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Current trends in population growth and consumption patterns continue to increase
the demand for wheat, a key cereal for global food security. Further, multiple abiotic
challenges due to climate change and evolving pathogen and pests pose a major
concern for increasing wheat production globally. Triticeae species comprising of
primary, secondary, and tertiary gene pools represent a rich source of genetic diversity
in wheat. The conventional breeding strategies of direct hybridization, backcrossing
and selection have successfully introgressed a number of desirable traits associated
with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification
of wheat varieties. However, it is time consuming to incorporate genes conferring
tolerance/resistance to multiple stresses in a single wheat variety by conventional
approaches due to limitations in screening methods and the lower probabilities of
combining desirable alleles. Efforts on developing innovative breeding strategies, novel
tools and utilizing genetic diversity for new genes/alleles are essential to improve
productivity, reduce vulnerability to diseases and pests and enhance nutritional quality.
New technologies of high-throughput phenotyping, genome sequencing and genomic
selection are promising approaches to maximize progeny screening and selection to
accelerate the genetic gains in breeding more productive varieties. Use of cisgenic
techniques to transfer beneficial alleles and their combinations within related species
also offer great promise especially to achieve durable rust resistance.

Keywords: wheat, genetic diversity, introgressions, disease resistance, pest resistance, cisgenesis, genomic
selection, nutritional quality

INTRODUCTION

Wheat (Triticum aestivum L.), one of the key cereal crops, is grown on 222 million hectares
worldwide and is a major source of calories and proteins globally (USDA, 2016). Wheat production
has increased from 235 million tons in 1961 to an estimated 733 million tons in 2015 (FAOSTAT,
2014). The Green Revolution of 1960 and 1970s along with changes in policies, fertilizer use and
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advances in agronomy has stimulated wheat productivity over
past decades (Ziska et al., 2012). A highly cited example is
the global success of two semi-dwarf wheat varieties “Sonalika
and Kalyan Sona” in the 1960s which helped wheat production
advance from deficit to surplus in South Asia.

In recent years, changes in population trends, eating habits,
and economic and socio-economic conditions, especially in
Africa and Asia, have caused an increase in global wheat demand.
Under the assumption of favorable growing conditions, the
International Grain Council [IGC] (2014) estimated the wheat
production and consumption demands till 2020. Based on their
predictions, wheat productivity growth was estimated at 1.1%
per year for next 5 years, which will make it possible to meet
the consumption demands till 2020. However, in recent years,
noticeable changes in temperature and rainfall at the global
level have had an impact on wheat production. Various crop
models have estimated yield reductions of 6–13% in wheat for
each ◦C rise in temperature. Based on the current trends in
wheat production, the predicted increase in wheat productivity
by 2050 will be short of 1 t/ha which is required to meet the
rising global demand (Figure 1). Increased climate variability,
frequent extreme weather events, and new variants of pathogens
and pests further jeopardize linear productivity growth into
the future. Breeding wheat for climatic change tolerance and
disease resistance combined with good agronomy can potentially
improve wheat productivity to meet the future demands.

Wheat is an allopolyploid species that originated from a
cross of the tetraploid species Triticum turgidum and the
diploid species Aegilop tauschii (Coss) Schmalh. Wild tetraploid
emmer wheat evolved from a hybridization of wild Triticum
urartu tumanian ex Gandivan and an undiscovered species of
the Aegilops speltoides Tausch lineage. During the process of

domestication genetic bottlenecks resulted in significant loss
of diversity. There has been a keen interest in utilizing the
genetic diversity of Triticeae species, which includes the primary,
secondary, and tertiary gene pools (Aegilops, Agropyron, Elymus,
Hordeum, Leymus, Secale, Thinopyrum, and Triticum). These
gene pools are a rich source of genes that can be used to improve
diverse traits such as disease resistance, micronutrient availability
and abiotic stress adaptation. Novel alleles have been introgressed
from nearly 52 species highlighting the genomic plasticity of
wheat and the importance of exotic introgressions in wheat
improvement (Wulff and Moscou, 2014).

In this review, we highlight the genetic diversity available
in wheat for grain yield, adaptation to climate change, disease
and insect pest resistance, and nutritional and end-use quality.
We also discuss traditional approaches to introgression that are
still successful and current technologies that are being used
to characterize the genetic diversity and improve the efficiency
of the introgression process. We also explore the role of new
technologies such as genomic selection (GS) and cisgenesis
to integrate diverse genes/alleles and accelerate the breeding
process.

DIVERSITY IN WHEAT FOR:

Grain Yield Improvement and Climate
Resilience
Grain yield per se is a polygenic trait, and yield improvements
from alien introgressions are due to their positive impact on
phenology, yield components (that is grain size, grain number,
floret number, etc.), or through adaptive traits for abiotic
stresses (such as heat, drought, and alkaline/acid soils) and

FIGURE 1 | Projected demand and yield trends in wheat under several scenarios. Source: CIMMYT (2014).

Frontiers in Plant Science | www.frontiersin.org 2 July 2016 | Volume 7 | Article 991

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00991 July 4, 2016 Time: 12:39 # 3

Mondal et al. Harnessing Diversity to Enhance Wheat Productivity

resistance to biotic stresses. Landraces, a crucial germplasm
pool has been reported to contribute genes for grain yield
improvement in irrigated environments or, in heat and drought
stress environments (Reynolds et al., 2007a; Lopes et al., 2015).
Direct varietal releases from simple crosses with landraces are
rare, though a Turkish variety ‘Gerek 79’ is an exception (Smale
and McBride, 1996). One of the best examples is the Rht dwarfing
gene that was available through the Japanese variety ‘Norin10’
originating from a Japanese landrace Shiro Daruma (Reitz and
Salmon, 1968; Dreisigacker et al., 2005). These dwarfing genes
were utilized by Dr. Norman E. Borlaug to develop the high-
yielding semi-dwarf wheat varieties that triggered the Green
Revolution. Several other landraces also have had an impact
on improving the germplasm pool: for example, ‘Cheyenne,’ a
selection from landrace Crimea, founded the Nebraska wheat
gene pool while ‘Turkey Red’ was used for winter wheat breeding
in the USA Great Plains (Lopes et al., 2015). Studies on landraces
from different regions of the world have identified potential
sources for improvement of grain yield and climate resilience, for
instance the drought tolerant variety ‘Aragon 03’ was developed
from a selection of a landrace population ‘Catalan de Monte’
(Royo and Briceño-Félix, 2011). The potential of Mexican
landraces to adapt to temperature and drought stress has been
reported (Hede et al., 1999; Vikram et al., 2016). Further, allelic
variation for specific plant traits such as improved 1000 kernel
weight, biomass, and photosynthesis has also been identified in
landraces (Lopes et al., 2015).

