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The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong

heterosis effects. However, some reproductive isolation traits hindered their normal

hybridization and fructification, which was mainly caused by the flowering time and hybrid

pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation

traits, we constructed a genetic linkage map using an F2 population derived from a

cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The

map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers,

and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an

average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between

the sequences of EST-SSR markers and the genomic sequences of cucumber, melon

and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of

two reproductive isolation traits in sponge gourd, which were the flowering time and

hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both

detected on LG 1. The accumulated contribution of these two QTLs explained 38.07%

of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the

PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and

qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained

by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted

for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map

are very useful for gene mapping, comparative genomics and molecular marker-assisted

breeding. These QTLs for interspecific reproductive isolation will also contribute to the

cloning of genes relating to interspecific reproductive isolation and the utilization of

interspecific heterosis in sponge gourd in further studies.
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INTRODUCTION

Sponge gourd (2n = 26), also called luffa, is a cross-pollinated
diploid species from the cucurbitaceous family, which is mainly
cultivated in tropical and subtropical regions, such as China,
Malaysia, India, Thailand, Central America, and Africa (Oboh
and Aluyor, 2009; Rabei et al., 2013; Wu et al., 2014). Nine
varied species of sponge gourd are distributed around the world,
of which only Luffa acutangula (L.) Roxb. and L.cylindrica (L.)
Roem. are cultivated (Prakash et al., 2013; Rabei et al., 2013;
Wu et al., 2014). They obviously differ from each other in that
L. acutangula fruit possesses deep grooves and thus is also called
ridged luffa, while the surface of L. cylindrica is smooth, due to
which it is also called smooth luffa.

The fruit of sponge gourd is rich in nutrition. The immature
fruit can be enjoyed as a vegetable, and the fully-grown sponge
gourd can be used as household cleaning products and industrial
raw materials. In particular, sponge gourd contains multiple
bioactivators, such as alkaloids, flavonoids, sterols, glycosides
and glycoprotein, and possesses anti-inflammation, anti-fungal,
anti-bacterial, anti-myocardial ischemia, sedative and analgesic
activities (Ng et al., 1992a,b; Partap et al., 2012; Wu et al., 2014).
Meanwhile, ribosome-inactivating protein in the seeds of sponge
gourd contains anti-HIV activity (Ng et al., 1992b, 2011).

A genetic linkage map is vital for mapping genes/QTLs
controlling desirable agronomic traits, comparative genomic
research, and marker assisted selection. The saturated genetic
linkage maps (<1 cM betweenmarkers) have been constructed in
cucumber, melon and watermelon, while similar study of sponge
gourd is rarely found (Ren et al., 2009, 2012; Diaz et al., 2011).
By making use of sequence related amplified polymorphism
(SRAP) markers, Cui et al. (2015) constructed a genetic map
consisting of 258 loci on 24 linkage groups, of which the overall
length was 822.86 cM and the mean interval between markers
was 3.49 cM, becoming the first genetic linkage map of sponge
gourd in the world. However, due to the fact that the SRAP
is a kind of random primer amplified marker, its accuracy and
maneuverability are not quite satisfying. The SSR markers show
huge advantage in the construction of molecular genetic maps
since they are more accurate, operative and plentiful. Previously,
we identified 8523 pairs of EST-SSR markers in sponge gourd
through transcriptome sequencing for the first time, of which 641
pairs of markers were verified, and then employed 50 pairs of
them to study the diversity of 60 sponge gourd accessions (Wu
et al., 2014), which can contribute to the construction of sponge
gourd genetic linkage map.

