; Huotari and Korpelainen, 2012).
A total of 165 perfect microsatellites were analyzed in the N.
otophora cp genome based on SSR analysis (Figure 4A). Similarly
163, 162, 159, and 162 SSRs were detected in N. sylvestris,
N. tabacum, N. tomentosiformis, and N. undulata, respectively
(Figure 4A). The majority of the SSRs in these cp genomes are
mononucleotides, varying in quantity from 38 in N. sylvestris to
49 in N. otophora. Interestingly, trinucleotides are the second
most predominant, ranging from 64 in N. otophora to 74 in N.
sylvestris. Furthermore, only one pentanucleotide is present in all
species (Figure 4A). In N. otophora, all mononucleotides (100%)

are composed of A/T, and a similar majority of dinucleotides
(61.36%) is comprised of A/T (Figure 4B). Our findings are
comparable to previously reported arguments that SSRs found in
the chloroplast genome are generally composed of polythymine
(polyT) or polyadenine (polyA) repeats, and infrequently contain
tandem cytosine (C) and guanine (G) repeats (Kuang et al., 2011).
Therefore, these SSRs contribute to the AT richness of the N.
otophora cp genome, as previously reported for different species
(Kuang et al., 2011; Chen et al., 2015). SSRs were also detected in
CDS regions of the N. otophora cp genome. The CDS account for
approximately 51.50% of the total length. About 70.9% of SSRs
are detected in non-coding regions, whereas only 26% of SSRs are
present in the protein-coding region. Furthermore, about 2.42%
of SSRs are present in the rRNAs and 0.6% was detected in tRNA
genes. These results suggest an uneven distribution of SSRs in
the N. otophora cp genome, which was also reported for different
angiosperm cp genomes (Chen et al., 2015).

Comparison of cp Genomes of N. otophora
and Related Nicotiana Species
Four complete cp genomes within the Nicotiana genus,
namely N. sylvestris (155,941 bp), N. tabacum (155,943 bp),
N. tomentosiformis (155,745 bp), and N. undulata (155,863 bp)
were selected for comparison with N. otophora (156,073 bp).
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FIGURE 4 | Analysis of simple sequence repeat (SSR) in the five

Nicotiana chloroplast genomes. (A) Number different SSRs types detected

in five genomes and (B) Frequency of identified SSR motifs in different repeat

class types.

The genome size of N. otophora is the largest of these, and this
difference is mostly attributed to the variation in the length of
the IR region (Table 1). Analysis of genes with known functions
showed that N. otophora shared 76 protein-coding genes, 20
tRNA genes, and 3 rRNA genes, with four otherNicotiana species
cp genomes. The number of unique genes found in N. otophora,
N. sylvestris, N. tabacum, N. tomentosiformis, and N. undulata cp
genomes were 116, 105, 103, 105, and 114, respectively (Figure 5,
Table S3).Furthermore, the overall gene organization and gene
structures of these genomes were found very similar. However,
some genes like, cemA and infA genes were found in N. otophora,
N. tabacum and N. undulata while absent from N. sylvestris and
N. tomentosiformis cp genomes. Similarly two genes rbcLr and
ycf68 were observed only in N. otophora genome (Table S4). The
ycf10 gene was absent inN.otophora, N. tabacum andN. undulata
and founded in N. sylvestris and N. tomentosiformis cp genomes
(Table S4).

Pairwise cp genomic alignment between N. otophora with
four other genomes uncovered a high degree of synteny. N.
otophora annotation was used as a reference to plot the overall
sequence identity of five Nicotiana species cp genomes using
mVISTA (Figure 6). The results show that the LSC and SSC
regions aremore divergent than the two IR regions. Furthermore,
non-coding regions exhibit a higher divergence than coding
regions. These highly divergent regions include ndhD, ndhH,
ndhF, trnH-psbA, matK, ycF2, rpl22, rps15, and atpB among
others. Similar results related to these genes were reported
previously (Qian et al., 2013), and the differences among

FIGURE 5 | Venn diagram illustrating the proportion of genes in five

Nicotiana cp genomes. (A) Number of protein coding genes shared by five

Nicotiana cp genomes. (B) Number of unique genes identified in each cp

genome.

various coding regions between species were also analyzed
(Kumar et al., 2009).

