1' frontiers
in Plant Science

ORIGINAL RESEARCH
published: 11 July 2016
doi: 10.3389/fpls.2016.00973

OPEN ACCESS

Edited by:
Paul Gepts,
University of California, Davis, USA

Reviewed by:

Sambasivam Periyannan,
Commonwealth Scientific and
Industrial Research Organisation
(CSIRO), Australia

Caiguo Zhang,

University of Colorado, Denver, USA

*Correspondence:
Lesley A. Boyd
lesley.boyd@niab.com

T These authors have contributed
equally to this work.

Specialty section:

This article was submitted to
Plant Genetics and Genomics,
a section of the journal
Frontiers in Plant Science

Received: 15 March 2016
Accepted: 20 June 2016
Published: 11 July 2016

Citation:

Prins R, Dreisigacker S, Pretorius Z,
van Schalkwyk H, Wessels E, Smit C,
Bender C, Singh D and Boyd LA
(2016) Stem Rust Resistance in a
Geographically Diverse Collection of
Spring Wheat Lines Collected from
Across Africa. Front. Plant Sci. 7:973.
doi: 10.3389/fpls.2016.00973

CrossMark

Stem Rust Resistance in a
Geographically Diverse Collection of
Spring Wheat Lines Collected from
Across Africa

Renée Prins 2%, Susanne Dreisigacker?®?, Zakkie Pretorius?, Hester van Schalkwyk 2,
Elsabet Wessels ', Corneli Smit', Cornel Bender?, Davinder Singh* and Lesley A. Boyd**

" CenGen (Pty) Ltd., Worcester, South Africa, 2 Department of Plant Sciences, University of the Free State, Bloemfontein,
South Africa, ? International Maize and Wheat Improvement Centre, Mexico City, Mexico, * Faculty of Agriculture and
Environment, Plant Breeding Institute Cobbitty, University of Sydney, Narellan, NSW, Australia, ® Department of Genetics and
Breeding, National Institute of Agricultural Botany, Cambridge, UK

Following the emergence of the Ug99 lineage of Puccinia graminis f. sp. tritici (Pgt)
a collective international effort has been undertaken to identify new sources of wheat
stem rust resistance effective against these races. Analyses were undertaken in a
collection of wheat genotypes gathered from across Africa to identify stem rust resistance
effective against the Pgt races found in Eastern and Southern Africa. The African wheat
collection consisted of historic genotypes collected in Kenya, South Africa, Ethiopia,
Sudan, Zambia, Morocco, and Tunisia, and current South African breeding lines. Both
Bayesian cluster and principal coordinate analyses placed the wheat lines from Sudanin a
distinct group, but indicated a degree of genetic relatedness among the other wheat lines
despite originating from countries across Africa. Seedling screens with Pgt race PTKST,
pedigree information and marker haplotype analysis confirmed the presence of Sr2, Sr36,
Sr24, Sr31, and Lr34/Yr18/Sr57 in a number of the lines. A genome-wide association
study (GWAS) undertaken with Diversiry Arrays Technology (DArT) and stem rust (Sr)
gene associated markers and Stem Area Infected (SAl) and Reaction Type (RT) field
phenotypes, collected from trials carried out across two seasons in Kenya in 2009 and
in South Africa in 2011, identified 29 marker-trait associations (MTA). Three MTA were in
common between SAl and RT, with the biggest effect MTA being found on chromosome
BAS. Two wheat lines, W1406 and W6979 that exhibited high levels of adult plant stem
rust resistance were selected to generate bi-parental mapping populations. Only the MTA
on chromosomes 6AS and 3BS, and the locus Lr34/Yr18/Sr57 were confirmed following
QTL mapping. Additional stem rust resistance QTL, not detected by the GWAS, were
found on chromosomes 2BS, 2DL, 3DL, and 4D.

Keywords: adult plant resistance, genome wide association study, hexaploid wheat, Puccinia graminis f. sp. tritici,
Triticum aestivum, Ug99

INTRODUCTION

Across Africa wheat consumption has increased considerably since the mid 1990’s, faster than
any other major food grain. This has resulted in a growing reliance on wheat imports, as wheat
production in Africa has failed to keep up with demand (Mason et al., 2012). Wheat is a
non-traditional crop in Africa and is believed to have been brought to the continent via several
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different routes. Historically wheat entered north-western and
coastal Eastern Africa from the Mediterranean region via trans-
Saharan caravans (Morris and Byerlee, 1993). Durum wheat
has been grown in the Abyssinian highlands of Ethiopia,
and along the Nile valley in Egypt and the Sudan for
thousands of years (Bonjean and Angus, 2001). Bread wheat
was introduced into Southern Africa by the Dutch in the
Seventeenth Century and by missionaries into East Africa,
including Kenya and Tanzania in the Nineteenth Century
(Bonjean and Angus, 2001). Wheat yields in Africa have
tended to be low, but recent wheat simulation analyses
suggest that there may be potential for profitable, competitive,
wheat production in several African countries (Shiferaw et al.,
2012).

Disease is a major constraint to wheat production across
Africa, with the rust pathogens being a significant problem. The
wheat growing regions of Eastern Africa are proven hot-spots
for the origin of new races of wheat rust, especially stem and
stripe rust (Singh et al., 2006). In 1999 a new race (TTKSK)
of the stem rust pathogen Puccinia graminis f. sp. tritici (Pgt),
commonly known as Ug99, was reported in Uganda (Pretorius
et al, 2000). This new race soon spread to the neighboring
countries of Kenya and Ethiopia. Ug99 was virulent to the widely
deployed stem rust resistance gene Sr31 that had been effective
for many years (Singh et al., 2006). Variants of this race with
added virulence to Sr24 (race TTKST) and Sr36 (race TTTSK)
were subsequently identified in Eastern Africa in 2006 and 2007,
respectively. At present 13 variants within the Ug99 race group
have been identified from Egypt to South Africa, as well as
in Yemen and Iran (http://www.rusttracker.org, accessed 16th
February 2016). The Ug99 related race PTKST, with virulence for
Sr31 was detected in South Africa in 2009 where it is believed to
be an exotic introduction (Visser et al., 2011). In addition to the
Ug99 threat, the non-Ug99 Pgt race TKTFF resulted in stem rust
epidemics on the cv. Digalu in Ethiopia in 2014 (Olivera et al.,
2015).

The appearance of the Ug99 race lineage resulted in an
international effort to characterize existing sources and identify
new genes for stem rust resistance through the Durable
Rust Resistance in Wheat project coordinated by Cornell
University (http://www.wheatrust.cornell.edu). Both genome-
wide association studies (GWAS) and bi-parental mapping
approaches have been used in the genetic identification of
new stem rust resistance genes (Yu et al., 2014). GWAS relies
on the linkage between genes and molecular markers having
been broken by many generations of recombination, with any
remaining associations being due to close physical proximity.
GWAS therefore overcomes two fundamental limitations of bi-
parental mapping: the limited amount of recombination that
occurs during the development of the mapping population,
which in turn influences the resolution of QTL positions, and the
limited allelic diversity that segregates within a bi-parental cross.
However, GWAS is prone to false positive QTL identification due
to population structure (Korte and Farlow, 2013). Subsequent
mapping in bi-parental populations allows the validation of
marker-trait associations (MTA), confirming the presence of
QTL carrying regions.