The development of synthetic hexaploid wheats has allowed
the use of wild relatives such as tetraploid species (e.g., Triticum
dicoccum) and the diploid species A. tauschii to transfer adaptive
traits in to modern wheat. Genomic regions in A. tauschii can
contribute to nearly 10% increase in grain weight (Röder et al.,
2008) and improve grain yield (Börner et al., 2015). Synthetic
wheats can be used to transfer such useful genetic variations.
Studies have reported synthetic wheat lines that can extract
more water from deeper soil, which under drought stress is an
excellent adaptive trait (Reynolds et al., 2007b). Similarly, other
synthetic derivatives with improved tolerance to water logging,
high temperatures, and freezing have also been identified (Maes
et al., 2001; Villareal et al., 2001; Yang et al., 2002).

Wild relatives of wheat also present a rich source of
diversity. Species such as Agropyron elongatum (Host) Beauv. and
Agropyron cristatum Gaertn. are reported to contribute to higher
grain yields in wheat growing under optimal conditions. In
certain wheat backgrounds, chromosome 7 Ag from A. elongatum
increases grain yield up to 8% and carries leaf (Lr) and stem rust
(Sr) resistance genes Lr19 and Sr25, respectively (Singh et al.,
1998). On further study this yield increase from A. elongatum was
attributed to a better allocation of assimilates to the reproductive
organs (Miralles et al., 2007). Another example is the 6P
chromosome from the tetraploid species A. cristatum, which has
been reported to increase number of florets, kernels and grain
weight in wheat, in addition to improving resistance to the barley
yellow-dwarf virus and powdery mildew resistance alleles (Wu
et al., 2006; Wang et al., 2011).

One of the most widely used wheat relatives is rye (Secale
cereale L.), which is well-documented as a rich source of biotic

and abiotic resistance/tolerance. Rye (2n = 2x = 14), is a diploid
species, originating from the Near East (Hillman, 1978; Salamini
et al., 2002), belongs to the tertiary gene pool of wheat, along
with Thinopyrum and Elymus species (Harlan and de Wet, 1971).
The first attempts to hybridize wheat and rye were conducted
by Stephen Wilson (Wilson, 1873). The first stable amphiploid
triticale (Triticosecale Wittmack) is attributed to Rimpau in 1888;
thereafter, efforts were dedicated to producing wheat-rye hybrids
(Ammar et al., 2004).

Several 100s of cultivars with the (1B)1R substitution or
1BL.1RS and 1AL.1RS translocations from Petkus rye were
deployed between 1960 and1990 (Rabinovich, 1998). During the
1990s, the 1BL.1RS translocation was present in 60% of wheat
descending from lines developed at the International Maize and
Wheat Improvement Center (CIMMYT) and nearly half of the
commercial varieties (Rabinovich, 1998). In China, which is one
of the major wheat growing countries, about 42% of the wheat
cultivars released between 1960 and 2000 were (1B)1R genotypes,
and the consistent yield gains over the years were partially
attributed to the translocation (Zhou et al., 2007). Most of the
desirable characteristics translocated from rye to wheat have been
found in chromosome 1R that contributes to yield advantage
(Villareal et al., 1998). Translocations from chromosomes 1RL
and 1RS improve water use efficiency by promoting root and
above ground biomass growth (Ehdaie et al., 2003; Hoffmann,
2008; Karki et al., 2014). Other rye chromosomes such as 3R,
4R, and 6R are also potential donors; introgressions from these
regions could improve aluminum and acid soil tolerance in
wheat.

Disease Resistance
Diseases, caused by both fungi and fungi-like pathogens pose a
major threat to wheat production. Evolution of new virulence
through migration, mutation, selection, and recombination of
virulence genes occurs in all pathogens, but has been more
frequent in those causing rust and powdery mildew. Yield
losses due to diseases can be up to 70% in susceptible varieties
(Singh et al., 2008). For example, in 1998, stem rust infections
were reported in Uganda caused by a new race designated as
UG99. A series of reviews by Singh et al. (2006, 2008, 2011,
2015) has documented the significance, emergence, evolution and
geographical spread of the Ug99 group as time progressed. Since
its first discovery, 13 races within the Ug99 group have been
identified across several countries in Africa and Middle East1.
Another example in recent years is of the stripe or yellow rust
pathogen. Yellow rust (Yr) is found primarily in the Northern
latitudes or cooler environments, however, Hovmøller et al.
(2015) found ‘Warrior’ and ‘Kranish,’ two aggressive races of
yellow rust originating from sexual recombination in the near-
Himalayan region of Asia which can infect host under warmer
temperatures.

One of the strategies to mitigate the threat from diseases
is to identify and utilize diverse sources of durable resistance.
Globally important fungal diseases of wheat caused by biotrophs
(obligate parasites), include the three rusts; leaf or brown rust,

1www.rusttracker.org
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stripe or yellow rust and stem or black rust, caused by Puccinia
triticina, Puccinia striiformis f. sp. Tritici, and Puccinia graminis
f. sp. Tritici, respectively, powdery mildew caused by Blumeria
graminis f. sp. tritici; whereas, those caused by hemibiotrophs
(facultative parasites) include Fusarium head blight, Septoria
tritici blotch, leaf blotch, spot blotch, and tan spot.