Genomes Sequence Divergence among
Nicotiana Species
We compared the IR, LSC, and SSC regions in cp genomes
and calculated the average pairwise sequence divergence among
these five species. Of these regions, SSC had >0.010 average
sequence divergence, and the most divergent region was found in
N. undulata (0.0149). Among these three regions, IR has the least
average sequence divergence (0.003) (Table S5). Furthermore, to
calculate the sequence divergence level, the nucleotide variability
(Pi) values within 600 bp in these five chloroplast genome
LSC, SSC, and IR regions were calculated (Figure 7). In the
IR region, these values varied from 0 to 0.1162 with a mean
of 0.00216, the LSC region was from 0 to 0.030 with a mean
of 0.0021, and the SSC regions were 0–0.1140, with a mean
of 0.00321, indicating that the differences among these genome
regions were small. However, some highly variable loci, including
trnA, psbA, matK, rps1, rps15, atpB, rpl22, rpl14, clpP, ndhF,
ndhD, ndhH, ycF2, ycF4, and ycF15, were more precisely located
(Figure 7). All of these regions had much higher values than
other regions (Pi > 0.007). Eight of these loci were located
in the LSC region, four in the SSC region, and two were in
the IR region. Among them, psbA, clpP, matK, ndhF, rpl22,
rps15, rpl14, ycF2, and ycF15 have been detected as highly
variable regions in different plants (Kim and Lee, 2004; Dong
et al., 2012; Qian et al., 2013). Based on these results, we
believe that ycf2, clpP, matK, rpl22, rps15, and ndhF, which have
comparatively high sequence deviation, are good sources for
interspecies phylogenetic analysis, as previously reported (Chen
et al., 2015).
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FIGURE 6 | Visualization alignment of five chloroplast genome sequences. VISTA-based identity plot showing sequence identity among five Nicotiana species

using N. otophora as a reference. The thick black line shows the inverted repeats (IRs) in the chloroplast genomes.

Phylogenetic Analysis of N. otophora and
Related Nicotiana Species cp Genomes
To study the phylogenetic position of N. otophora within the
Solanaceae family, we used 75 protein-coding genes shared by the
cp genomes of 13 Solanaceae members, representing five genera,

for multiple alignments (Figure 8). Two species, C. aurantifolia
and C. sinensis, were set as outgroups. Maximum likelihood
(ML) analysis revealed 8 out of 11 nodes with bootstrap values
≥99%, and most of these nodes had 100% bootstrap values. For
maximum parsimony (MP), the bootstrap values were very high
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FIGURE 7 | Sliding window analysis of N. otophora with four Nicotiana cp genomes. (A) Analysis of LSC regions, (B) Analysis of SSC regions, and (C)

Analysis of IR regions. (window length: 600 bp, step size: 200 bp). X-axis, position of the midpoint of a window; Y-axis, nucleotide diversity of each window.

FIGURE 8 | Phylogenetic relationship of N. otophora with related species based on 75 protein-coding genes shared by all cp genomes. Tree constructed

by maximum likelihood (A), maximum parsimony and Bayesian inference (B) with Citrus aurantifolia and Citrus sinensis as outgroups.
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for the MP tree, with values ≥99% for 10 of the 11 nodes. Both
the ML and MP phylogenetic results were strongly supported,
with 100% bootstrap values, and the position of N. otophora is
clustered withN. tomentosiformiswithinNicotiana, with Atropha
belladonna and Datura stramonium as their closest relatives
(Figure 8). Twelve species of Solanaceae from five different
genera showed extremely conserved cp genome structures. In
recent years, numerous studies employ cp DNA sequences to
enrich phylogenetic analysis, which is substantially increasing
our understanding of the evolutionary relationship between
angiosperms (Leebens-Mack et al., 2005; Jansen et al., 2007;
Moore et al., 2007).

CONCLUSION

This study reported the complete chloroplast genome sequence
of N. otophora (156,073 bp). The structure and organization
of this genome is very similar to previously reported cp
genomes from genus Nicotiana. The location and distribution
of repeat sequences were detected, and LSC, SSC, and IR region
sequence divergences were identified. Furthermore, MP and ML
phylogenetic trees were constructed on the basis of protein
coding genes, which were also shared by 12 Solanaceaemembers

from five different genera. The data presented here will facilitate
our understanding of the evolutionary history of tobacco. These
findings provide a valuable analysis of the complete cp genome
of N. otophora, which can be used to identify species, elucidate
taxonomy, or reconstruct the phylogeny of the Nicotiana
genus.
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