Currently, Kielsmeier-Cook et al. (2015) and Singh et al.
(2015) list Sr2, 9h, 13, 14, 15, 21, 22, 24, 25, 26, 27, 28, 29, 32,
33, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55,
57, 58, Huw234, ND643, Yae, StTA10171, SrTA1662, SrTA10187,
SrTmp, and SrIRSA™E as effective to at least one pathotype
within the Ug99 race group. In addition, a number of effective
stem rust resistance QTL have been identified, Yu et al. (2014)
listing 141 loci for resistance to Ug99, including major genes and
QTL. However, Sr9h, Sr21, Sr24, Sr36 and SrTmp have failed to
individual Ug99 races, while effective to others (Singh et al., 2015;
Patpour et al., 2016). Furthermore, not all genes in the above list
are exploitable due to inadequate protection levels in adult plants,
occurrence of virulence in other Pgt races, or undesirable linkage
drag (Singh et al., 2015). Thus, there is still a need to identify
new stem rust resistance genes, and in particular sources of wheat
APR that may prove more durable.

The objectives of this study were (i) to evaluate a collection
of hexaploid spring wheat genotypes collected from across Africa
for stem rust resistance effective against the Ug99 lineages, (ii) to
determine the genetic diversity and population structure within
this African wheat collection, including identifying haplotypes
of known Sr genes, (iii) to identify genomic regions conferring
stem rust resistance via GWAS and (iv) to corroborate the GWAS
results in two selected stem rust resistant wheat lines through
bi-parental QTL analyses.

MATERIALS AND METHODS

Plant Materials, Field and Seedling Stem

Rust Resistance Tests

A collection of 223 wheat accessions, gathered from across
Africa, was obtained from the Genome Resource Unit (GRU),
Norwich Research Park, UK (Table1). Six plants from each
accession were grown at New Found Farm, Norwich, to multiply
seed and assess homozygosity. Seventy South African advanced
breeding lines and commercial wheat varieties were added to
the collection. All lines were grown in the 2009 off-season
field trials at the Kenyan Agricultural and Livestock Research
Organisation (KALRO)-Njoro. Lines were assessed for growth
type, homozygosity and stem rust resistance, and two lines
of each accession were selected for further greenhouse seed
multiplication in South Africa. These lines were subsequently
screened in the 2009 main-season field trials at KALRO-Njoro
and in field trials near Greytown, South Africa in 2011. The
lines were also included in greenhouse seedling tests at the
University of Free State, South Africa in 2010. A final panel of 256
African genotypes was identified for the GWAS (Supplementary
Table 1).

The KALRO-Njoro off- and main-season trials were planted
in December 2008 and June 2009, respectively. Entries were hand
sown in twin rows 0.7m long and spaced 0.3m apart. Rust
spreader plants were inoculated with the Pgt race TTKST at
jointing stage using an ultra low-volume application of a spore
suspension in light mineral oil. Plots were fertilized with N:P:K
according to recommended rates, hand weeded and irrigated
at regular intervals to supplement rainfall. At Greytown the
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African wheat collection was planted at the Pannar Research
Station in May 2011. Entries were hand sown in single 1 m rows
spaced 0.7m apart. The stem rust-susceptible wheat line 37-
07 was sown in all pathways bordering plots. Fertilizer (2:3:4
[38] Zn) was applied at a rate of 250kg/ha at planting, and
weeds were chemically and manually controlled. The Ug99-
related race PTKST, detected in South Africa in 2009 (Visser
et al., 2011), was inoculated onto spreader blocks of line 37-
07 (4 rows per block). Fresh urediniospores were suspended
in light mineral oil and applied using an ultra low-volume
sprayer. Inoculated spreader blocks were allowed to dry before
covering overnight with plastic sheeting to create a high-
humidity environment.

One score date from the off- (scored March 2009) and main-
season (scored September 2009) field trials at Njoro were used in
the GWAS. The Greytown trial was scored three times, at weekly
intervals from the end of October to the beginning of November
2011: scores A, B, and C. The modified Cobb scale (Peterson et al.,
1948) was used to assess stem rust resistance, with percentage
severity measured as the stem area infected (SAI) with pustules
and host reaction type (RT) measured as resistant (R), moderately
resistant (MR), and moderately susceptible (MS) to susceptible
(S). Where RTs overlapped, scores such as RMR, MRMS or MSS
were recorded. RTs were rescaled from 1 (R) to 7 (S) for statistical

analyses.
Two stem rust resistant lines; GRU accession codes
W1406 (line Kenya_TK_42; Pedigree: (Penjamo-62/908-

Frontana-1)//Kentana-54-B) and W6979 (commercial variety
Kenya-Popo; ~ Pedigree:  Klein-Atlas/Tobari-66//Centrifen/
3/Bluebird/4/Kenya-Fahari), were selected for further study.
These lines were crossed with the stem rust susceptible line
37-07 (stem rust susceptible selection from 2007 Stem Rust Trap
Nursery, South Africa: Pedigree Kasyob/Genaro-81/Cham4)
and doubled haploid (DH) populations generated from F; seed
by Sensako (Pty) Ltd using the maize pollination technique
(Laurie and Bennett, 1988). Stem rust resistance was assessed in
both DH populations, 184 lines per population, in field trials at
Pannar Research Station, Greytown in 2012, 2014 and 2015, and
at Makhathini Research Station, Jozini, South Africa in 2014.
The W1406 x 37-07 population was also tested at Jozini in 2013.
All field trials were inoculated with Pgt race PTKST. These field
trials were scored once within a season at each location using

TABLE 1 | Country of origin of African wheat accessions used in Genome
Wide Association Study.

Country of origin No. of entries

Ethiopia 49
Kenya 103
Morocco

South Africa: old

South Africa: modern 39
Sudan 37
Tunisia 12
Zambia 2

the same stem rust scoring system as used for the African wheat
collection.

To identify all-stage stem rust resistance genes within the
African wheat collection seedlings were inoculated with Pgt race
PTKST according to procedures described by Pretorius et al.
(2012). Infection types (ITs) were scored 14 days after inoculation
using a 0 to 4 scale (McIntosh et al., 1995). Controls used in
the stem rust seedling assay were: McNair (SrMcN), Morocco
(Sr unknown), Federation*4/Kavkaz (Sr31), SrTt1Sr36 (Sr36) and
Avocet S (Sr26).

Stem Rust Resistance Gene Haplotype

Analysis in the African Wheat Collection
DNA was extracted from single wheat seedlings using the CTAB
extraction method (Doyle and Doyle, 1990). All 256 lines were
screened with published markers for 11 stem rust resistance
genes using the published PCR protocols (Supplementary
Table 2). Fluorescently labeled primers allowed sequence-
based fragment detection on an ABI3730x/ capillary instrument
(Applied Biosystems, Foster City, CA, USA) applied at the
Central Analytical Facility of Stellenbosch University, South
Africa. GeneScan™ 500 LIZ® or GeneScan™ 1200 LIZ®
(Applied Biosystems) was used as an internal size standard.
Data were analyzed using GeneMapper v4.0 (Thermofischer,
formally Applied Biosystems). A stem rust resistance gene
was called as present if the marker-allele at all markers
associated with the Sr gene were the same as the control
line. Controls for known stem rust resistance genes and gene
complexes included: Cranbrook (Sr2), Sr22B (Sr22), Palmiet
(Sr2, Sr24), Avocet S (Sr26), Federationx4/Kavkaz (Sr31),
RL5405 (Sr33), Mq12/5%G2191_Rsr35 (Sr35), SrTt1Sr36 (Sr36),
RL6082 (Sr39/Lr35), Kariega (Lr34/Yr18/Sr57) and Pavon 76
(Lr46/Yr29/Sr58).