Resistance genes can be characterized as race specific and
race non-specific, this classification dates back to 1962 when
Van der Plank proposed the first theoretical concepts of disease
resistance. Race specific genes confer resistance to one or a few
races of a pathogen and are known to be based on ‘gene for
gene’ interaction. Also known as ‘major genes,’ they usually have
large phenotypic effects, but may not confer complete resistance.
Although incorporation of race-specific resistance genes may
be promising, it increases the risk of faster breakdown. Some
examples of major genes for rust resistance include Lr19, Lr26,
and Lr42 effective against leaf rust, Yr5, Yr10, and Yr15 against
yellow rust and Sr22, Sr26, and Sr35 against stem rust. Race non-
specific resistance, is usually effective in the post-seedling growth
stage, thus commonly referred to as adult plant resistance (APR).
Race-non specific resistance is generally quantitatively inherited
and ranges from moderate resistance/moderate susceptibility to
nearly complete resistance and interact additively with other non-
specific resistance genes. Varieties with high levels of durable
resistance to multiple pathogens can be developed by combining
multiple race non-specific resistance loci, especially to those
which are known to confer resistance to multiple diseases (Singh
et al., 2008). Examples of these pleiotropic resistance genes are
Lr34, Lr46, and Lr67 which provide resistance to leaf, yellow
and stem rust and powdery mildew. Because race non-specific
resistance can provide broader and robust resistance to fight
pathogen evolution it has been recommended for the high
risk areas, for instance in East African highlands where wheat
cultivation and pathogen evolution is continuous (Singh et al.,
2008).

Though most rust resistance genes originated from hexaploid
wheat, there are also many genes that originated from the
wild relatives and other genera such as Aegilops, Dasypyrum,
Thinopyrum, and Secale (Figure 2). As early as 1920 and 1930s,
introgression of stem rust resistance from T. turgidum subsp.
durum and T. dicoccum subsp. Dicoccum Schrank ex Schubler
into bread wheat was reported (Hayes et al., 1920; McFadden,
1930). Both race-specific and non-specific genes have been
identified from diverse genetic sources. For instance, Lr9 from
Aegilops umbellulata Zhuk, Yr5 from Triticum spelta L., Yr28
from A. tauschii, Sr9e from tetraploids and Sr35 from Triticum
monococcum L. are race-specific genes. Examples of race non-
specific genes/APR include Lr22a from A. tauschii, Yr36 from
Triticum diccocoides (Korn. Ex Asch. and Graebn) Schweinf,
Yr48 from synthetic hexaploid wheat PI610750 and Yr52, 56, 57,
and 62 from landraces. Introgressions are also associated with
multiple disease resistance as well, such as Pm8/Sr31/Lr26/Yr9
from rye, Sr36/Pm6 from Triticum timopheevi (Zhuk.) Zhuk.,
Pch1 and Sr38/Lr37/Lr17 from Aegilops ventricosa Tausch, and
Lr19/Sr25, Sr24/Lr24, and Sr26 from A. elongatum (Host) P.
Beauy (Sears, 1956; Friebe et al., 1996; Mago et al., 2005; Wulff
and Moscou, 2014). Some genes introgressed from wild relatives

have been associated with negative linkage drag and therefore
have not been widely deployed in breeding: examples include
Sr32 and Sr37 identified in A. speltoides (McIntosh et al., 1995)
and T. timopheevi (McIntosh and Gyarfas, 1971) respectively.
Other temporarily designated genes that are common in high
yielding wheat germplasm offer additional possibilities for
combining resistance genes combinations.

Novel alleles from genetically diverse sources have also been
identified for other important wheat diseases. For example,
Fusarium head blight resistance genes are from genera Roegneria,
Hystrix, Elymus, Kengyilia, and Agropyron (Wan et al., 1997)
and other related species, e.g., T. timopheevi, T. monococcum,
Triticum karamyschevii Neyski, and T. militinae Zhuk and
Migush (Cai et al., 2005). Genes conferring powdery mildew
resistance have been reported from T. dicoccoides (Moseman
et al., 1984), Triticum carthlicum Nevski, T. monococcum and
T. timopheevi (Tomerlin et al., 1984). Some of the designated
genes for resistance to powdery mildew, fusarium head blight
and Septoria tritici blotch are given in Table 1. Wheat blast
caused by Magnaporthe oryzae (anamorph. Pyricularia oryzae) is
an emerging disease in the tropical parts of the Southern Cone of
South Americas and was reported in Bangladesh as well. Though
wheat blast is a recent disease, resistance has been identified in
A. tauschii (Bockus et al., 2012) and in synthetic wheats (Cruz
et al., 2010). The 2NS/2AS translocation from A. ventricosa was
recently found to confer wheat blast resistance (Cruz et al., 2016),
though unpublished reports from Paraguay have documented
the emergence of new isolates virulent to this resistance. Both
qualitative and quantitative resistance have been observed and
the former has been validated at the seedling stage (Maciel et al.,
2014). So far, eight resistance genes have been identified (i.e.,
Rmg1 to Rmg8), of which only Rmg2, Rmg3, Rmg7, and Rmg8
are host resistance genes against Triticum isolates of Pyricularia
oryzae; the rest are non-host resistance genes (Anh et al., 2015). It
is noteworthy that only Rmg7 was identified in T. dicoccum (Tagle
et al., 2015) whereas all are from bread wheat (Anh et al., 2015).
Thus diverse resistant sources are available for both the existing
and the emerging diseases in wheat.

