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The active medicinal constituents in Hypericum perforatum, used to treat depression
and skin irritation, include flavonoids and xanthones. The carbon skeletons of these
compounds are formed by chalcone synthase (CHS) and benzophenone synthase
(BPS), respectively. Polyclonal antisera were raised against the polyketide synthases
from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting
and immunotitration were used to test the IgGs for crossreactivity and monospecificity
in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both
CHS and BPS are located in the mesophyll. The maximum fluorescence levels were
observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity
observed for CHS significantly exceeded that for BPS. Using histochemical staining,
flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and
accumulation coincide. Our results help understand the biosynthesis and underlying
regulation of active H. perforatum constituents.

Keywords: Hypericum perforatum, chalcone synthase, benzophenone synthase, polyketide synthases,
immunofluorescence localization, histochemical localization, flavonoids, xanthones

INTRODUCTION

Medications containing extracts from the flowering upper parts of the medicinal plant Hypericum
perforatum (St. John’s wort; Hypericaceae) are used for the treatment of mild to moderate
depressions as well as skin irritations and infected wounds (Linde et al., 2008; Wolfle et al., 2014).
Due to the additive and synergistic effects of the ingredients, the entire extract is commonly used for
therapy. The major active constituents involve hyperforins, hypericins, flavonoids, and xanthones
(Beerhues, 2011). All these four classes of compounds are polyketide derivatives. Crucial steps
of their biosynthetic pathways are catalyzed by polyketide synthase (PKS) enzymes. Plant PKSs
(type III) are homodimers. Either subunit has an independent active site, which accommodates
the starter and extender substrates (Austin and Noel, 2003). Variations in the starter molecule, the
number of extender units and the mode of cyclization result in the formation of an amazing array
of PKS products.

The PKSs that are involved in hyperforin, hypericin, flavonoid, and xanthone biosyntheses
are isobutyrophenone, octaketide, chalcone, and benzophenone synthases, respectively
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(Beerhues, 2011). cDNAs encoding benzophenone synthase
(BPS) and chalcone synthase (CHS) were cloned from elicitor-
treated Hypericum androsaemum cell cultures and greenhouse-
grown H. sampsonii plants and were functionally expressed
in Escherichia coli (Liu et al., 2003; Huang et al., 2012). BPS
and CHS catalyze decarboxylative condensations of benzoyl-
CoA and 4-coumaroyl-CoA, respectively, with three molecules of
malonyl-CoA. While benzoyl-CoA is also preferred by BPS from
Garcinia mangostana, the enzyme from Centaurium erythraea
uses 3-hydroxybenzoyl-CoA (Beerhues, 1996; Nualkaew et al.,
2012). The products of the BPS and CHS reactions are
benzophenones and chalcones, which are metabolized to
xanthones and flavonoids, respectively (Winkel-Shirley, 2001;
El-Awaad et al, 2016). Upon mutation in a single active site
position, H. androsaemum BPS formed phenylpyrones (Klundt
et al., 2009). Xanthones and flavonoids contribute to the
medicinal effects of H. perforatum extracts. Understanding their
biosynthetic pathways in H. perforatum requires, in addition
to the knowledge of the individual biochemical reactions,
information about the spatial and temporal regulation, which
underlies the metabolic routes. Here, immunofluorescence
localization of BPS and CHS in leaves of H. perforatum is
reported.

The two other PKSs, isobutyrophenone and octaketide
synthases, were not included in this study. No cDNA
encoding isobutyrophenone synthase, the key enzyme of
hyperforin biosynthesis, has so far been isolated. For octaketide
synthase, cDNAs were cloned from various species, including
H. perforatum (Abe et al., 2005; Karppinen et al., 2008; Mizuuchi
et al., 2009). However, all the recombinant proteins form an
incorrectly cyclized octaketide derivative. Correct cyclization
leading to formation of emodin anthrone has recently been
observed in elicitor-treated Cassia bicapsularis cell cultures
(Abdel-Rahman et al., 2013). Octaketide synthase transcripts
in H. perforatum leaves were localized by in situ hybridization,
indicating their exclusive presence in hypericin-containing dark
nodules (Karppinen et al., 2008). Therefore, octaketide synthase
was not considered here.