Whole Genome Profiling, Population
Stratification and Linkage Disequilibrium

Analyses

All 256 wheat genotypes were profiled with Diversity Arrays
Technology (DArT) markers (Diversity Arrays Technology
Pty Ltd, Australia; http://www.diversityarrays.com) using the
composite DArT array v2.6, a high-density array enriched for
D-genome markers. A total of 3078 polymorphic DArT markers
were reported. Missing values were imputed using the MissMDA
package, v1.2 (Husson and Josse, 2010; www.r-project.org).
Polymorphic markers with a minimum allele frequency (MAF)
< 0.05 and a maximum R-squared (r?) between markers of
r? = 1 were excluded from the dataset, leaving 2185 polymorphic
DArT markers. The Wheat Interpolated Maps v4 (Diversity
Arrays Technology Pty Ltd, personal communication) were used
to determine the genetic map positions of the DArT markers.
Of the 2185 DArT markers 1704 could be assigned a map
location.

To correct for possible non-functional correlations between
the African wheat collection’s population stratification and the
stem rust phenotypes, leading to the detection of false-positive
MTA (Type I error), population structure was determined using
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both Bayesian clustering analyses and principal component
analyses (PCA). The number of subpopulations was determined
by Bayesian clustering analysis using STRUCTURE v.2.2
(Pritchard et al., 2000). An admixture model with correlated
allele frequencies was assumed. The program was run with 84
equally distributed DArT markers for k-values 1 to 5, with
50,000 burnin iterations followed by 500000 MCMC (Markov
Chain Monte Carlo) iterations for accurate parameter estimation.
Five independent runs for each k were performed. The most
probable number of groups was determined by plotting the
estimated likelihood values [LnP(D)] obtained by STRUCTURE
runs against k. In addition, delta k (Evanno et al., 2005) was
calculated and plotted equally. For the most probable k-value the
Q-matrix was extracted from STRUCTURE. PCA was performed
in the statistical package R with both a subset (84) and all (2185)
DArT markers, and with the Sr gene associated markers used in
the haplotype analysis.

Genome-wide linkage disequilibrium (LD) among markers
was estimated by calculating the r*-values between each marker
pair using the software TASSEL v.3.0 (http://www.maizegenetics.
net/tassel). LD values were calculated separately for each
chromosome and then combined. The r?-values were plotted
against genetic distance and a Loess curve fitted to determine
at which distance the curve intercepts the critical 7> of 0.1.
The Sr gene associated markers that were not mapped on the
DArT Wheat Interpolated Maps v4 were added according to their
chromosome allocation. Multiple alleles for Sr gene associated
SSR and STS loci were considered as individual markers. Rare
alleles (MAF < 0.05) for each marker were pooled to create a
single rare allele class. Where the pooled rare allele class was still
below 5% the allele class was excluded from the LD and GWAS
analyses.

Genome Wide Association Study for Stem

Rust Resistance
Different statistical methods were used to calculate p-values that
defined associations between markers and stem rust infection
scores, taking into account population structure.

The underlying equation for the models was:

y=Xa+ QB+ Kv+e

Where y is the response vector for the phenotypic values, «
is the vector of fixed effects related to the DArT marker, 8 is
the vector related to population structure, v is the vector of
random effects for co-ancestry and ¢ is the vector of residuals,
while Q is the relationship matrix and K the identity matrix.
Seven models, comprising both general linear models (GLM) and
mixed linear models (MLM) were selected. The Q-matrix from
STRUCTURE and the first 10 significant principal components
(PCs) from the PCA using DArT markers, explaining > 40%
of the genetic variance, were used as relationship matrices. Two
different kinship matrices were also used to correct for any
population structure. The first kinship matrix (K1) was calculated
in TASSEL, the second matrix (K2) according to Kang et al.
(2008). Results were compared to determine the best model. The
following models were tested: (i) Ql: GLM with the Q-matrix

as correction for population structure, (ii) Q2: GLM with the
PCA eigenvectors as correction for population structure, (iii) K2:
MLM with the K2-matrix, (iv) Q1K1: MLM with the Q-matrix
and Kl-matrix, (v) Q1K2: MLM with the Q-matrix and K2-
matrix, (vi) Q2K1: MLM with the PCA eigenvectors and K1-
matrix, and (vii) Q2K2: MLM with the PCA eigenvectors and
K2-matrix. Since the phenotypic data sets contained missing
values the average number of genotypes analyzed in each GWAS
varied for each growing season. Adjustments were conducted
for minor allele frequencies. The different statistical models
were used independently for each trait (IT, SAI, RT) and
season (1: Njoro 2008-2009 off-season, 2: Njoro 2009 main-
season 3: Greytown 2011, scores A, B, and C) using TASSEL
v.3.0 and the Emma approach in R. The critical p-values
for assessing the significance of MTA were calculated based
on a false discovery rate (FDR), with an adjusted p-value of
0.05.

Stem Rust Resistance QTL Identification in
Doubled Haploid Populations

DNA was isolated from the parents and individual lines of the
DH: W1406 x 37-07 and DH: W6979 x 37-07 populations
using the CTAB extraction method. Both populations were
screened with SSR markers, KASP™ SNPs and DArT markers.
The SSR markers were screened on the 3730x] Genetic
Analyzer as described above, and represented a core set
covering all linkage groups (LGs) and targeted putative QTL
carrying chromosomes identified in the GWAS analyses. The
parental lines were included in a screen using the iSelect 90K
Wheat SNP Array (Wang et al, 2014) and the 35K Axiom®
Wheat Breeder’s Genotyping Array (http://www.cerealsdb.uk.
net/cerealgenomics/CerealsDB/axiom_mapped_snps.php;).
Informative KASP™ SNPs were identified and typed in the
respective DH population using a 63-57°C touchdown PCR
protocol (www.lgcgroup.com). Primer sequences were obtained
from CerealsDB (http://www.cerealsdb.uk.net/cerealgenomics/
CerealsDB; Wilkinson et al., 2012). The W1406 x 37-07
population was screened with the Wheat-PstI (Tagl) (2.3_D)
and the W6979 x 37-07 population with the Wheat-PstI (Tagl)
(3.0) DAIT arrays (Diversity Arrays Technology P/L, Canberra,
Australia), producing usable data sets of 392 and 817 DArT
markers, respectively.

LGs were constructed as described in Agenbag et al.
(2012). Composite interval mapping (CIM) was performed with
Windows QTL Cartographer v2.51 (Wang et al., 2012), using
a forward and backward regression model, a window size of
10 cM and a walk speed of 1 ¢cM. One thousand permutations
were performed (P = 0.05) with all 10 phenotypic data sets
to determine the LOD threshold above which a QTL was
considered as significant. Maps were prepared using MapChart
v2.1 (Voorrips, 2002).

Statistical Analyses of Phenotypic Data

Field SAI and RT scores from the African wheat collection were
analyzed as box plots using NCSS v.8 to display the range of
SAI scores found for each RT class. The boxes represent the
inter-quartile range (IQR; mid 50% data values) of SAI and
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horizontal lines within each box denote the median. The whisker
boundaries were determined by multiplying the IQR by a factor
of 1.5. Outliers are indicated by dots. ANOVA, comparing the
SAI scores across growing seasons/locations, was carried out
using NCSS v.8 for the lines within the African wheat collection.
ANOVA of the wheat lines within the W1406 x 37-07 and
W6979 x 37-07 DH populations was done with Excel in Microsoft
Office v. 2013.