Insect Pest Resistance
It is estimated that global yield losses due to insect pests in
the pre-green revolution era were about 5.1%, however, the
losses increased to 9.3% in the post-green revolution in 1990s
(Dhaliwal et al., 2010). Insect pests are dynamic and highly
adaptable. Changes in environmental temperature can modify
their physiology, behavior, voltinism, and distribution. For
instance, with warmer winters, the number of aphid generations
per wheat growing cycle may increase (Hullé et al., 2010) and
extend their distribution further (Macfadyen and Kriticos, 2012).
It has also been proven that aphids can modify their behavior in
response to either high or low temperature stress (Ma and Ma,
2012; Alford et al., 2014), enabling them to adapt in the presence
of natural selection if genetic variation exists for such traits. While
the work on disease resistance has tremendously contributed
to protect wheat yields, control of arthropod pests has largely
depended on the use of chemicals. A dramatic positive impact
could be achieved through the introduction of new resistance
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FIGURE 2 | Origin of designated (A) leaf rust, (B) stripe rust, and (C) stem rust genes conferring seedling and/or adult plant resistance.

genes (either singly or in combination with of multiple genes)
to provide a broad spectrum of protection against multiple
pathogens and insect biotypes.

There are several examples where genes from alien sources
have been found to confer resistance to some of the most
important wheat pests such as aphids Schizaphis graminum
(Rondani), Diuraphis noxia (Mordvilko), Rhopalosiphum padi L.
and Sitobion avenae (F.), the cecidomyid Mayetiola destructor
(Say), the nematode Heterodera avenae (Wollenweber) and
the mite Aceria tosichell Keifer. Several wheat-related species
have been found to be resistant to aphids; however, efforts to
incorporate such resistance sources into wheat breeding pipelines
are limited and there are only few a specific cases in which
aphid resistant cultivars are purposely bred (i.e., D. noxia in

the USA and South Africa, and S. graminum in the USA).
To determine the utility of such genetic resources for aphid
resistance, Smith et al. (2004) evaluated 21 accessions from six
species of Aegilops and one accession of Triticum araraticum
Jakubz that were previously identified to be resistant to R. padi
and found antibiotic effects on S. avenae and D. noxia in an
Aegilops neglecta accession. Migui and Lamb (2003) evaluated
resistance to R. padi, S. avenae, and S. graminum in 19 species
related to wheat, and found that species such as Triticum
boeoticum Boiss., A. tauschii and T. araraticum had the higher
levels of resistance to R. padi, whereas A. tauschii and T. turgidum
had higher levels of overall resistance to S. graminum, and
T. araraticum and T. dicoccoides had higher levels of overall
resistance to S. avenae. However, for other destructive pests
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TABLE 1 | Known genes for resistance to Powdery mildew, Fusarium head blight and Septoria tritici blotch from landraces, wild relatives and synthetic
wheat.

Diseases Source of Resistance Genes

Powdery mildew (Blumeria graminis f. sp. tritici) Triticum monococcum Pm4d, Pm1b, and Pm1c

Triticum urartu PmU

Triticum boeoticum Pm25, PmTb7A.1, and PmTb7A.2

Triticum dicoccoides Pm16, Pm26, Pm30, Pm31, Pm36, Pm41, Pm42, and MeIW72

Triticum dicoccum Pm4a, Pm5a, Pm49, and Pm50

Triticum carthlicum Pm4b, Pm33, and Pm46

Triticum spelta Pm1d, Pm10, and Pm11

Triticum sphaerococum Pm3b and Pm36

Triticum timopheevi Pm6, Pm27, and Pm37

Aegilops tauschii Pm2, Pm19, Pm34, and Pm35

Aegilops speltoides Pm12 and Pm32

Aegilops longissimi Pm13

Aegilops ovata Pm29

Secale cereale Pm7, Pm8, Pm17, and Pm20

Thinopyrum intermedium Pm40 and Pm43

Haynaldia villosum Pm21

Fusarium head blight (Fusarium graminearum) Triticum spp. Fhb1, Fhb2, Fhb4, and Fhb5

Leymus rasomsus Fhb3

Elymus tsukushiensis Fhb6

Thinopyrum ponticum Fhb7

Septoria tritici blotch (Mycosphaerellla graminicola) Synthetic Wheat (Synthetic 6x, W7984, M3) Stb5, Stb8, Stb16q

Triticum monococcum (W7984) TmStb1

Friebe et al. (1996) and McIntosh et al. (2013).

such as, Eurygaster integriceps Puton, more work is required
to find adequate resistance levels that can be incorporated in
wheat cultivars (El Bouhssini et al., 2009). Friebe et al. (1996)
made a comprehensive review of wheat-alien translocations that
confer resistance to wheat biotic stresses. Here, some examples
of resistance to diseases and pests translocated from rye are
reviewed (see Table 2, where we summarize resistance sources by
rye chromosome and diseases/pests).

End-Use Quality and Nutritional Quality
In addition to combating abiotic and biotic stresses while
improving grain yield, wheat breeding must improve or at least
maintain the nutritional and end-use quality. The wide variety
of food products made from wheat flour has resulted in ongoing
demand from the wheat processing industry for wheat with
specific quality attributes. Additionally, dietary deficiencies of
essential micronutrients such as zinc (Zn) and iron (Fe) are
a major health concern in developing countries especially for
pregnant women and children under age 5. An estimated 17.3%
of the world’s population is at risk for inadequate zinc intake, a
factor highly correlated with stunted growth in children (Wessells
and Brown, 2012). Genetic biofortification with natural genetic
variation present in wild relatives, synthetics and landraces
for micronutrient uptake from the soil and translocation in
to wheat grain is a sustainable solution that can supplement
micronutrient-deficient rural inhabitants with limited access to
formal markets or health care systems (Velu et al., 2014).

In recent years, the focus has been on “biofortification”
of wheat with micronutrients, specifically Zn and Fe.