In the present study, we focus on the localization of BPS
and CHS. Antibodies were raised, tested for their specificities
and used for immunofluorescence detection of the PKSs in the
mesophyll of H. perforatum leaves. Furthermore, biosynthetic
products were histochemically localized. While a specific stain
for xanthones was not available, flavonoids were detected in the
mesophyll.

MATERIALS AND METHODS

Plants

Hypericum perforatum L. (Hypericaceae) was grown in the
medicinal plants garden of the Institute of Pharmaceutical
Biology, Technische Universitdt Braunschweig, Germany.

Chemicals and Materials
Solvents and chemicals were of either analytical or
high performance liquid chromatography (HPLC) grade.

Polyvinylidene difluoride (PVDF) blotting membranes
(Immobilon P) were purchased from Millipore (Bedford,
USA). Enhanced chemiluminescence (ECL) Western blotting
detection reagents were ordered from GE Healthcare (Freiburg,
Germany). Peroxidase-conjugated AffinPure goat anti-rabbit
IgG (H + L) and Alexa Fluor 488-goat anti-rabbit IgG (H + L)
were obtained from Dianova (Hamburg, Germany) and
Invitrogen (Karlsruhe, Germany), respectively. Cryo-embedding
material and poly-L-lysine-coated slides were purchased
from Plano (Marburg, Germany) and Roth (Karlsruhe,
Germany), respectively. Polyclar AT and diphenylboric
acid 2-aminoethyl ester (DPBA) were ordered from Serva
(Heidelberg, Germany) and Sigma-Aldrich (Taufkirchen,
Germany), respectively.

Generation of Polyclonal Antisera and

Purification of IgG Fractions

The BPS and CHS sequences used were from H. androsaemum
(Liu et al., 2003). They were expressed as both Hise-tag and
GST-fusion proteins using pRSET B (Invitrogen, Karlsruhe,
Germany) and pGEX (Gorlach and Schmid, 1996) expression
vectors, respectively. The proteins were purified by affinity
chromatography using Ni-NTA agarose and GSTrap matrices,
respectively (Liu et al., 2003, 2007). The Hiss-tag proteins
were used for immunization of rabbits, which was carried out
by SEQLAB Sequence Laboratories (Gottingen, Germany). The
IgG fractions of the antisera and the pre-immune sera were
isolated and stored, as described previously (Chizzali et al.,
2012).

Protein Extraction and Immunoblotting

Fresh leaves (1 g) of varying size (0.3, 0.5, 0.8, 1.5, and 2.0 cm)
were frozen in liquid nitrogen, ground in a mortar, mixed
with 10% (w/v) Polyclar AT and extracted on ice for 10 min
with 1 ml 50 mM Tris-HCI pH 7.4 containing 10 mM 1,4-
dithiothreitol (DTT), 0.5 mM sucrose and 1 mM phenylmethane
sulphonyl fluoride (protease inhibitor). The homogenate was
centrifuged at 8,900 g for 25 min and the supernatant was used
for immunoblotting. Protein concentration was determined by
the method of Bradford (1976). Soluble proteins were separated
on a 12% (w/v) sodium dodecyl sulphate (SDS) polyacrylamide
gel and electroblotted on a PVDF membrane, as described
previously (Chizzali et al., 2012). After blocking, the membrane
was incubated with anti-Hiss-BPS IgG (1:100,000 v/v) and
anti-Hise—CHS IgG (1:10,000 v/v). Incubation with peroxidase-
conjugated goat anti-rabbit IgG and further processing were
carried out, as described previously (Chizzali et al, 2012).
As control for efficient blotting, the membrane and the gel
were stained with Indian ink and Coomassie blue solutions,
respectively.