RESULTS

Assessment of Stem Rust Resistance

within the African Wheat Collection

Stem rust infection established well in all field trials, allowing
a clear scoring of adult plant reactions. In all seasons a broad
variation in stem rust reactions was observed within the African
wheat collection. The ANOVA of SAI across seasons showed
significant differences among genotypes and seasons (Table 2).
The mean SAI scores for the African wheat collection were
28.0% in the Njoro off-season, (SAI1), 41.6% in the Njoro main-
season (SAI2), and ranged from 13.5 to 53.6% in Greytown
for the first (SAI3-Score A) to last (SAI3-Score C) score dates.
Reaction type (RT) scores showed similar mean values of 5.6
and 5.5 in the Njoro off- and main-seasons (RT1 and RT2), but
were lower at Greytown, ranging from 4.3 to 4.7 for the first
(RT3-Score A) to last (RT3-Score C) score dates. More pustule
formation (higher SAI values) was seen for each RT class at
Greytown (Supplementary Figure 1). The differences in stem
rust reactions seen between Njoro and Greytown may be due
to different, naturally occurring Pgt pathotypes being present
in Kenya and South Africa, and/or genotype by environment
effects.

There was a general, positive trend between the SAT and RT
scores, with greater pustule formation being associated with less
necrosis and chlorosis (Supplementary Figure 1). Based on the
distribution of infection patterns averaged over the three seasons
8.6% of the genotypes were considered highly resistant (SAI < 20,
RT = 1, R) and 30.8% moderately resistant (SAI < 60,1 < RT =
3, RMR to MR). The disease pressure was slightly higher during
the main season at Njoro in 2009 (SAI2) and at Greytown in 2011
(SAI3), both seasons showing a higher percentage of susceptible
lines, 44.3 and 38.2% (RT = 7, S), respectively, compared to the
oft-season at Njoro in 2009 (SAI1), where 26.8% of the lines were
susceptible.

TABLE 2 | Analyses of variance using stem area infection (SAl) scores
across three seasons, off and main seasons in Njoro, Kenya 2008 to 2009
and Greytown 2011.

Source of variation Df SS F-Ratio
Genotype 254 252362.2 3.31*
Season 2 87612.68 145.99*
Genotype x Season 339 101724.8

*Term significant at alpha = 0.05.

Seedling Stem Rust Resistance and
Haplotype Analysis in the African Wheat

Collection

Pgt race PTKST is avirulent for the genes Sr22, Sr26, Sr33,
Sr35, Sr36, and Sr39, but virulent on Sr24 and Sr31. Based on
the traditional separation of incompatibility and compatibility
according to low and high ITs 20% of the entries were
homozygous resistant, while a further 5.4% showed a mixture
of ITs toward race PTKST (Supplementary Table 1). Four lines
from Kenya and one line from South Africa had a seedling score
of ITO. From their pedigrees and the haplotype analyses using
Sr gene associated markers, the lines were confirmed to carry
Sr36. The gene Sr24 was common in current day South African
breeder’s lines and commercial varieties, being present in 23 of
the 45 South African genotypes. Markers also detected Sr31I in
two Kenyan lines and one South African line as was expected
based on the presence of “Kavkaz” in their pedigrees. The IT
score of all three lines was IT4, equal to the Sr31 carrying control
Federation*4/Kavkaz.

The marker haplotype analysis predicted the presence of Sr35
in a number of lines, but this was not supported by a low IT score
(IT; or 0;), or pedigree history, suggesting that the associated
markers were not diagnostic for this gene. Markers also predicted
the presence of Sr33 in one Kenyan and six South African lines,
but again this prediction was not supported by the expected IT
score of IT;1 or 2 with isolate PTKST, or the available pedigree
information. Marker analyses did not identify the resistance
genes Sr22, Sr26 or Sr39 in the African wheat collection. The
seedling ITs of the controls were: McNair IT4 (SrMcN), Morocco
IT4 (Sr unknown), Federation*4/Kavkaz IT4 (Sr31), SrTtl I1TO
(8r36), and Avocet S IT1 (Sr26).

Haplotype analysis did indicate the presence of the complex
rust APR locus Lr34/Yr18/Sr57 in 69 of the lines, being
particularly common in lines from Kenya and the modern
South African lines. However, 10 of the 49 Ethiopian lines
described as Ethiopian landraces also contained Lr34/Yr18/Sr57.
Marker haplotype analysis predicted the presence of Sr2 in eight
Kenyan lines and in two older South African genotypes. The rust
APR locus Lr46/Yr29/Sr58 was not called in the African wheat
collection using our stringent requirement that all published
linked markers must have the same allele as the control genotype
carrying Lr46/Yr29/Sr58, i.e., Pavon 76.

Genetic Population Structure and Linkage
Disequilibrium (LD) within the African
Wheat Collection

Bayesian clustering analyses divided the African wheat collection
into two subpopulations (Supplementary Figure 2). The first
subpopulation contained all the lines from Sudan, while the
second included the remaining genotypes. PCA was performed
using both DArT and Sr gene associated markers, in separate
analyses (Figure 1). PCA outputs using a subset of, or all the
DArT markers were very similar. The variance described by
principal components (PC) was relatively small. PC1 explained
9.6 and 8.8%, and PC2 5.7 and 6.9% of the genetic variance
using DArT and Sr gene associated markers, respectively. Both
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FIGURE 1 | Analysis of population structure within the African wheat collection calculated by principal component analyses (PCA) performed with (A)
DArT markers and (B) 123 simple sequence repeat or sequence tagged sites casual or linked to known Sr genes. Lines predicted by haplotype analysis to
contain known Sr genes Sr2, Sr24, Sr31, Sr36, Sr57, or a combination of 2 or more Sr genes are indicated.

PCA plots again placed the Sudanese genotypes in a distinct
group, removed from the rest of the collection. The PCA
indicated that considerable genetic variance was still tied-up
within the remaining genotypes from Kenya, South Africa,
Ethiopia, Zambia, Tunisia, and Morocco. PC1 showed a degree of
overlap between the Kenyan and South African wheat genotypes
which PC2 began to separate into distinct groups. The Ethiopian
wheat genotypes generally formed a distinct group, although
some lines overlapped with the Kenyan and South African
cluster. The lines from Zambia, Morocco, and Tunisia were not
distinguishable as separate groups, tending to cluster with the
main body of wheat lines from Kenya and South Africa.

LD statistics (2, p-values) were calculated for each pair
of intra-chromosomal DArT and Sr gene associated markers.
Across the entire data set, only 7.7% of the intra-chromosomal
marker pairs showed significant levels of LD (12> 0.1, p < 0.001).
Consequently a low genome-wide intra-chromosomal LD, with
an average 12 of 0.277 was found. A decay in LD with increasing
genetic distance was observed, with LD decaying below a critical
level (12 = 0.1) within a map distance of 5 cM (Supplementary
Figure 3). However, the incorrect assignment of DArT markers
to chromosome 7DL resulted in a cluster of unmapped marker
pairs in the LD decay plot (Supplementary Figure 3).

Genome Wide Association Study of Stem
Rust Resistance within the African Wheat
Collection

Seven different statistical models were used to test for MTA
using the seedling IT, field SAI and RT scores. Comparison
of cumulative and observed p-values for each model indicated
larger probabilities of Type 1 error (false positive MTA) when

using the STRUCTURE based Q-matrix (Q1) for correction of
population stratification (Supplementary Figure 4). We therefore
only considered models using the PCA based Q-matrix (Q2) and
kinship (K1, K2) to correct for population structure. A stem rust
resistance MTA was considered reliable when the association was
observed using the MLM, or when the MTA was observed in
at least two seasons using the GLM after FDR correction. As
expected, the number of significant MTA was higher with the
GLM than with the MLM.