Evaluation of landraces and secondary gene pools (i.e.,
tetraploid and diploid progenitors of hexaploid wheat)
for micronutrient concentration identified T. dicoccoides,
A. tauschii, T. monococcum, and T. boeticum Boiss. as
the most promising sources for improving Fe and Zn
grain concentration (Cakmak et al., 2000; Monasterio and
Graham, 2000). Large scale screening of available wheat
genetic resources at CIMMYT identified einkorn wheat,
wild emmer wheat, and landraces with high amounts of
Zn and Fe in grain (Cakmak et al., 2000; Ortiz-Monasterio
et al., 2007). The available genetic variation in wild emmer
(T. dicoccoides), T. spelta, T. dicoccum species is being
used to develop nutrient-enriched wheat germplasm. The
stocks (T. turgidum ssp. dicoccum/A. tauschii) are also
being used for genetic biofortification of Zn and Fe by
CIMMYT’s wheat breeding program (Ortiz-Monasterio
et al., 2007; Morgounov et al., 2007). Recently, evaluation
of a representative subset of Mexican and Iranian landraces
under Zn-enriched soil conditions in Cd. Obregon, Mexico,
showed more than a twofold variation for Zn (40–96 mg/kg)
and Fe (27–56 mg/kg; Figure 3). A major locus affecting Zn
and Fe concentration, Gpc-B1 (250 kb-locu), was mapped,
and found to encode a NAC transcription factor (NAM-
B1) that accelerates senescence and increases nutrient
remobilization from leaves to grain (Uauy et al., 2006;
Distelfeld et al., 2007). Interestingly, the favorable allele of
Gpc-B1 is from T. dicoccoides and all modern tetraploid
and hexaploid wheats possess a non-functional allele of
NAM-B1, indicating that the NAM-B1 function was lost during
domestication.
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TABLE 2 | Examples of resistance genes for diseases and pests from rye (Secale cereale).

Diseases Gene Description Germplasm

Leaf rust (Puccinia triticina) Lr26 1BL.1RS Petkus rye; Kavkaz and Veery wheat derived

Lr25 4BS.4BL-2RL Transec

Lr45 2AS-2RS.2RL RL6144

Stripe Rust (Puccinia striiformis var. striiformis) Yr9 1BL.1RS Petkus rye; Kavkaz and Veery wheat derives

YrCN17† 1BL.1RS R14, Chuan-nong 17

YrR212† 1BL.1RS R212

Stem rust (Puccinia graminis f. sp. tritici) Sr31 1BL.1RS Petkus rye; Kavkaz and Veery wheat derives

Sr50/SrR 1BL.1RS Imperial rye derives

Sr1RSAmigo 1AL.1RS Amigo wheat

Sr27 3AL.3RS WRT238

Powdery mildew (B. graminis f. sp. tritici) Pm8 1BL.1RS Petkus rye; Kavkaz and Veery wheat derives

Pm17; allelic to Pm8 1AL.1RS Insave rye derives; Amigo wheat derives

Pm7 4BS.4BL-2RL Transec

Pm20 6BS.6RL WGRC28

Greenbug (Schizaphis graminum) Gb2 1AL.1RS Insave rye, Amigo wheat derives

Gb6 1AL.1RS Insave rye, GRS1201

Diuraphis noxia Dn7 1BL.1RS 94M370 wheat

Hessian fly (Mayetiola destructor) H21 2BS.2RL KS85HF 011-5

H25 4BS.4BL-6RL Balbo rye; 88HF16 wheat

Aceria tosichell CmC3 1AL.1RS Amigo wheat

Cereal cyst nematode (Heterodera avenae) CreR 6DS.6RL T-701 triticale derives

†Temporary designation.
Friebe et al. (1996) and McIntosh et al. (2013).

FIGURE 3 | Genetic diversity for grain Zinc and Iron in Mexican and
Iranian landrace collections.

Apart from micronutrients, wheat grain is also a good source
of other beneficial nutrients which could be targeted by breeding
programs to improve the nutritional quality of wheat based
products. Grain bran is particularly rich in dietary fiber, vitamins
(folic acid), and phytochemicals, which have been associated
with a protective role for many chronic diseases including
cardiovascular diseases and type 2 diabetes (Jacobs et al., 1999; Liu
et al., 1999; de Munter et al., 2007). The HEALTHGRAIN cereal
diversity screening project reported diversity for dietary fiber and
phytochemicals in the wheat primary gene pool. The levels of
dietary fiber ranged from 11.5 to 18.3% of dry matter, and more
specifically the content of water extractable arabinoxylans (an
important source of soluble dietary fiber, which is more readily
fermentable in the colon than insoluble one) ranged from 0.3
to 0.85% in bran and from 0.3 to 1.4% in flour (Gebruers et al.,

2008; Ward et al., 2008; Kariluto et al., 2010). Various research
projects are currently ongoing to screen for genetic variability of
the bioactive compounds (Di Silvestro et al., 2012; Giambanelli
et al., 2013; Laddomada et al., 2016). High heritability for some
of these compounds such as tocols, sterols and arabionoxylan
fiber (Shewry et al., 2010) and available genetic diversity increases
the chances of utilizing the variation for improving nutritional
quality in wheat.

The vast catalog of products prepared from wheat requires
genetic variation in traits related to grain composition as well.
Exploring novel genetic variation could improve processing
and end-use quality. Grain proteins are one of the important
components that influence end-use quality. Studies have reported
higher grain protein content in landraces than in modern wheat
(Rodriguez-Quijano et al., 1994; Dotlacil et al., 2010) which
means landraces and wild relatives could be a potential source
to improve protein content. In fact, as mentioned above GPC-B1
(also called NAM-B1), the first gene identified for grain protein
content variation was transferred from a wild emmer accession
(T. dicoccoides) to modern durum wheat background (Avivi,
1978; Joppa and Cantrell, 1990; Joppa et al., 1997). While grain
protein content is important, gluten quality is equally important.
Gluten, an essential component of dough, is a complex protein
network formed mainly by two kinds of proteins, monomeric
gliadins and polymeric glutenins, which in turn are divided into
high molecular weight glutenins (HMWGs) and low molecular
weight glutenins (LMWGs). Although there is allelic variation
in modern wheat for the gene Glu-1 encoding HMWGs, use
of diversity in the Triticeae pool could potentially contribute
to improve processing quality (Xu et al., 2010; Rasheed et al.,
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2014). The Wheat Gene Catalog currently describes 26 alleles
for Glu-A1, 56 for Glu-B1, 24 for Glu-D1, 55 for Glu-A3, 32
for Glu-B3, and 16 for Glu-D3 (McIntosh et al., 2013) Several
of those alleles have been detected in modern wheat ancestors
and wild relatives, such as Glu-B1q in emmer (Vallega and
Waines, 1987), Glu-B1be in wild emmer (Xu et al., 2004), Glu-
D1n in spelt (Caballero et al., 2001), or Glu-D1bf in A. Tuaschii
(Gianibelli et al., 2001). Genetic resources (for example T. urartu
or T. monococcum) can be utilized to introgress Glu-A1 x+y or
y active subunits (always silenced in modern durum and bread
wheat, respectively), which will lead to new variations (Alvarez
et al., 2009). Recently, a novel allele HMW glutenin allele was
identified from A. longissimma Schweir and Muschl through the
use of a Chinese Spring substitution line CS-1S(1B) that could
potentially improve dough and breadmaking quality (Wang et al.,
2013).