Enzyme Assays

The incubation mixtures (250 L) consisted of 0.1 M
potassium phosphate pH 7.0, 324 uM malonyl-CoA and 2 pg
protein. In addition, the BPS and CHS assays contained
54 wM benzoyl-CoA and 4-coumaroyl-CoA, respectively. After
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FIGURE 1 | Overexpression and affinity chromatography yielded
proteins for immunization of rabbits. Purified Hisg— benzophenone
synthase (BPS) (1) and Hisg— chalcone synthase (CHS) (2) were run on a
sodium dodecy! sulphate (SDS) polyacrylamide gel, indicating
near-homogeneity each.

incubation at 30°C for 10 min, the enzymatic products
were extracted and analyzed by high performance liquid
chromatography (HPLC), as described previously (Liu et al,
2003).

Immunotitration

Mixtures of enzyme solution (50 pl) and IgG solution (50 .l
of 1:2 to 1:512 dilutions) were incubated for 20 min at
room temperature (Beerhues and Wiermann, 1988). Phosphate-
buffered saline (PBS) (50 1) containing 6% (w/v) polyethylene
glycol 8000 was added. Following incubation at 4°C over night,
the mixtures were centrifuged for 10 min at 8,700g. An aliquot
of the supernatant (100 pl) was used to determine the non-
precipitated enzyme activity that remained in the supernatant.
Controls without antibody and with 1:2 to 1:512 dilutions of the
pre-immune IgG were included.

Immunofluorescence Localization of

BPS and CHS

For tissue fixation, the method of Moll et al. (2002) was used,
except for slight modifications adapted to H. perforatum tissue.
Small segments (1.2 mm?) were immediately fixed for 2 h
under reduced pressure (0.3 mbar) in ice-cold buffered fixative
solution, which consisted of 2% w/v formaldehyde (freshly
prepared from paraformaldehyde), 0.1% v/v glutaraldehyde and
0.1% v/v Triton X-100 in 0.1 M phosphate buffer pH 7.2.
After washing with PBS (2 x 10 min), the samples were
dehydrated in a graded ethanol series (30, 50, 70, and 90%
for 30 min each at room temperature). For cryosectioning,
fixed and PBS-washed tissue was embedded in a cryo-
embedding matrix and stored in a cool and dry place. The
specimens were cut to thin segments (18-20 pwm) using a

A GST- GST- GST- GST-
CHS CHS BPS BPS
0.2 04 02 04
Hg Hg ug Y

anti Hisg-
CHS IgG - e
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B
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FIGURE 2 | The BPS and CHS antibodies lacked crossreactivity and
resembled in detection sensitivity. (A) Immunoblotting of CHS and BPS.
The GST-fusion proteins were run on a SDS polyacrylamide gel, blotted on a
polyvinylidene difluoride (PVDF) membrane and incubated with the antibodies
raised against the Hisg-tag proteins. (B) Dot blotting. Decreasing quantities of
the GST-fusion proteins were dotted on a PVDF membrane and
immunostained with anti-Hisg—CHS IgG and anti-Hisg—BPS IgG.

cryomicrotome (HM 500 O cryostate, Microme). The sections
were transferred to poly-L-lysine-coated slides, dried and further
treated, as described previously (Chizzali et al., 2012). The pre-
immune IgG and Hisg-tag IgG fractions were used in 1:10
to 1:100 dilutions. Goat anti-rabbit secondary antibody was
conjugated with Alexa Fluor 488, which exhibits absorbance
of blue light at 494 nm and emission of green light at
517 nm.

Histochemical Localization of Flavonoids

Fresh hand-sectioned leaves were stained for 5 min with
0.125% (w/v) diphenylboric acid 2-aminoethyl ester (DPBA) in
0.005% (v/v) Triton X-100 and washed in water for 2 min.
Images were taken using the confocal laser scanning microscope
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FIGURE 3 | The specific recognition of the antigens was confirmed by immunotitration. GST-BPS and GST-CHS were used as antigens in constant
quantities (2 ng). Decreasing amounts of the anti-Hisg and pre-immune IgG fractions (1:2-1:512 dilutions) were added. The BPS and CHS activities that were not
precipitated and remained in the supernatants of the titration mixtures were determined.