Heterosis or hybrid vigor is a common natural phenomenon
in the biological world, and reproductive isolation happens
when two parents are distantly related in genetic relationship.
Reproductive isolation serves as the indicator of speciation, and
is also a mechanism to maintain the purity of species (Orr
and Presgraves, 2000; Long et al., 2008; Hinchliffe et al., 2011).
Dobzhansky-Muller model argued that hybrid incompatibility
was caused by the accumulative negative interaction of two or
more loci. As for animals, several genes resulting in hybrid
incompatibility have been identified in Drosophila and mice
(Morán and Fontdevila, 2014; Civetta and Gaudreau, 2015;

Davies et al., 2016). As for plants, correlated studies in rice
have been conducted in depth and a few genes causing hybrid
sterility have been cloned (Long et al., 2008; Yang et al., 2012;
Chen and Liu, 2014). In the case of Sponge gourd, the hybrids
with crossed between L. acutangula and L. cylindrica have
strong heterosis effects. However, some reproductive isolation
traits hindered their normal hybridization and fructification.
At present the research about reproductive isolation in sponge
gourd can be scarcely found, and our studies showed that the
reproductive isolation between L. acutangula and L. cylindrica
mainly consisted of two aspects. Firstly, there was almost a 12-h
gap in their flowering time. During the day, the former was
usually from 5 to 7 p.m., while the latter often blossomed from
4 am to 6 am, leading to the difficulty of natural hybridization
between them. Secondly, they showed hybrid male sterility. After
the artificial hybridization between them, hybrid F1 was in half
sterile condition.

On the basis of EST-SSR markers previously developed by
transcriptome sequencing, this research continued to develop
405 pairs of EST-SSR markers, eventually obtaining 1046
pairs of EST-SSR markers in sponge gourd. Furthermore, we
constructed a genetic linkage map using an F2 population
derived from a cross between S1174 (L. acutangula) and 93075
(L. cylindrica). Then we also conducted QTL mapping of two
traits of reproductive isolation in sponge gourd, which were
the flowering time and hybrid male sterility. Our studies are
supposed to contribute to the following cloning of genes relating
to interspecific reproductive isolation, the utilization of the
heterosis of interspecific, and the development of molecular
marker assisted breeding in sponge gourd.

MATERIALS AND METHODS

Plant Materials
There are two advanced inbred lines, S1174 and P93075, which
belonged to L. acutangula (L.) Roxb. and L. cylindrical (L.) Roem.
respectively and used as experimental materials. The mapping
population consisting of 186 F2 individuals was generated by
cross of S1174× P93075.

Trait Measurements and Statistical
Analysis
Two traits of reproductive isolation relating to flowering time
and hybrid pollen fertilities were investigated. During the bloom
stages of the mapping population, the flowering time of each
plant was investigated from 4:00 p.m. to 7:00 a.m. for three
successive days, and took the average value as the flowering
time of every plant. Considering the convenience of statistical
analysis, we need to transform the recorded time data to decimal
time measured in hour, and assigned 0 to the plants with
flowering time at 0:00, negative value to those with flowering
time before 0:00, and positive value to those after 0:00. For
example, if the flowering time was at 1:30 a.m., it was transformed
to 1.5.

During the full-bloom stages of themapping population, three
male flowers were fetched from each plant, immersed in FAA
fixative (3.7% v/v formaldehyde, 50% ethanol, 5% acetic acid)
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and brought back to the lab. By observing the pollen fertility
through a microscope, we chose one field of vision with pollens
distributed evenly for each male flower, and counted the number
of fertile pollens and sterile pollens in each field of vision. Three
male flowers with three fields of vision were analyzed and the
fertile pollen rate in each field was calculated, taking their average
value as the fertile pollen rate of single plant.

Statistical analysis on the phonotypic traits of parental groups
and mapping population were carried out by adopting SPSS
software. After computing the frequency distribution parameters
and normal distribution parameters, their diagrams were drawn
with SIGEMA-PLOT.

DNA Extraction and Molecular Marker
Analysis
Genomic DNA was isolated from sponge gourd young leaves
using the cetyltrimethylammonium bromide (CTAB) method
(Saghai-Maroof et al., 1984). PCR amplifications were performed
in a 20µL reaction volume containing 100 ng genomic DNA, 1×
PCR buffer, 2mM MgCl2, 2.5mM dNTPs, 4µM of each primer,
and 1 U Taq polymerase.