Other important quality traits such as grain hardness or starch
properties are also influenced by diverse proteins and therefore
genes. Puroindolines a and b (PINA, PINB), encoded by the genes
Pina-D1 and Pinb-D1, are responsible for grain hardness (Morris,
2002). Wild alleles of Pina-D1a and Pinb-D1a are linked to soft
grain texture, though several alleles for both Pin-D1 genes have
been associated with harder grain in modern wheat (Giroux and
Morris, 1997, 1998; Lillemo and Morris, 2000; Ikeda et al., 2010),
landraces (Chen et al., 2005, 2007; Ayala et al., 2013) and wild
relatives (Massa et al., 2004; Guzmán et al., 2012; Cuesta et al.,
2013). It is interesting to note that some of these alleles have
been associated with differences in quality traits other than grain
hardness (Brites et al., 2008; Tanaka et al., 2008; Chen et al., 2013).
While knowledge on the diverse sources for genes to improve
end-use quality is available, utilization of the diversity within the
breeding programs is not prevalent.

HARNESSING DIVERSITY IN WHEAT

Traditional Breeding Approaches
The success of breeding to introgress beneficial genomic regions
into wheat is conditioned by the relatedness between the species
(Friebe et al., 1996). Mujeeb-Kazi and Wang (1995) identified
certain key requirements for introgression, (1) the genome
constitution of the donor species; (2) the genomic relationship
between the donor and recipient species; (3) chromosomal
location of the loci of interest; (4) whether the gene(s) of
interest can be expressed in the recipient species; and (5)
whether gene transfer has any negative effect on the recipient
species. For instance, introgression can be achieved by direct
hybridization, homologous recombination, backcrossing and
selection if the donor species belongs to the primary gene pool,
e.g., hexaploid landraces, cultivated tetraploids (T. turgidum),
wild emmer wheats (T. dicoccoides) or diploids T. monococcum
and A. tauschii. If the donor species belongs to the secondary
gene pool (e.g., polyploid Aegilops and Triticum species, and
the S-genome species of the genus Aegilops) homologous
recombination is possible if the loci of interest are transferred in
homologous chromosomes. For species belonging to the tertiary
gene pool (e.g., Elymus species), gene transfer can be achieved

by exploiting the centric breakage-fusion of univalents, induced
homoeology and radiation treatment to induce chromosome
breaks (Friebe et al., 1996; Feuillet et al., 2008). Synthetic
hexaploid wheats carry novel variation for tolerance/resistance
to abiotic and biotic stresses but are usually poor in agronomic
performance. While they are used for transferring useful genetic
variation into common wheat, typically one or two backcrosses
to elite germplasm followed by selection are required to identify
lines with superior performance.

Although such introgressions can be of benefit to wheat,
the donor sources often negatively impact previously selected
adaptation traits in the recipient germplasm because alien
chromatin is usually incorporated as large blocks that may carry
alleles associated with undesirable agronomic characteristics.
Depending on the wheat genetic background, the rye source and
the type of abiotic stress factors, studies have shown that rye
transferred into wheat may have both positive and negative effects
on wheat performance. Monneveux et al. (2003) reported that
depending on the wheat background, 1BL.1RS translocations can
negatively impact yield under rainfed conditions and heat stress.
However, in general, under non-stressed conditions, 1RS confers
higher yield regardless of which wheat chromosome (1A, 1B,
or 1D) it is translocated into (Kim et al., 2004). On the other
hand, the position of 1RS in the wheat genome can negatively
affect baking quality, thus genotypes with 1AL.1RS and 1DL.1RS
are preferred over genotypes with 1BL.1RS (Graybosch et al.,
1993; Kim et al., 2005). Traditional breeding methods such as
repeated backcrossing and selection of desirable genotypes often
require extensive efforts and are time consuming. However, with
the new advances in phenotyping, QTL mapping, and genetic
modification, along with sequencing technologies are expected to
improve the precision and speed of alien introgression (Jacobsen
and Schouten, 2007; Tiwari et al., 2014).

MODERN BREEDING APPROACHES

High Throughput Phenotyping
Phenotypic characterization is important prior to the efficient
utilization of genetic diversity. Most phenotypic traits, heading
time, photoperiodic responses and vernalization responses are
explained by the germplasm’s geographical origin (Kato and
Yokoyama, 1991; Cavanagh et al., 2013). Phenotyping for
agronomic traits, response to disease and pests and other adaptive
traits is crucial for the introduction of new allelic variation
in breeding programs. Targeted characterization of germplasm
panels such as the Focused Identification of Germplasm
Strategy (FIGS), developed based on agro-ecological data enables
identification of specific adaptive traits within the genetic
resources. For instance, Reynolds et al. (2015) applied FIGS set to
evaluate landraces, and found that those from heat and drought
stressed regions had 40% greater biomass under heat and drought
compared to modern varieties.