The seedling IT scores only identified significant MTA on
chromosome 2BS, with all markers displaying a significant
association across all models and spanning a 23 c¢cM region
(Supplementary Figure 5). The most significant marker in this
region was the marker allele stm773-2-153bp which is associated
with Sr36 (Tsilo et al., 2008). The DArT markers with the
highest p-values were wPt-741721, wPt-744324 and wPt-6144,
spanning a 0.8 cM region. The two latter DArT markers were
in significant LD with the stm773-2-153bp marker allele, having
r?-values of 0.170 and 0.649 (p < 0.0001), respectively. These
MTA were in agreement with the haplotype analysis, stem rust
seedling ITs and the pedigree data. Lines predicted to carry Sr36
were subsequently removed from the African wheat collection
before undertaking the GWAS of the field SAI and RT score
data sets.

The GWAS of the adult plant SAI scores found significant
MTA with two Sr gene associated marker alleles, cssrf6-647bp
and ncwl-417bp, and 20 DArT markers (Table 3). The gene
associated marker allele cssrf6-647bp is positively linked to the
rust APR gene Lr34/Yr18/Sr57 (chromosome 7DS), while the
marker allele ncwl-417bp is used to follow the APR gene
Lr46/Yr29/Sr58 (chromosome 1BL) in informative crosses. The
most significant MTA was on chromosome 6AS; DArT marker
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wPt-669271 showing associations with SAI2 and all three SAI3
scores. Four additional DArT markers were closely linked to wPt-
669271, lying within a 2.9 ¢cM region (Table 3). On chromosome
7BL marker wPt-5377 was significant across all three seasons
(SAIL, 2 and 3), although the linked marker wPt-2356 (distance
of 6.6 cM) was only significant in SAI3. Markers wPt-6487 and
wPt-4842 on chromosome 3BS were significant for SAI1 with
all models. Markers on chromosome 2DS (wPt-730744), 3BL
(wPt-0896) and 6AL (wPt-734345) were significant with SAI3-
Score B for at least two models. Additional MTA were observed
on chromosomes 1BS, 5AS, 6AS, 6BS, and 7DS, markers being
significant in one of the two seasons in Njoro and for one to three
scores in Greytown 2011. The marker wPt-667538 was significant
for the SAI2 and SAI3 data sets. This DArT marker is located on
chromosome 7A (SD, unpublished data), but the genetic position
is not known.

For the RT scores the most significant marker association
was with wPt-669271 on chromosome 6AS, identified with RT3
scores and all models, except MLM-K2 (Table 4). This MTA
was also found with the SAI phenotypes. Marker wPt-743231
on chromosome 6BS and marker wPt-0896 on chromosome 3BL
were also significant with both SAI and RT scores in the same
seasons (Tables 3, 4). MTA not in common between the SAI and
RT GWAS, but in close proximity, were wPt-6716, wPt-5572,
wPt-6995, and wPt-731120 on chromosome 6AL, being 2.4 cM
distal from marker wPt-734345 associated with SAI. Similarly, the
RT significant marker wPt-741331 was located 7.3 cM distal from
SAI MTA with markers wPt-6487 and wPt-4842 on chromosome
3BS. For both the 6AL and 3BS MTA markers were significant
with the RT1 and RT3 scores, while for SAI the markers were
only significant with SAIl. Additional MTA were found on
chromosome 2AS with RT1 and RT3-Score B, at two locations
on chromosome 2BL with RT2, RT3-Scores B, and C, and on
chromosome 6DS with RT1, RT3-Scores B, and C (Table 4).

QTL Analysis of Stem Rust Resistance in

Selected Wheat Lines W1406 and W6979
W1406 and W6979 were selected for bi-parental QTL mapping
based on the stem rust resistance scores seen in the field
trials in Njoro, Kenya (off-season 2009 and main-season 2009)
and Greytown, South Africa (2011) (W1406-0R; 5R; 10R, and
W6979-0R; 5R; 40RMR, respectively). The predicted stem rust
resistance MTA identified by the GWAS were also considered
when selecting lines for bi-parental QTL mapping, thereby
providing a wide range of possible stem rust resistance genes
for further study (Table 5). W1406 was predicted to carry SAI
MTA on chromosomes 2DS, 3BS, 3BL, 5AS, 6BS, 7A, 7BL, and
7DS, and the 7DS locus Lr34/Yr18/Sr57. Using the RT phenotypes
W1406 was predicted to carry MTA on 2AS, 2BL, 3BS, 3BL, 6AL,
6BS, and 6DS. W6979 was predicted to carry stem rust resistance
MTA for SAI on chromosomes 1BS, 3BS, 3BL, 6AS, 7A, 7BL,
and 7DS, and Lr34/Yr18/Sr57, and MTA for RT on chromosomes
2AS, 2BL, 3BS, 3BL, 6AS, 6AL, and 6DS. Neither W1406 nor
W6979 carried Sr seedling resistance genes effective against race
PTKST (Supplementary Table 1).

The stem rust resistance phenotypes of the parental lines
W1406 and W6979 ranged from trace R to 15MR, and trace R
to 30MR, respectively, over seasons and locations during field
testing of the DH populations in South Africa. The susceptible
parent, 37-07 consistently scored 70S to 100S. The W1406 x
37-07 population was field tested over four seasons and two
locations, with an ANOVA indicating significant differences in
stem rust infection between the DH lines, but not between
the five field trials (Supplementary Table 3; Supplementary
Figure 6A and 6C). The W6979 x 37-07 population was tested
for stem rust resistance over three seasons and two locations.
Again significant differences in stem rust reaction were seen
between the DH lines, but with this cross significant differences
were also seen between the four field trials (Supplementary
Table 3; Supplementary Figures 6B, 6D). This may be due to
different, naturally occurring Pgt pathotypes being present in
each season/location to which W6979 showed response variation,
and/or genotype by environment effects exhibited by W6979.

Genetic maps were produced for both populations
incorporating DArT, SSR, and KASP™ SNP markers. The
W1406 x 37-07 map covered a genetic distance of 2214.2 cM and
incorporated 531 markers (Supplementary Figure 7), while the
map for W6979 x 37-07 covered 2667.5 cM and incorporated 859
markers (Supplementary Figure 8). QTL analysis of the W1406
x 37-07 population identified QTL for stem rust resistance on
chromosomes 2BS, 3BS, 4A, and 4D, and the rust resistance
locus Lr34/Yr18/Sr57 on chromosome 7DS (Table 6, Figure 2).
The most effective QTL in W1406, explaining the greater
portion of the genetic variance for stem rust resistance, were the
Lr34/Yr18/Sr57 locus (r* up to 22.74% for SAI and 7.15% for
RT) and the QTL on 4D, QSr.ufs-4D (r? up to 26.99% for SAI
and 22.68% for RT). QSr.ufs-2B.1 and QSr.ufs-3B were identified
in W1406 with only one RT score data set, each contributing
a minor effect (r> < 10%). A minor QTL was also found on
chromosome 4A, QSr.ufs-4A, contributed by the susceptible
parent, 37-07, but identified with only one RT data set.

Five stem rust resistance QTL, all contributed by W6979, were
identified in the W6979 x 37-07 cross (Table 6, Figure 3). Again
the locus Lr34/Yr18/Sr57 was found in W6979, but its effect
was only detected with the SAI scores (2 up to 11.02%). The
biggest effect QTL was QSr.ufs-6A (1 up to 16.32% for SAI and
up to 17.02% for RT), located on chromosome 6AS this QTL
was significant over all seasons and locations. Additional, minor
QTL were identified on chromosomes 2BS (one SAI and one RT
score), 2DL (one RT score) and 3DL (one SAI score). The QTL
identified in the W1406 x 37-07 cross derived from parent 37-07,
QSr.ufs-4A was not detected in the W6979 x 37-07 population.