Amplification was performed on an Applied Biosystems 9700
thermocycler following the touchdown protocol: using 94◦C for
5min; followed by 11 cycles of 94◦C for 30 s, 65–55◦C for 30 s
decreasing 1◦C per cycle, and 72◦C for 1min; followed by 30
cycles of 94◦C for 40 s, 55◦C for 30 s, 72◦C for 1min; and a final
extension at 72◦C for 10min. PCR products were performed on
an 8% polyacrylamide gel. Gels were stained with silver nitrate as
previously described (Bassam et al., 1991).

Linkage Map Construction and QTL
Analyses
JoinMap version 4.0 software (Van Ooijen, 2006) was used to
construct the linkage maps at LOD scores ≥4.0. The Kosambi
mapping function was used to calculate the genetic distance
between markers. The genetic map was drawn with MapDraw
(Liu and Meng, 2003).

Candidate QTL regions were identified by using Windows
QTL Cartographer ver. 2.5 (Wang et al., 2007). Composite
interval mapping (CIM) procedure was performed using the
Model 6, with the window size set at 10 cM and a walking speed
of 1 cM. The genome-wide LOD score threshold (a = 0.05)
for declaring the presence of QTLs was determined using the
permutation test (1000 replications). Based on the permutation
results, the LOD score threshold was set at 3.0 for the trait to
declare the presence of a significant QTL. The additive effect and
percentage of phenotypic variance explained by each QTL were
estimated at the peak LOD score.

Genome Comparative Mapping
To detect cross-species synteny, each amplicon or unigene
of sponge gourd was BLASTN searched against the genome
sequences of cucumber (Huang et al., 2009), melon (Garcia-Mas
et al., 2012), and watermelon (Guo et al., 2013) and the sequences
were considered orthologous if sharing ≥80% sequence identity
with an e ≤ 1e-5. In cases where multiple hits occurred, only the

best hits were used. The software Circos (Krzywinski et al., 2009)
was employed to visualize the genome syntenic relationships.

RESULTS

Mark Development
By means of transcriptome sequencing of sponge gourd in
the previous experiment, we developed 8523 high-quality SSR
primer pairs, and 641 primer pairs were synthesized and verified
(Wu et al., 2014). In current experiment 405 markers were
synthesized, and the polymorphisms and successful amplification
of them were verified in S1174, 93075 and their hybrid F1
(Supplementary Material 1). Of these primers, 80, 81, 60, 62, 62,
and 60 were for di-, tri-, tetra-, pena-, hexa-nucleotide repeats,
and compound formation repeats, respectively (Table 1). A total
of 325 (80.25%) exhibited successful amplification, of which
216 (66.46%) revealed polymorphism between S1174 and 93075.
Polymorphisms could be observed for 41 di-, 33 tri-, 28 tetra-, 39
penta-, 42 hexa-nucleotide repeats and 33 compound formation
repeats. Among the 216 polymorphic primer pairs, 101 (46.76%)
were co-dominant and 115 (53.24%) were dominant.

A total of 1046 EST-SSR markers from this experiment and
the previous experiment (Wu et al., 2014) were used to screen the
parental lines S1174 and 93075 for polymorphic markers. Of the
1046 EST-SSR primers, 417 (39.87%) generated clear and scorable
polymorphic bands between the parental lines. Among the 417
polymorphic primer pairs, 227 (62.69%) were co-dominant and
190 (37.31%) were dominant. The 417 EST-SSR polymorphic
markers were used to construct the linkage map with the F2
population of S1174 × P93075, in which only 177 markers were
left after deleting those with blurry bands or hard to be linked
to map.