Greenhouse based automated phenotyping platforms using
robotics and sensor imaging are being used for data acquisition
in different crops by a number of institutes globally (e.g., IPK
Gatersleben, Germany and The Plant Accelerator, Adelaide,
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Australia). Though, the high operational cost of such high
throughput phenotyping platforms limits their large-scale
use in breeding programs. Recent developments in remote
sensing and high throughput phenotyping technologies allow
characterization of a large number of germplasm in a short
amount of time. Spectral imagery can be utilized to measure
normalized difference vegetation index (NDVI), canopy
temperature, hydration status, and pigment composition
(Honsdorf et al., 2014; Rahaman et al., 2015; Reynolds et al.,
2015). These spectral indices have already been linked to ground
based measurements of yield, biomass, and adaptation (Reynolds
et al., 1994). Availability of high-resolution cameras has made
it possible to focus on phenotypic characterization at the plot
level. For instance, spectral indices estimated by using low level
airborne remote sensing showed significant association with
those collected at ground level (Tattaris et al., 2013). Along
with advances in statistical modeling methods, it is possible to
predict plant performances in the field, based on the information
obtained from high-throughput phenotyping. Such technologies
could be used for characterization of the diverse germplasm
pools to identify potential sources for tolerance/resistance to
abiotic and biotic stresses.

Genome Wide Association Mapping and
Marker Assisted Backcrossing
The use of molecular markers for identifying functional genes
and genome wide association studies (GWAS) can greatly
facilitate the introgression process. GWAS studies on landraces
and wild relatives of wheat have identified quantitative trait loci
(QTL) associated with morphological traits in normal irrigated,
heat and drought environments and with disease resistance
(Kertho et al., 2015; Liu et al., 2015; Sukumaran et al., 2015). If
large effect QTL exist for traits of interest and the favorable alleles
originate from exotic sources, then marker assisted backcrossing
(MABC) can be used to more rapidly introgress such alleles into
elite backgrounds compared to conventional backcrossing (Hillel
et al., 1990; Tanksley and Nelson, 1996).

Marker assisted backcrossing involves selecting of favorable
alleles using QTL linked markers during each backcrossing
generation. To reduce the number of backcrossing generations
required to recover the recurrent parent genome, markers
distributed across the genome can be used to select individuals
with the favorable donor QTL and the highest proportion of
recurrent parent genome (Young and Tanksley, 1989; Hillel
et al., 1990, Hospital et al., 1992). This approach, referred to
as MABC with foreground and background selection, can be
highly effective with availability of gene based markers and
markers tightly linked to QTL determine (Ellis et al., 2014). This
approach has been suggested for improving a wide range of
traits conferred by large effect genes, including rust resistance
genes in wheat. If QTL positions are uncertain (such is the case
of positions inferred by QTL mapping studies), then flanking
markers located several centimorgans on either side of the QTL
are needed to ensure the QTL is not lost during backcrossing
(Visscher et al., 1996). This may be problematic if there is
linkage drag associated with the QTL, and large flanking segment

may inevitably be introgressed. Fine-mapping or cloning the
QTL to develop closely linked or functional markers would
be ideal for backcross introgression from exotic germplasm.
Unfortunately, in wheat, fine mapping and cloning can take
several years.

In addition to certainty of QTL positions and availability of
tightly linked markers, the number of targeted QTL is another
factor that should be considered before attempting MABC.
The proportion of single MABC progeny containing donor
alleles at all QTL is 0.5n, where n is the number of QTL and
assuming QTL are unlinked, and the position of the QTL is
known with certainty. For example, to introgress of 5 QTL,
approximately 3% of the progeny can be expected to contain all
favorable alleles; thus 145 progeny would be required obtain one
individual with all three alleles with a 1% risk of failure. Reducing
linkage drag when introgressing multiple QTL can be hastened
dramatically when using background selection to identify the
desired recombinants. However, the probability of observing the
desired recombinants remains low, and several generations of
backcrossing may ultimately be needed. To introgress multiple
QTL, a QTL pyramiding scheme where QTL are first introgressed
in the desired background singly and then combined would be
more efficient (Hosptial and Charcosset, 1997). An algorithm
for designing optimal gene or QTL pyramiding schemes was
presented by Servin et al. (2004).

Marker assisted backcrossing is being applied at CIMMYT
to improve grain Zn and Fe concentrations. Various studies
have reported QTL for high grain Fe and Zn concentrations
on chromosomes 1A, 2A, 2B, 3D, 4B, 6A, 6B, and 7A in
different species of diploid, tetraploid, and hexaploid wheat
(Peleg et al., 2009; Tiwari et al., 2009; Xu et al., 2012; Hao et al.,
2014; Srinivasa et al., 2014). A recombinant inbred line (RIL)
population developed from the cross between ‘PBW343’ and
‘Kenya Swara’ was used to identify QTL and markers associated
with Zn. Two novel large effect QTL on chromosomes 2B and 3A
were successfully converted into usable form for marker assisted
introgression of this QTL in to an elite background. During the
2014–2015 crop season, selected RILs that showed significantly
enhanced Zn compared to either of the parental lines PBW 343
or Kenya Swara was used to transfer the QTL of interest using
foreground selection. This strategy will serve to move desirable
alleles rapidly and precisely into the adapted background.

Genomic Selection
When the number of QTL is large, MABC and pyramiding
schemes may not be feasible. Phenotypic selection is currently
the most reliable and widely used method for introgressing
of favorable alleles from an exotic, non-adapted parent. GS
techniques can also be applied to increase the rate of genetic
gain in populations derived from exotic and elite parents. As
reviewed by Lorenz et al. (2011), GS is a marker assisted breeding
method in which genome wide markers and phenotypes from a
reference population are used to train a prediction model. That
prediction model is then used to predict breeding values based
only on their genome-wide marker data. GS is more effective than
MAS or marker assisted recurrent selection for polygenic traits
(Bernardo and Yu, 2007). To achieve good prediction accuracy, it
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is important that the model training population be representative
of the selection candidates that are to be predicted (Hayes et al.,
2009; Pszczola et al., 2012).