GST-BPS
-=— anti-6x His-CHS IgG
&= Pre-immune 6x His-CHS IgG
120

110~

o
o
1

90—
80~
70
60=4
50

40

Synthase Activity (% of Control)

30

201

T I r . r 1111

0 2 4 8 16 32 64 128 256 512

Dilution of the IgG Fractions (-Fold)
GST-CHS

-e— anti-6x His-BPS IgG
-8 Pre-immune 6x His-BPS 1gG
120

1104
1004

90~

Synthase Activity (% of Control)

| U S T . N L. O ey
0 2 4 8 16 32 64 128256512
Dilution of the IgG Fractions (-Fold)

cLSM-510META (Release Version 4.2 SP1), connected to an
Axiovert 200M (Carl Zeiss). The specimens were examined
either using the Plan-Neofluar 10x/0.3 for overview or the
C-Apochromat 40x/1.2 water-immersion objective for detailed
pictures. The settings were as follows. Flavonoid staining was
recorded using the 488 nm argon-laser (14% intensity) and
chlorophyll autofluorescence was recorded using the 633 nm
Helium laser (45% intensity) for excitation in the multi-tracking
mode. The emitted light passed the primary beam splitting
mirrors UV/488/543/633 and was detected after splitting with
the NFT-545 on BP 505-550 for flavonoid staining and LP
650 for chlorophyll detection, respectively. When appropriate,
the bright-field images of samples were visualized using the
transmitted light photomultiplier. The lambda-mode was used
to examine the spectral signature of fluorophores. All images
were processed using the LSM Image Browser Release 4.2 (Carl
Zeiss).

RESULTS

Antisera and Isolated IgG Fractions

To raise antibodies against BPS and CHS, the coding
sequences of the proteins from H. androsaemum (Liu et al,
2003) were expressed in E. coli to yield both Hiss-tag
and GST-fusion proteins. Affinity chromatography on
Ni-NTA and GSTrap matrices, respectively, resulted in
proteins of near-homogeneity each, as indicated by SDS-
polyacrylamide gel electrophoresis (PAGE) (Figure 1).
The Hiss-tag proteins served to raise polyclonal antisera
in rabbits and the IgG fractions were isolated from both
the pre-immune sera and the antisera. When studied
by SDS-PAGE, the heavy and light chains at 50 and
25 kDa, respectively, were the only bands detectable. The
isolated IgG fractions were tested for crossreactivity and
monospecificity.
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FIGURE 4 | Both BPS and CHS antibodies reacted monospecifically
in leaf protein extract. Leaf proteins were separated by SDS-PAGE,
blotted on a PVDF membrane and incubated with BPS pre-immune IgG (1),
anti-Hisg—BPS 1gG (2), CHS pre-immune IgG (3) and anti-Hisg—CHS IgG (4).

Lack of Crossreactivity between BPS
and CHS Antibodies

Parallel immunolocalization of BPS and CHS requires that the
antibodies do not crossreact with the respectively other antigen.
Immunoblotting and immunotitration were used to study the
specificities of the IgG fractions isolated. To rule out that cross-
reactions in the polyclonal antisera occur between the Hiss tag
and Hise-tag-directed antibodies, the GST-fusion proteins were
used as antigens.

In immunoblotting after SDS-PAGE of the affinity-purified
GST-fusion proteins, anti-Hiss—-CHS detected GST-CHS
(69 kDa) but anti-Hiss—~BPS did not (Figure 2A). Conversely,
anti-His¢—BPS stained GST-BPS (69 kDa) but anti-Hisg—
CHS did not. Thus, no crossreactivity was observed in
immunoblotting. The pre-immune IgG fractions failed to
cause any immunoreactions.