Genetic Linkage Map Construction
The 177 polymorphic EST-SSR markers between S1174 and
P93075 were mapped on 14 linkage groups, of which 164 were
codominant and 13 dominant, and covered a genetic length
of 1436.12 CentiMorgans (cM) (Table 2, Figure 1). Because of
the inter-specific hybridization, there are 48 pairs of EST-SSR
markers deviating 1:2:1 (codominant markers) or 3:1 (dominant
markers) (α= 0.05) in the 177 markers. The map length of the 14
linkage groups ranged from 0.62 cM (LG) to 237.61 cM (LG) with
an average of 102.58 cM per LG. The density of markers ranged
from 0.62 cM (LG) to 14.01 cM (LG), with an average of 8.11 cM
per LG.

Cross-Species Synteny
Of 177 pairs of EST-SSR molecular markers in genetic linkage
map, the PCR-amplified target fragments and Unigenes where
markers located were used to conduct syntenic analysis with
the genomic sequences of cucumber, melon and watermelon,
respectively. Among the amplified target fragments of 177 pairs
of markers, 119, 111, and 135 have orthoglogs in genomes
of cucumber, melon and watermelon, respectively (Figure 2).
Among the Unigenes where 177 pairs of markers located,
169,167 and 172 have orthoglogs in genomes of cucumber,
melon and watermelon, respectively (Figure 2). Each sponge
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TABLE 1 | Characteristics of synthesized EST–SSRs and efficiency of marker development.

Motif No. of EST-SSRs No. of amplified

EST-SSRsa (%)

No. of polymorphic

EST-SSRsb (%)

No. of co-dominant

EST-SSRsc (%)

No. of dominant

EST-SSRsd (%)

Di-nucleotide 80 70 (87.50%) 41(58.57%) 17(41.46%) 24(58.54%)

Tri-nucleotide 81 63 (77.78%) 33(52.38%) 14(42.42%) 19(57.58%)

Tetra-nucleotide 60 48 (80.00%) 28(58.33%) 14(50.00%) 14(50.00%)

Penta-nucleotide 62 50 (80.65%) 39(78.00%) 21(53.85%) 18(46.15%)

Hexa-nucleotide 62 51 (82.26%) 42(82.35%) 23(54.76%) 19(45.24%)

Compound 60 43 (71.67%) 33(76.74%) 12(36.36%) 21(63.64%)

Total 405 325 (80.25%) 216(66.46%) 101(46.76%) 115(53.24%)

aPercentage of successfully amplified EST–SSRs per synthesized primer pair.
bPercentage of polymorphic markers per amplified primer pair.
cPercentage of co-dominant markers per polymorphic primer pair.
dPercentage of dominant markers per polymorphic primer pair.

TABLE 2 | Distribution of molecular markers among 14 linkage group

(LGs) established on a genetic map using an F2 population derived from

the cross S1174 × P93075.

Linkage groups Map length (cM) No. of

markers

Marker density

(cM/marker)

LG 1 237.61 49 4.85

LG 2 182.07 14 14.01

LG 3 181.27 16 12.081

LG 4 187.61 17 11.73

LG 5 69.14 11 6.91

LG 6 0.62 2 0.62

LG 7 140.83 13 11.73

LG 8 94.44 12 8.59

LG 9 120.24 19 6.68

LG 10 136.89 14 9.78

LG 11 38.89 4 9.72

LG 12 24.3 2 24.3

LG 13 7.61 2 7.61

LG 14 14.6 2 14.6

Total 1436.12 177 8.11

gourd LG matched one to eight chromosomes of cucumber
and melon, and up to nine chromosomes of watermelon
(Supplementary Materials 2–4).

Phenotypic Data
During the blossoming period of sponge gourd, the flowering
time of L. acutangula was usually from 5:00 to 7:00 p.m., while
L. cylindrica normally opened flowers from 4:00 to 6:00 a.m., and
there were about 12-h difference in their flowering times. The
statistic data provided in this research was gained during April
21–23 in 2012 in Guangzhou: S1174 (L. acutangula) bloomed
at 5:32 p.m. (the number became -6.47), P93075 (L. cylindrica)
bloomed at 4:57 (the number became 4.95) and F1 bloomed at
10:30 p.m. (the number became -1.5), which was between the
flowering time of male parent and female parent and closer to the
latter. As for F2 population, its flowering time ranged from 5:57
p.m. to 5:05 a.m. (number became -6.05–5.08), and the average

time would be 10:43:48 p.m. (number became -1.27; Table 3,
Figure 3).