DISCUSSION

The appearance of the Pgt Ug99 race lineage resulted in
an international effort to identify new sources of stem
rust resistance (http://wheatrust.cornell.edu). Many wheat
germplasm collections have been screened at KALRO-Njoro
and GWAS undertaken to identify effective stem rust resistance
genes. While GWAS provide for greater resolution of gene

Frontiers in Plant Science | www.frontiersin.org

July 2016 | Volume 7 | Article 973


http://wheatrust.cornell.edu
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Ug99 Effective Stem Rust Resistance

Prins et al.

Xlew-gy

pue SI0}08AUSEIR YOd Y} YIM WTIN ZHZD XUeW- 1Y pue SI0j0eusble Od eyl UM WTN < LMD XHeW-gx ays Yum TN gy einonis uojeindod 1oj UojoeLIod Se siojoerusble Ood eyl Yim WTD O “Auo ZO [epow Jo 41,
'L LOZ BOLY LINOS ‘UMOMBID) "0100S 80} UOIOBRI DI} PUE PUODSS ‘ISl :D PUB g ‘Y 8109S™ 614 ‘6002 BAUSY ‘0IOJN ‘UOSESS-UleWw ‘8dA) UOIERI :Z1Y ‘6002 BAUSY ‘OIO[N UOSEES—O 90/} UoNORDI | 1H 4

LSM1d 80r! 8BSl 66D YlIM UORIBIUI PlolS

¥0'0 ¥-39°9 GO0 v-30'7 800 G-3¢'¢ ¥-38°C ¥-32'L ¥-3€°9 6'le SA9  p6EL-IdM
¥0'0 ¥-36'L 70’0 ¥-38'6 £20°0 §-30'9 L'¢9 S89 LecErs-Idm
200 9392 200 g-3€°¢ 200 §-3¢°S 6'€6 W9 0CLLEL-3dM
900 G-I 900 G-36'9 Y00 ¥-38 800 G-Ir'¢ 6'€6 w9 G669-Idm
00 §-39°L 900 ¢-38¢ /00 G-31°¢ 6'€6 W9 228G am
90'0 §-309 /0°0 §-38°¢ 200 6-32°¢ 1’66 W9 9129
71’0 0l-3¢'¢ v-36'¢ v-ar's ¢b'0 6-38°2 ¥-30°'G ¥-39'9 ¥-39°L €1°0 6-38'F v-IL'L ¥-36°F v-3L°L €9 SV9 [/8699-1dM
Y00 ¥-3r'9 SO0 v-3L°L G0'0 v-3L'Y el 9€ ¢86cr.-idM
LL'0 8-36°L L0 8-3¢¢ -3yt v0'0 €3¢} S8 ge 9680-igm
G0'0 ¥-32'9 GO0 v-3t¢ 20'0 §-30°¢ ¥-36'8 L9 ge prSo-igm

€00 €-3¢'¢ 800 G-39't y-3€°1 §'9¢ Sae €LY L Idm
GO0 v-3r'k GO0 v-3€°¢ 040 9-94¢°G v-ar's ¥-32'9 Leol d¢ L€6999-IdM
/00 9-36'6 =307 90°0 S-39'¢C y-3r'8 6'v. ae 0gvcidm

70’0 ¥-30'9 900 ¥-30°€ G§0c SV¢ L90€YL-1dM

Y00 €-30°+ 900 ¥-30°+F §0c SVe  /81/-idM

2! CO IMTD eXcD ex g 2D IMTD eMTD e 4 2D IM2D 2D e g D aeMeD M oz O IXMeD exed o

0 01005-¢1Y g 01008-€1H v 01008-€1Y z1y kLY (Wo)
uonisod
e2dA} uonoeay oAnelInd  wue uyo JaeN

sadfjouayd (1y) odAy uonoeas 1soy yum pajeroosse Ajpueoiiubis siaxie | ¥ 319v.L

July 2016 | Volume 7 | Article 973

Frontiers in Plant Science | www.frontiersin.org


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Prins et al.

Ug99 Effective Stem Rust Resistance

TABLE 5 | Stem rust resistance MTA found in wheat lines W1406 and
W6979.

Marker achr.  Position PdSAl  SdRT  W1406  W6979
WPt-9524 1BS 2.8 MTA None - +
wWPt-741749 1BS 34.8 MTA None - +
whPt-1248 1BS 43.7 MTA None - +
wPt-7187 2AS 20.5 none MTA + +
wPt-743061 2AS 20.5 none MTA + +
wPt-666931 2BL 102.1 none MTA + +
wPt-730744 2DS 73.0 MTA None + -
wPt-741331 3BS 26.5 none MTA + +
tPt-6487 3BS 33.8 MTA None + +
wPt-4842 3BS 33.8 MTA None + +
wPt-0544 3BL 64.1 none MTA + +
wPt-0896 3BL 84.5 MTA MTA + +
wPt-5588 5AS 40.2 MTA None + -
wPt-669498 6AS 3.9 MTA None - +
wPt-669271 6AS 5.3 MTA MTA - +
wht-1742 6AS 6.3 MTA None - +
wPt-666927 6AS 6.8 MTA None - +
whPt-664589 6AS 6.8 MTA None - +
wPt-667405 6AS 23.3 MTA None - +
tPt-6716 B6AL 93.1 none MTA + +
wPt-5572 B6AL 93.9 none MTA — +
wPt-6995 6AL 93.9 none MTA - +
wPt-731120 6AL 93.9 none MTA - +
wPt-743231 6BS 62.1 MTA MTA + -
wPt-7394 6DS 21.9 none MTA + +
wWPt-667538 7A unknown MTA None + +
wPt-2356 7BL 210.9 MTA None + +
wPt-5377 7BL 217.5 MTA None - +
wWPt-743854 7DS 1.1 MTA None + +
cssrfe6647 7DS 50.0 MTA None + +

aChr.- chromosome.

bSAI- Stem Area Infection.

CRT- host Reaction Type.

IMTA- Marker Trait Association between phenotype (SAIl or RT) and marker. + indicates
that the wheat line carries the allele associated with the MTA, while — indicates that is
does not.

position statistical power is significantly compromised by the
genetic structure of the study population, with related genotypes
resulting in the identification of false positive QTL (Korte and
Farlow, 2013). Subsequent development of bi-parental mapping
populations allows for the validation and further analysis of
predicted QTL carrying regions. In this study we selected two
lines to confirm, or not, the stem rust resistance QTL predicted
through a GWAS.

The observed structure within the African wheat collection
was primarily based on country of origin effects. The Sudanese
wheat accessions presented as a genetically isolated group, with
both haplotype analysis and GWAS failing to identify any known
Sr genes in the wheat accessions from the Sudan. All the Sudanese
wheat lines were prefixed “Jebel Mara.” Jebel Mara is an isolated
volcanic massif in West Sudan with distinct agro-ecological
growing conditions and this may explain the distinct genetic

characteristics of wheat genotypes collected from this region.
The wheat accessions from Ethiopia, Kenya and South Africa
overlapped, but could be distinguished based on country of
origin by the 2nd PC using both DArT and SSR/STS markers.
The genetic overlap could be due to the intensive use of elite
lines from international breeding efforts (e.g., CIMMYT line
introductions, Supplementary Table 1) within national wheat
breeding programs.