Parallel immunolocalization also requires that the two IgG
fractions have similar detection capacities. For dot blotting,
decreasing quantities of the GST-fusion proteins were dotted on
a membrane and immunostained. Both anti-Hisg—BPS and anti-
Hisg—CHS detected their antigens down to 0.004 jLg, indicating
similar sensitivities (Figure 2B).

For immunotitration coupled with the determination of
enzyme activity, first the stability of the PKSs was studied. BPS

and CHS lost approx. 20 and 55%, respectively, of their activities
within a day, however, the residual activities were sufficient for
carrying out immunotitration. Constant quantities of the GST
fusion proteins (2 pg) were mixed with decreasing quantities (1:2
to 1:512 dilutions) of the pre-immune and Hiss-IgG fractions.
The PKS activities that remained in the supernatants of the
titration mixtures were determined (Figure 3). Anti-Hisg—CHS
IgG precipitated GST-CHS and did not crossreact with GST-
BPS. Anti-Hisg-BPS IgG precipitated GST-BPS and exhibited,
when undiluted, crossreactivity with GST-CHS. However, the
undiluted IgG fractions were not used for immunolocalization.
Pre-immune Hisg—CHS IgG did not recognize the PKSs, whereas
pre-immune Hisg—BPS IgG resulted in weak precipitation of the
proteins.

Antibody Monospecificity in Leaf Extract
For use in immunolocalization, the BPS and CHS antibodies
must (i) not crossreact with each other and (ii) not crossreact
with foreign proteins, which occur in the leaf. Therefore,
protein extracts from H. perforatum leaves at different
developmental stages were subjected to SDS-PAGE and
subsequent immunoblotting (Figure 4). Both anti-Hiss-BPS IgG
and anti-Hisg—CHS IgG detected a single protein band at approx.
43 kDa, which corresponds to the subunit molecular mass of
BPS and CHS. Thus, monospecificity in leaf protein extract was
demonstrated for both IgG fractions. No staining of protein
bands was observed when the two pre-immue IgG fractions were
used.

Immunolocalization of BPS and CHS to
the Mesophyll

Localization by immunofluorescence was carried out with
leaves of field-grown plants, using green fluorescent labeling
(Alexa Fluor 488) and laser scanning confocal microscopy. Two
alternative procedures of section preparation were examined,
the resin (Technovit) and the cryo-sectioning techniques.
Since resin-embedded sections exhibited strongly decreased
PKS antigenicities and strong unspecific background labeling,
cryo-sectioning was preferred. Best results, i.e., high level
of specific detection and low level of background staining,
were obtained with 1:25 dilutions of the IgG fractions. In
addition, this dilution failed to cause any crossreactivity
between the BPS and CHS IgG preparations, as described
above.

For CHS, bright immunofluorescence was observed in
the mesophyll (Figure 5A). Palisade and sponge cells
exhibited similar staining intensities. The lambda signature
of the Alexa Fluor 488-labeled sections verified the correct
emission wavelength (520 nm). Epidermal tissue was devoid of
immunostaining. No labeling was observed in control sections
incubated with pre-immune IgG (Figure 5B).

BPS was also present in the mesophyll, however, the intensity
of immunofluorescence was markedly lower than for CHS
(Figure 5C). The upper and the lower epidermis were devoid
of staining. No labeling was observed with pre-immune IgG
(Figure 5D).
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FIGURE 5 | BPS and CHS as well as flavonoids are located in the mesophyll. Immunofluorescence localization of CHS (A,B) and BPS (C,D) using a green

fluorescent dye. (A,C) Cross-sections incubated with anti-Hiss—CHS IgG and anti-Hisg—BPS IgG, respectively. (B,D) Cross-sections incubated with the pre-immune
IgGs. Localization of flavonoids (E,F) using histochemical detection. (E) Staining of flavonoids with diphenylboric acid 2-aminoethyl ester (DPBA). (F) Control section
exhibiting only the red autofluorescence of chlorophyll. ue, upper epidermis; le, lower epidermis; m, mesophyll; vb, vascular bundle. Bar, 100 pm (A-D), 20 um (E,F).