Under normal cultivation conditions (exclude all kinds of
harsh environments, such as drought, flood, extreme high or
low temperature), the pollen of the parent of S1174 and the
parent of P93075 was complete fertile (the fertility rate was above
94%). The pollen of F1 plants was semi-sterile (44.71%), while
the pollen of F2 individuals present continuous variation with
pollen fertility ranging from complete fertile (100%) to complete
sterile (pollen free), and the average pollen fertility rate was 43%
(Table 3, Figure 4).

QTL Analysis
The QTLs for flowering time and pollen fertility of sponge
gourd are summarized in Table 4. Two putative QTLs associated
with flowering time (FT) were both detected on LG 1. The
accumulated contribution of these QTLs explained 38.07% of the
total phenotypic variance (PV), and individual QTL explained
15.36 and 22.71% of the PV. The QTLs qFT1.1 showed additive
and the QTL qFT1.2 showed overdominance. Moreover, these
QTLs increased FT by the presence of P93075 alleles. A major
QTL qFT1.1wasmapped on LG 1 flanked by SGF385 and SGA10,
which accounted for 22.71% of the PV (Table 4, Figure 1). The
marker SGF385 distributed at one side of qFT1.1 with a distance
of 3.02 cM. On the other side of qFT1.1, the marker SGA10
was located at a distance of 5.54 cM. The other major QTLs
qFT1.2 was also mapped on LG 1, which accounted for 15.36% of
the PV (Table 4, Figure 1).The marker SGB157 was distributed
at a distance of 8.00 cM to qFT1.3 and the marker SGA23
on the other side of qFT1.3 was located with a distance of
7.19 cM.

Four QTLs for pollen fertility (PF) were identified on LG 1
(qPF1.1 and qPF1.2), LG 3 (qPF3), and LG 7 (qPF7), respectively.
The percentage of PF explained by these QTLs varied from
2.91 to 16.79%, and all together the four QTLs accounted for
39.98% of the total phenotypic variance. These QTLs all showed
overdominance. The PF was increased by the presence of S1174
alleles at qPF1.1 and qPF7 and by the presence of P93075 alleles
at qPF1.2 and qPF3, among which the interpretable phenotypic
variance of twoQTLs (qPF3 and qPF7) was greater than 10%. The
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FIGURE 1 | The 14 linkage groups (LG 1-LG 14) of sponge gourd base on the F2 population derived from the cross S1174 × P93075. The EST-SSR

markers were shown on the right of the LG, and distances among markers were indicated in cM on the left. The QTLs for flowering time (qFT ) were mapped to LG 1.

The QTLs for pollen fertility (qPF ) were mapped to LG 1, LG 3 and LG 7.

qPF3 was mapped on LG 3 flanked by SGJ745 and SGB134 which
explained 11.16% of the PV (Table 4, Figure 1). The marker
SGJ745 was distributed at one side of qPF3 with a distance of
3.03 cM and the marker SGB134 on the other side of qPF3 was
located at a distance of 2.56 cM. The qPF7 was identified on
LG 7 flanked by SGK891 and SGK857 which explained 16.79%
of the PV (Table 4, Figure 1). The marker SGK891 was located
at a distance of 3.01 cM to qFT 7 and the marker SGK857
on the other side of qPF 7 was distributed with a distance of
13.83 cM.