If exotic parents are used in the breeding program, then
an existing model training population will not be effective for
predicting the progeny of these crosses. If one is to use GS to
select among progeny from an exotic by elite cross, then a subset
of the progeny will need to be phenotyped for model training.
That prediction model could then be used for a few generations
of recurrent selection within the bi-parental population. If the
objective is to backcross favorable alleles from the exotic parent
into an elite background, then GS can be used to identify the
backcross progeny to cross to the recurrent parent. A simulation
study by Bernardo (2016) found that the most effective GS
backcrossing approach to introgress QTL from an exotic into an
elite background was to train the GS model using F2 progeny
and then apply that model during multiple generations of
backcrossing. This approach led to a greater selection compared
to phenotypic selection or selection based on QTL linked markers
alone.

If crossing with exotic parents without backcrossing or within
family recurrent selection, then it would be best to refrain from
GS among families where one of the parents is exotic or exotic-
derived until a sufficient number of progeny and other relatives
descending from the exotic have been phenotyped. GS for allele
introgressions has not yet been attempted in wheat; however, the
use of GS in breeding with elite germplasm has shown significant
potential. There are at least 29 studies on GS in wheat that have
been published. Two studies (Heffner et al., 2011a,b) showed
the potential of this approach to predict end-use quality traits
of soft bread wheat germplasm, and obtained promising results,
although forward prediction of quality traits was not carried
out. A 5-years study conducted at CIMMYT with elite breeding
lines for flour quality reported forward prediction accuracies of
0.68 and 0.49 for aleveograph W and loaf volume respectively
(Battenfield et al., 2016). In another GS study a cross-validation
of genomic predictions revealed moderately high predictability
for grain Zn(0.5) and Fe(0.6) (Velu et al., 2016). Several cross
validation studies have assessed the potential to use GS for
improving disease resistance (Ornella et al., 2012; Rutkoski et al.,
2012, 2015; Daetwyler et al., 2014; Arruda et al., 2015; Mirdita
et al., 2015) and for grain yield (Crossa et al., 2010; Poland et al.,
2012; Dawson et al., 2013) in wheat.

Next Generation Approaches
The concept of cisgenesis was defined by Schouten et al. (2006) as
the transfer of genes within the gene pool of sexually compatible
species of same genus. Though similar to classical breeding, this
approach has the potential to overcome its two major limitations.
Cisgenesis can be used to hasten the transfer of targeted genes
between related species and can avoid linkage drag associated
with classical breeding. The strategy can also be used to improve
traits with limited natural allelic variation in the gene pool.
Higher expression of the traits can be obtained by re-introducing
the gene with its own promoter and terminator or expression
levels can be lowered through silencing constructs (Holme et al.,
2013). In the case of wheat, cisgenic transfers are limited within

the Triticum genus, though the availability of triticale, a hybrid
between rye and wheat, and hybrids between barley and wheat,
opens up new opportunities for cisgenesis between two divergent
sexually compatible gene pools, Triticum–Secale and Triticum–
Hordeum (Holme et al., 2013). There are a few of examples
of the use of cisgensis in cereals. The HMW glutenin subunit
1Dy10 associated with superior bread-making quality is present
in hexaploid bread wheat but absent in durum wheat. Cisgenesis
was used to transfer the 1Dy10 HMW glutenin gene from bread
wheat to durum wheat (Gadaleta et al., 2008). Further work is
ongoing to improve phytase activity in barley (Kerr et al., 2010)
and drought tolerance in ryegrass (Bajaj et al., 2008).

With evolution of technologies, introgression of multiple
genes as cassettes through cisgenesis is also being explored.
Extensive time and effort is required to transfer multiple
genes from genetically diverse sources in to cultivated varieties,
requiring multiple backcrosses and selection against undesirable
traits. The development of gene cassettes could potentially solve
the issues related to sexual incompatibility, linkage drag and
introgression from other genera. Wulff and Moscou (2014)
described it to be equivalent to the wheat-rye translocation
(1BL:1RS) which harbors different genes for disease resistance.
Ellis et al. (2014) suggested constructing gene cassettes with
multiple resistance genes combined resistance against the three
rust diseases will result in durable resistance in wheat. The ability
to produce cassettes will allow combining genes that cannot
be selected in a normal breeding processes or introgress genes
linked in repulsion; this will lead to rapid introgression into
cultivars. Though the new technologies show great potential,
they have several limitations. Both the cisgenesis and gene
cassettes approaches will require genome-editing technologies
that are still under development. Furthermore, there may be
issues with gene suppression or loss of gene expression due
to host gene interaction. For example, Hurni et al. (2014)
observed that the powdery mildew gene Pm3 in wheat suppresses
its ortholog Pm8 transferred to wheat from diploid rye due
to interactions of encoded proteins, thus limiting transfer of
multiple genes for resistance. Finally, government regulations
and acceptance within the scientific and social community will
drive the application of these technologies in wheat breeding.

CONCLUSION

The rich genetic diversity available in wheat is a source
of numerous novel alleles for grain yield, disease resistance
and tolerance to abiotic stress. While scientists realized the
importance of genetic diversity decades ago, there is still a huge
gap in characterization of the available genetic resources and
their utilization in breeding programs. Over the years traditional
breeding strategies have successfully incorporated novel alleles
into elite germplasm, which has had significant impacts on
production globally. A recent example is the development and
release of biofortified wheat ‘Zinc Shakti (Chitra),’ developed by
introgressing synthetic hexaploid (A. tauschii background) with
elite germplasm, which has 40% higher grain Zn (Velu et al.,
2015). Technologies such as GWAS and MABC are currently
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being used to explore the diversity and incorporate novel alleles
into elite lines, though the lack of well-characterized genes
and their closely linked markers impedes the process. GS and
cisgenesis are promising technologies that could help harness
large numbers of favorable exotic alleles and subsequently
transfer them to elite backgrounds. Initiatives for genotyping and
phenotyping of genetic resources through the gene banks are
required to harness diversity efficiently and utilize in the breeding
for improved wheat varieties.
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