Pedigree information, seedling IT reactions to race PTKST
and marker haplotype analyses supported the presence of the
seedling resistance genes Sr24, Sr31, and Sr36 in the African
wheat collection (Supplementary Table 1). Sr24 was common
in the modern South African lines, the Sr24 carrying cv. Agent
having been commonly used in wheat breeding in South Africa
(Pretorius et al., 2012). Sr31 was observed in two Kenyan and
one South African line, the Kenyan lines having the Sr31 carrying
cv. Kavkaz in their pedigree. The low frequency of Sr3I in
recent South African entries is due to the strict quality standards
set by the South African baking and milling industry, and
thus general avoidance of the 1B/1R translocation in cultivar
development (Pretorius et al., 2012). Sr36 was present in four
lines from Kenya and one from South Africa. However, Sr36
has now been defeated by the race TTTSK (Singh et al., 2015;
Patpour et al.,, 2016). Haplotype and seedling IT scores were
not compatible for Sr33 and Sr35. Sr33 and Sr35 are derived
from alien introgressions from Aegilops tauschii (Jones et al.,
1991) and Triticum monococcum spp. (McIntosh et al., 1984),
respectively and are therefore unlikely to be present in the
collection. Furthermore, Sr22, Sr26, and Sr39, also introgressions
from wild relatives, were not detected in the African wheat
collection.

The main aim of this study was to identify novel field stem rust
APR effective against the Pgt Ug99 lineage. Therefore, the African
wheat collection was specifically screened to identify known
sources of rust APR, including the rust APR loci Lr34/Yr18/Sr57,
Lr46/Yr29/Sr58 and Sr2. The marker cssfr6 has proven diagnostic
for the locus Lr34/Yr18/Sr57 (Lagudah et al.,, 2009), and both
the haplotype analysis and the GWAS supported the presence
of this APR gene in lines from Kenya, Ethiopia, Tunisia,
Morocco and recent South African breeding lines. The presence
of Lr34/Yr18/Sr57 in these lines is probably due to the inclusion
of CIMMYT spring wheat materials in their development.

The haplotype analysis identified Sr2 in 10 lines, eight from
Kenya and two of the older lines from South Africa. This
was fewer lines than expected given the inclusion of CIMMYT
materials in the pedigrees of wheat accessions from Kenya and
breeding lines from South Africa, although previous studies have
suggested that Sr2 is not common in current South African
wheat germplasm (Pretorius et al., 2012). The GWAS identified
stem rust APR MTA with marker alleles wPt-741331, tPt-6487
and wPt-4842 on chromosome 3BS. However, comparison with
published maps (McNeil et al., 2008; Paux et al., 2008) suggests
that these marker loci are proximal to Sr2. The inability to detect
Sr2 in the GWAS may be a consequence of the low frequency
of this gene in the African wheat collection, a weakness of
GWAS being its lack of power to detect rare alleles within a
population.
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TABLE 6 | QTL detected in the bi-parental DH populations of W1406 and W6979 crossed to 37-07 for stem area infected (SAl) and host reaction type (RT)
field scores.

QTL name? Closest ChrP SAI5 RT5 SAI31 RT31 SAI11 RT11 SAI3 RT3 SAI15 RT15 Origin
marker Novi2 Novi12 Juli13 Jul13 Aug14 Aug14 Nov14 Novi4 Oct15 Oct15

W1406 x 37-07

Lr34/Yr18/Sr57  cssrf6 7D LOD Nsd NS 11.86 NS NS 3.85 10.06 NS 7.04 NS W1406
%VARC 22.74 7.15 16.97 13.82

QSr.ufs-4D wPt-8886 - 4D LOD NS 6.48 NS NS 9.61 8.71 NS NS 6.80 NS W1406

psp3103°¢ %VAR 14.2 26.99 22.68 16.44

QSr.ufs-2B.1 barc7 2B LOD NS NS NS NS NS 4.79 NS NS NS NS W1406
%VAR 8.76

QSr.ufs-38 cfa2226 3B LOD NS NS NS NS NS NS NS NS NS 3.24  W1406
%VAR 6.97

QSr.ufs-4A WPt667130 4A LOD NS 3.01 NS NS NS NS NS NS NS NS 37-07
%VAR 7.67

W6979 x 37-07

Lr34/Yr18/Sr57  wMAS000003 7D.1 LOD NS NS NTf NT NS NS 4.01 NS 6.22 NS W6979
%VAR 8.20 11.02

QSr.ufs-6A wPt-4270 6A LOD 5.78 4.86 NT NT 8.34 7.13 4.97 8.49 7.87 8.79  W6979
%VAR 12.39 9.85 16.32 14.57 10.12 16.54 14.10 17.02

QSr.ufs-2B.2 gwm148 2B LOD NS NS NT NT 3.41 NS NS NS NS 5.44  W6979
%VAR 6.33 10.07

QSr.ufs-2D wPt-731336  2D.1 LOD NS 4.67 NT NT NS NS NS NS NS NS W6979
%VAR 9.58

QSr.ufs-3D wPt-732889  3D.2 LOD NS NS NT NT 3.75 NS NS NS NS NS W6979

wPt-732908 %VAR 8.33

a0nly QTL with a LOD at or above significant threshold levels, as determined for each trait after 1000 permutations (P = 0.05), are shown. The LOD thresholds ranged from 3.0 to 11.5
in the W1406 x 37-07 population and from 3.0 to 3.2 in the W6979 x 37-07 population.

bChromosome.

CPercentage phenotypic variance explained ().

INS, Not significant.

®Most significant marker varies at this QTL interval.

NT, Not tested.

While the haplotype analysis of the complex APR locus  wPt-741331, tPt-6487 and wPt-4842 (Table 5), which lie close to
Lr46/Yr29/Sr58 was inconclusive, the GWAS indicated the  the QSr.ufs-3B peak marker ¢fa2226 (Table 6, Figure 2) and the
presence of this locus in many accessions, including the majority ~ five MTA in W6979 on chromosome 6AS (significant markers:
of the lines from Kenya, Ethiopia, Tunisia and South Africa,and ~ wPt-1742, wPt-669498 and wPt-6669271; Table 5) lying within
all the lines from Morocco and Zambia. In the haplotype analysis ~ the 3.9-6.8 cM region where the QTL QSr.ufs-6A peak marker
Lr46/Yr29/Sr58 was only called as present when all published — wPt-4270 is found (Table 6, Figure3). Although cfa2226 is
linked markers had the same allele as the control genotype Pavon  closely linked to gwm493; previously reported to be linked to Sr2
76. However, in the GWAS Lr46/Yr29/Sr58 was identified by only ~ (Spielmeyer et al., 2003), W1406 tested negative for Sr2 (3BS)
one gene marker; marker allele ncwi1-417bp showing a significant ~ both in the haplotype and GWAS analyses, and when screened
MTA. Screening of wheat breeder’s materials at CIMMYT (SD,  with the additional Sr2 associated marker csSr2 (data not shown;
unpublished data) and CenGen (RP, unpublished data) indicate =~ Mago et al., 2011). Other stem rust resistance QTL have been
limitations in the diagnostic potential of this marker, suggesting  reported in CIMMYT wheat materials in the region of QSr.ufs-
the presence of false positives in the GWAS analysis. 3B (Crossa et al., 2007; Bhavani et al., 2011) and in the region of

The GWAS identified 20 MTA within the African wheat  QSr.ufs-6A (Yu et al,, 2011; Bansal et al., 2013). Given the origin
collection associated with the SAI phenotypic data sets and 12 and pedigree of W1406 and W6979 it is clear that CIMMYT
MTA with the RT data sets, with three MTA being common  wheat germplasm has been included in the development of these
between SAI and RT, making a total of 29 stem rust resistance lines.