DISCUSSION

It’s necessary for genetic linkage map construction and QTL
mapping to keep sufficient molecular markers. EST-SSR markers
are easy to use, stable to amplify, high in specificity, and regarded
as functional markers since they are derived from transcripts. It
will effectively eliminate the interference from invalid markers
and improve the efficiency of gene mapping. Wu et al. (2014)
synthesized and verified 641 EST-SSR markers in sponge gourd,
and furthermore, 405 EST-SSR markers were synthesized and
verified in this research, getting 1046 verified markers in sponge
gourd, which can meet basically the requirement of molecular

genetic study of sponge gourd. In addition, this research
also witnessed high rate of successful amplification (80.25%)
and high level of polymorphism between L. acutangula and
L. cylindrica.

Accurate genetic linkage map serves as the basis for QTL
analysis. However, the research work concerning genetic linkage
map just got started in sponge gourd. Recently, Cui et al.
(2015) reported a sponge gourd linkage map consisted of 258
SRAP loci covering 822.86 cM and distributed on 24 linkage
groups with an average distance of 3.49 cM between makers.
This map can be regarded as the first sponge gourd genetic
linkage map in the world, which will contribute to the molecular
genetic study of sponge gourd. But there are a few disadvantages
in this map. First of all, SRAP (sequence related amplified
polymorphism) markers selected in this map were a kind of
non-specific amplification molecular marker. For the first five
cycles, the annealing temperature of SRAPs was set at 35◦C and
introduced with plenty of non-specific amplification, resulting
in lower accuracy and reproducibility. Therefore, if the entire
genetic linkage map was constructed with SRAP markers, the
low accuracy and generality of the map would make it difficult to
make comparison between various results, affecting the following
study of genes/QTLs mapping. Secondly, there are 13 pairs of
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FIGURE 2 | Circos illustration of the colinearity analysis between the sequences of sponge gourd EST-SSR markers and the genomic sequences of

cucumber, melon and watermelon. (A) The PCR-amplified target fragments of sponge gourd EST-SSR markers–cucumber genome. (B) The Unigenes where

(Continued)
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FIGURE 2 | Continued

sponge gourd EST-SSR markers located—cucumber genome. (C) The PCR-amplified target fragments of sponge gourd EST-SSR markers—melon genome. (D) The

Unigenes where sponge gourd EST-SSR markers located—melon genome. (E) The PCR-amplified target fragments of sponge gourd EST-SSR markers—watermelon

genome. (F) The Unigenes where sponge gourd EST-SSR markers located—watermelon genome. The sponge gourd linkage groups are denoted as LaLGs and the

pseudomolecules of cucumber, watermelon and melon are represented as CsChrs, ClChrs, and CmChrs, respectively.

TABLE 3 | Flowering time (FT) and pollen fertility (PF) of parental lines S1174, P93075, F1 hybrids, and F2 population derived from the cross S1174 ×

P93075.

Trait Parental linesa F1 F2 population

S1174 P93075 Min Max Mean Skewness Kurtosis

FT (h)b −6.5 (17:30) 5.03 (5:02) −1.45 (22:34) −6.05 (17:57) 5.08 (5:05) −1.27± 2.41 0.17 −0.39

PF (%) 94.31 95.54 44.71 0 100 42.83± 28.35 -0.07 −1.05

aThe mean value of the results of the three measurements.
bDecimal time measured in hour which is transformed in the way used in “Materials and Methods”; standard time in brackets.

chromosomes in sponge gourd, while this map possesses 24
linkage groups, indicating the poor linkage among markers,
for which small linkage groups can hardly form bigger linkage
groups. In this study, a comprehensive genetic linkage map was
constructed by using 177 EST-SSR markers. The map had a total
coverage of 1436.12 cM and distributed on 14 linkage groups.
Because of the inter-specific hybridization, the segregation
distortion of molecular markers of sponge gourd was quite
serious, with 48 pairs of markers deviating 1:2:1 (codominant
markers) or 3:1 (dominant markers) (α = 0.05). Since the
segregation distortion of alleles was closely related to hybrids
sterility, molecular markers with segregation distortion weren’t
discarded during the construction of linkage map. Compared
with the study of Cui et al. (2015), this map only selected specific
molecular markers, and the map was almost twice as long as that
reported by Cui et al. (2015), with more concentrated markers,
less linkage groups and closer chromosome number to sponge
gourd (2n = 26). To our knowledge, this map is the first genetic
linkage map comprising specific molecular markers all over the
world.