Histochemical Localization of Flavonoids
to the Mesophyll

To stain the CHS products in H. perforatum leaf cross-
sections, diphenylboric acid 2-aminoethyl ester (DPBA) was
used (Figure 5E). Flavonoids were present in the mesophyll,
palisade cells exhibiting stronger staining than sponge cells.
The epidermal layers were devoid of labeling. No staining was
observed in control sections (Figure 5F). For histochemical
localization of xanthones, no specific stain was available.

Distinct Developmental Regulation of
BPS and CHS

Leaves at various developmental stages were cross-sectioned
and incubated with anti-Hiss-BPS IgG and anti-Hiss-
CHS IgG in different sets of experiments. The intensity of
immunofluorescence in the mesophyll changed with leaf age,
which held true for both CHS and BPS (Figure 6). Maximum
immunolabeling of CHS was observed in approx. 0.5 cm long
leaves, which lacked detectable BPS quantities. The CHS-specific
fluorescence rapidly decreased to a basal level in approx. 1 cm
long leaves which, however, exhibited a high level of BPS
immunofluorescence. In elder leaves, BPS fluorescence declined.

DISCUSSION

In the medicinal plant H. perforatum, the major active
metabolites are formed by polyketide synthases, two of which
are BPS and CHS. Demonstrated herein is that both BPS and
CHS are located in H. perforatum leaves in the mesophyll tissue.
Given the comparable detection capacities of the antibodies used,
the immunofluorescence intensities for BPS and CHS differed
significantly. The CHS level markedly exceeded the BPS level,
which is in accordance with the previously detected quantities
of flavonoids as CHS products and xanthones as BPS products.
The flavonoid content in the aerial parts was 2-4%, the major
compounds being quercetin derivatives, such as hyperoside and
rutin (Nahrstedt and Butterweck, 1997; Holzl and Petersen,
2003). In contrast, only traces of xanthones, such as 1,3,6,7-
tetrahydroxyxanthone and mangiferin, were detected. As an
exception, the aerial parts of Indian H. perforatum contained
2-4% xanthones (Muruganandam et al, 2000). Commonly,
xanthones are abundant in roots of Hypericum species, which
is consistent with the high BPS transcript level found in
H. sampsonii roots (Pasqua et al., 2003; Huang et al., 2012;
Zubrickd et al., 2015). Therefore, immunohistochemical studies
of these organs will be interesting.
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AFBG CH

FIGURE 6 | The developmental stages of maximum BPS and CHS
levels differ. CHS (A-E) and BPS (F-J) were immunolocalized using a green
fluorescent dye. Sections were prepared from leaves with a blade length of
approximately 0.3 cm (A,F), 0.5 cm (B,G), 0.8 cm (C,H), 1.5 cm (D,l) and
2.0 cm (E,J). ue, upper epidermis; le, lower epidermis; m, mesophyll. Bar,
100 pwm.

CHS and BPS accumulated at different stages of leaf
development, with CHS accumulation occurring earlier than that
of BPS. Consistently, relatively high BPS transcript levels were
detected in older leaves of H. sampsonii, whereas younger leaves
had relatively high CHS transcript levels (Huang etal., 2012).
Expression of CHS in young leaves is physiologically explainable.
Due to absorption at 280-315 nm, flavonoids efficiently protect
photosynthetically active tissue from damaging UV-B radiation,
which can penetrate the ozone layer in the stratosphere
(Harborne and Williams, 2000). Flavonoids also function as
a preformed barrier against herbivore attack (Winkel-Shirley,

2001). As a consequence, flavonoid accumulation has to be
initiated at an early stage of leaf development. In contrast,
xanthones in Hypericum species serve as inducible defense
compounds against microbial pathogens, i.e., phytoalexins (Abd
El-Mawla et al., 2001; Franklin et al., 2009). Cell cultures of
H. perforatum accumulated xanthones in response to the addition
of a fungal elicitor prepared from Colletotrichum gloeosporioides,
the causal agent of St. John’s wort wilt (Garber and Schenk,
2003; Conceicdo et al.,, 2006). Furthermore, H. androsaemum
and H. calycinum cell cultures accumulated prenylated xanthones
upon challenge with elicitors and a ¢cDNA encoding the
prenyltransferase involved was isolated (Abd El-Mawla et al.,
2001; Gaid et al., 2012; Fiesel et al., 2015).