MTA. The wheat line W1406 carried the effective allele for 17 of The W1406 stem rust resistance QTL QSr.ufs-4D was not
these MTA, while W6979 contained 27 MTA. However, the only ~ detected in the GWAS, chromosome 4D being represented by
MTA confirmed by the QTL analysis of the bi-parental mapping  only 4 DArT markers in the African wheat collection, none of
populations were the locus Lr34/Yr18/Sr57 on chromosome 7DS,  which lay within the QSr.ufs-4D QTL region (Figure 2). Two
being confirmed in both W1406 and W6979, the three W1406  stem rust resistance genes are reported for chromosome 4D,
MTA on chromosome 3BS, associated with DArT markers  Sr4I and the APR locus Lr67/Yr46/Sr55. Sr41 is not effective
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FIGURE 2 | Stem rust resistance detected in the wheat cross W1406 x 37-07. The three QTL and Lr34/Yr18/Sr57 found in the line W1406 are shown along
with the MTA detected on the same linkage groups in the GWAS. The complete genetic map generated for the cross W1406 x 37-07 can be found in Supplementary
Figure 7.

against the Ug99 race lineage. However, Lr67/Yr46/Sr55 has
been reported to reduce stem rust infection by 41% in field
trials in Mexico and a lower, but still significant reduction of
16% in the presence of race TTKST in Njoro, Kenya (Herrera-
Foessel et al,, 2014). The SSR marker gwmI192 maps 0.4 <M
from Lr67/Yr46/Sr55, according to Herrera-Foessel et al. (2011).
The gwm192.2 allele, tightly linked with QSr.ufs-4D (Figure 2)
therefore suggests that this QT'L maybe the Lr67/Yr46/Sr55 locus.

The W6979 QTL on chromosomes 2DL (QSr.ufs-2D) and 3DL
(QSr.ufs-3D) were also not detected in the GWAS, however for
these QTL there were DArT markers in common between the two
studies. One DArT marker (wPt-667765) associated with QSr.ufs-
2D and two DArT markers (wPt-4991; wPt-668266) associated
with QSr.ufs-3D were present in the final selection of DArTs
used in the GWAS. The failure to detect the MTA representing
QSr.ufs-2D and QSr.ufs-3D in the GWAS may be due to the
low level of genetic variance explained by each QTL and the
variation seen in expression over growing seasons. To the best
of our knowledge no stem rust resistance QTL effective against
the Ug99 race lineage have been reported in the locations of
the minor QTL QSr.ufs-2D and QSr.ufs-3D (Yu et al., 2011).
However, it must be remembered that these minor QTL were not
consistently detected across seasons and locations, and further
characterization is required to confirm a true stem rust resistance
gene at these QTL locations.

Both W1406 and W6979 carried a QTL located on
chromosome 2BS. Peak marker loci: barc7 in W1406 (Figure 2)

and gwm148 in W6979 (Figure 3), lie in close proximity to each
other, suggesting that both lines may carry the same stem rust
resistance QTL. However, the only stem rust resistance MTA
found on chromosome 2B is with the 2B long arm marker wPt-
666931 (Table 5), which is approximately 40 cM away from
these QTL peak markers. QSr.ufs-2B lies within a region of
chromosome 2BS where several stem rust resistance genes/QTL
have been found, including the genes Sr36 and Sr40 which are
effective against the Ug99 race group (Yu et al., 2014). However,
in seedling tests both W1406 and W6979 were susceptible to
PTKST, and lines predicted to carry Sr36 were removed from the
GWAS. A stem rust resistance QTL effective against the Ug99
lineage, having been screened in Kenya in 2010 and 2011, was
found in the same region in the Canadian wheat cv. AC Cadillac
(Singh et al., 2013). However, the available pedigree information
for W1404, W6979 and AC Cadillac does not support genetic
similarity of these QTL.

The DArT Wheat Interpolated Maps v.4 were used to
determine the relative position of markers showing significant
MTA on the WI1406 x 37-07 and W6979 x 37-07 genetic
linkage maps. For the 2AS MTA (wPt-743061 and wPt-7187) the
corresponding region was not covered by a LG in the W1406 x
37-07 map. As the chromosome position of wPt-667538 on 7A is
unknown it was not possible to determine whether the genomic
region containing this MTA was represented in the W1406 x 37-
07 and W6979 x 37-07 7A LGs. All other MTA regions (Table 5)
(W1406: 2BL, 2DS, 3BL, 5AS, 6AL, 6BS, 6DS, 7BL, and 7DS) and
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FIGURE 3 | Stem rust resistance detected in the wheat cross W6979 x 37-07. The four QTL and Lr34/Yr18/Sr57 found in the line W6979 are shown along with
the MTA detected on the same linkage groups in the GWAS. The complete genetic map generated for the cross W6979 x 37-07 can be found in Supplementary
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W6979: 1BS, 2AS, 2BL, 3BS, 3BL, 6AS, 6AL, 6DS, 7BL, and 7DS)
were covered by a LG in the corresponding genetic maps, and
therefore should have been detected as a QTL.

While all possible approaches to reduce false positive
MTA were undertaken in this study the confounding effects
of relatedness can result in the incorrect calling of MTA.
Analysis of the population structure within the African wheat
collection indicated that Bayesian clustering analysis had a
greater probability of resulting in Type I errors. Therefore, only
PCA was considered for the GWAS. The proportion of explained
variance of these PCs was however low, with a maximum of
9.5%. Consequently we corrected for population stratification in
the GWAS using different models, including population effects
(Q2) and family structures (kinship matrices). More stringent
criteria would also have resulted in fewer MTA being called in
the GWAS, however it was noted that this would have resulted in
Lr34/Yr18/Sr57 going undetected. Similarly, a recent validation
of previously reported MTA for agronomic traits, including grain
yield, in barley validated only 33% of the MTAs (Liiders et al,,
2016).

Trait-associated alleles present at low frequencies, and low
marker coverage in the GWAS population can result in MTA
going undetected. The extent of LD affects the number of markers

required for association analyses. The LD value in the African
wheat collection was comparable or lower than previous studies
in wheat (Horvath et al., 2009; Chao et al., 2010), with markers on
average being required to be within 5 cM of a stem rust resistance
gene for a MTA to be significant. However, the low percentage
of intra-chromosomal marker pairs (7.7%) in significant LD
suggests that the marker coverage within the African wheat
collection might be considered at the lower limit for a GWAS. In
addition, some chromosomal regions; chromosomes 4D and 5D
in particular, were not well covered with markers (Supplementary
Table 4). Also, markers which are not in complete LD with
stem rust resistance genes will lead to an underestimation of the
explained genotypic variance of that gene.

Bi-parental mapping can resolve the effects of relatedness by
breaking up the covariances between genotypes and phenotypes,
enabling the detection of QTL associated with low frequency
alleles (Myles et al., 2009). However, the relative low level of
stem rust resistance phenotypic variance explained in both DH
populations would suggest that other stem rust resistance QTL
remained undetected. These could include the GWAS MTA
that lay in genomic regions not represented by LGs in the bi-
parental genetic maps. Genome-wide association and bi-parental
mapping are therefore approaches to trait discovery that support
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and complement each other, and together support the effective
utilization of the valuable collection of stem rust resistance
identified within the African wheat collection.
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