This research constructed a genetic linkage map consists
of 177 EST-SSR markers distributed unevenly on linkage
groups. Each linkage group only get a dozen markers or even
several markers except LG1 having 49 markers. The reason for
causing this situation could be the uneven gene distribution on
chromosome (Lou et al., 2013; Kodama et al., 2014). There are
more molecular markers in areas with more gene expression,
while the less markers in heterochromatin areas with less
gene expression. For genetic map alone, it may be not quite
complete if using EST-SSR markers, but it is very efficient
for genes/QTLs mapping since all those markers are derived
from expressed sequences. In the early stage of developing
molecular markers, we conducted transcriptome sequencing
of samples mixing roots, stems, leaves, flowers, and fruits
of sponge gourd, covering maximally expressed genes in all
sponge gourd tissues, effectively avoiding space-time specificity
of gene expression and ensuring the comprehensiveness of
EST-SSR markers (Wu et al., 2014). EST-SSRs usually located
in non-coding regions of Unigene, where sequences showed

relative poor conservatism. Thus, when the PCR-amplified
target sequences of 177 pairs of EST-SSR molecular markers
were used to build the syntenic relationships with the
genomic sequences of cucumber, melon and watermelon, most
orthoglogs were obtained. While when Unigene sequences where
markers located were used to conduct this syntenic analysis,
orthoglogs could be found in almost all sequences. The results
of syntenic analysis were quite complicated, indicating that
sponge gourd was genetically distinct from cucumber, melon
and watermelon, and during the long evolutionary process,
incidents such as complex rearrangement inner or out of
chromosomes.

As to Luffa genus, the flowering time of L. acutangula differs
by nearly 12 h from L. cylindrica, so when the former blooms,
the latter has withered away. In addition, pollinators usually
get busy at a set period of time. Some pollinators are active in
the late afternoon, while some of them are active in the early
morning. Therefore, it is hardly possible for pollinators working
in the late afternoons to carry pollens from L. acutangula to
the stigma of L. cylindrical blossoming in the early mornings.
This could be another reason that their hybirds could not be
generated naturally. This is the result of long-term evolutionary
selection in nature, which not only is an interesting natural
phenomenon, but also hinders the gene flow between them by
means of physical isolation, ensuring species identity. At present,
the mechanisms of gene control over the flowering time have
been explored in depth in model plants; many flowering-control
related genes such as FT, HD1, HD3a, EHd1 have been cloned
(Yano et al., 2000; Kojima et al., 2002; Doi et al., 2004; Rubio and
Deng, 2007). A circadian clock–controlled flowering pathway
in Arabidopsis thaliana consists of the genes GIGANTEA (GI),
CONSTANS (CO), and FLOWERING LOCUS T (FT). GI is a
main mediator between the circadian clock and CO, which is
the master regulator of photoperiodic flowering time control CO
upregulates the expression of “florigen” FT, thereby accelerating
time required to flower. (Mizoguchi et al., 2005; Harmer, 2009;
Xu et al., 2016) However, the studies have mainly concentrated
on the rhythm of plant flowering in one years (flowering date,
days from sowing to flowing or the first flowering time of plant),
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FIGURE 3 | Distribution of flowering time (A) and pollen fertility (B) in F2 population derived from the cross S1174 × P93075.