In H. perforatum leaves, the CHS products were located in the
mesophyll tissue, as indicated by histochemical staining. Thus,
the sites of biosynthesis and storage of flavonoids are identical.
No transport process takes place at the tissue level. Previously,
a similar tissue distribution of flavonoid biosynthetic enzymes
was observed in primary leaves of oat (Avena sativa) by peeling
the epidermal layers (Knogge and Weissenbock, 1986). The
entire pathway, including CHS, chalcone-flavanone isomerase
and methyl- and glycosyltransferase activities, was located in
the leaf mesophyll. However, flavonoids, in this case flavones,
were found in both epidermis and mesophyll tissues, with up to
70% being detected in the two epidermal layers (Weissenbock
1977). Therefore, intercellular translocation of
individual products was proposed. While vitexin derivatives are
transported to the epidermis, isovitexin derivatives remain in
the mesophyll. Alternatively, the epidermal product pattern may
reflect flavonoid biosynthesis in the subepidermal mesophyll
cells.

Strict compartmentation of flavonoids between tissues and
a close correlation between leaf development and flavonoid
metabolism were also observed in primary leaves of rye
(Secale cereale; Schulz et al., 1985; Schulz and Weissenbock,
1986; Hutzler et al., 1998). While two C-glucosylapigenin-O-
glycosides were accumulated in the two epidermal layers, two
anthocyanins and two luteolin O-glucuronides were exclusively
located in the mesophyll, as shown by isolation and separation
of epidermal and mesophyll protoplasts. Maximum product
accumulation coincided with maximum activities of selected
flavonoid biosynthetic enzymes, such as glucuronosyltransferases
(Schulz and Weissenbock, 1988).

A different tissue distribution of CHS and flavonoids
than in primary leaves of grass seedlings was found in
leaves of spinach (Spinacia oleracea), pea (Pisum sativum),
and bean (Vicia faba), using immunofluorescence localization
(Beerhues and Wiermann, 1988; Beerhues et al., 1988). CHS
was present in the upper and the lower epidermis and
to a minor extent in the subepidermal layers at an early
developmental stage. CHS in leaves of spinach, pea and bean
was restricted to the epidermal tissue and flavonoids were
either exclusively or predominantly present in the epidermal
layers, indicating that the sites of biosynthesis and storage
were identical (Tissut and Ravanel, 1980; Hrazdina et al., 1982;
Weissenbock et al., 1984, 1986). This was also true for parsley
(Petroselinum crispum) leaves (Jahnen and Hahlbrock, 1988;

and Sachs,
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Schmelzer et al, 1988). Using in situ hybridization,
immunohistochemistry, and microspectrophotometry, light-
induced CHS mRNA, CHS protein, and flavonoid products,
respectively, were localized to epidermal cells, which
thus contained the entire sequence of product formation.
In leaves of Catharanthus roseus, CHS transripts and
flavonoids were also co-localized by in situ hybridization
and histochemistry to the epidermis, mainly the adaxial
layer (Mahroug et al, 2006). Furthermore, epidermal
tissue of needles of Scots pine (Pinus sylvestris) contained
both CHS mRNA and products (Schnitzler et al,
1996).

For localization of xanthones, no specific staining was
available and, even if, the low xanthone level was likely to
be below the detection limit. In vitro regenerated shoots of
H. perforatum even lacked detectable quantities of xanthones
(Pasqua et al., 2003). An interesting alternative for xanthone
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