FIGURE 4 | Pollen phenotypes of S1174 (A), P93075 (C), F1 (B), and F2 plants (D–F). Three male flowers with three fields of vision were analyzed and the fertile

pollen rate in each field was calculated, taking their average value as the fertile pollen rate of single plant. Bars = 200µm.

and the rhythm of plant flowering in 1 days (daily flowering
time) is rarely studied. As to Luffa genus, there is about 12-h
difference between the flowering times of L. acutangula and L.
cylindrica, from which we can infer that they may are different in
genes controlling the connection between circadian rhythm and
flowering time. This provides valuable experimental materials
for research concerning the daily flowering rhythm of plant.
Recently, Cui et al. (2015) have located 8 QTL related to the
flowering time of sponge gourd, among which the interpretable
phenotypic variance of QTL ft1.1 reached to 24.61%. In our
research, 2 QTL controlling flowering time have been located, in

which the qFT1.2 could explain 22.71% of the PV. Unfortunately,
it is hard to make a comparison between the two results
because of the SRAP random primer markers used by Cui et al.
(2015).

Hybrid sterility was one of the most common form
of mechanisms of poszygotic isolation between species or
subspecies, which led to genetic differentiation and speciation,
and also contributed to the maintenance of species identity
(Orr and Presgraves, 2000; Long et al., 2008).The Dobzhansky-
Muller model of hybrid incompatibility indicated that hybrid
sterility and inviability were caused by negative genetic
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TABLE 4 | Summary of QTLs for flowering time (FT) and pollen fertility (PF) using composite interval mapping in F2 population derived from the cross

S1174 × P93075.

Trait QTLa Linkage group Marker Intervalb Position (cM) LOD Score Additive effectc Dominace effectd R2e D/Af GAg

FT qFT1.1 1 SGF385-SGA10 79.90 6.88 −1.73 0.12 22.71 −0.07 A

qFT1.2 1 SGB157-SGA23 191.50 3.40 −0.81 1.47 15.36 −1.81 OD

PF qPF1.1 1 SGJ823-SGD255 101.50 5.01 0.99 −20.85 9.12 −21.06 OD

qPF1.2 1 SGJ714-SGF392 117.10 3.85 −11.48 −17.91 2.91 1.56 OD

qPF3 3 SGJ745-SGB134 42.40 3.01 −6.75 15.83 11.16 −2.34 OD

qPF7 7 SGK891-SGK857 99.70 3.65 10.18 −13.04 16.79 −1.28 OD

a Individual QTLs are shown with the italic abbreviation of the trait and the linkage group number.
bThe marker interval to the putative QTL is shown in bold in Figure 1.
cPositive or negative value indicates that the allele from S1174 or P93075 increases the phenotypic value, respectively.
dPositive or negative value indicates the effect increasing or decreasing trait value over the population mean.
ePercentage of the total phenotypic variation explained by the QTL.
fD/A Dominance/Additive.
gGA gene action modes classified as A additive (|d/a| = 0–0.2), PD partial dominance (|d/a| = 0.21–0.80), D dominance (|d/a| = 0.81–1.20), and OD overdominance (|d/a| > 1.2).

interactions existing between loci that accumulated substitutions
in diverging lineages (Dobzhansky, 1936; Doi et al., 2004;
Moyle and Nakazato, 2010).A few interactive genes caused
segregation distortion and hybrid incompatibility based on
researches in animal models such as mice and Drosophila
(Civetta and Gaudreau, 2015; Davies et al., 2016). According
to studies in plants, hybrid sterility is one of the major
forms of postzygotic reproductive isolation, and there are
a few genes which are consistent with Dobzhansk-Muller
model relating to reproductive isolation (Bomblies and
Weigel, 2007; Bikard et al., 2009). Correlational studies in
Arabidopsis and rice were conducted in depth, while seldom
found in sponge gourd now. Our research identified 4 QTL
relating to hybrid male sterility, and the effective value of
two of them were more than 10%, which established the
foundation for cloning relative hybrid sterility genes and
exploring the mechanisms of hybrid sterility of sponge
gourd.

The different flowering times and hybrid male sterility form
two obstacles to the interspecies cross of L. acutangula and
L. cylindrica, and beyond that, there are maybe other barriers
such as female sterility and non-budding of hybrid seeds, which
needs our further study in order to reveal the mechanism of
interspecific differentiation of sponge gourd, contributing to the
change of reproductive isolation in breeding practices and use of
heterosis possessed by interspecific hybrid.
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