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Clock-generated biological rhythms provide an adaptive advantage to an organism,

resulting in increased fitness and survival. To better elucidate the plant response to

the circadian system, we surveyed protein oscillations in Arabidopsis seedlings under

constant light. Using large-scale two-dimensional difference in gel electrophoresis

(2D-DIGE) the abundance of more than 1000 proteins spots was reproducibly

resolved quantified and profiled across a circadian time series. A comparison

between phenol-extracted samples and RuBisCO-depleted extracts identified 71

and 40 rhythmically-expressed proteins, respectively, and between 30 and 40%

of these derive from non-rhythmic transcripts. These included proteins influencing

transcriptional regulation, translation, metabolism, photosynthesis, protein chaperones,

and stress-mediated responses. The phasing of maximum expression for the cyclic

proteins was similar for both datasets, with a nearly even distribution of peak phases

across the time series. STRING clustering analysis identified two interaction networks

with a notable number of oscillating proteins: plastid-based and cytosolic chaperones

and 10 proteins involved in photosynthesis. The oscillation of the ABA receptor,

PYR1/RCAR11, with peak expression near dusk adds to a growing body of evidence

that intimately ties ABA signaling to the circadian system. Taken together, this study

provides new insights into the importance of post-transcriptional circadian control of plant

physiology and metabolism.

Keywords: circadian clock, proteomics, abscisic acid (ABA) signaling, chaperones, 2D-DIGE

INTRODUCTION

The circadian clock controls many aspects of plant metabolism and development and is most
closely associated with the transcriptional regulation of these processes. Numerous genetic studies
in plants have examined the performance of photosynthesis, growth, and survival under stresses in
clock mutant backgrounds, and changes in the gene expression of key elements of these processes
are typically found (Green et al., 2002; Dodd et al., 2005; Mizuno and Yamashino, 2008; Fukushima
et al., 2009; Legnaioli et al., 2009; Graf et al., 2010; Greenham and McClung, 2015). Transcriptome
analyses have implicated the circadian clock in the rhythmic control of mRNA levels (Harmer et al.,
2001; Covington et al., 2008; Hazen et al., 2009; Filichkin et al., 2011; Nose and Watanabe, 2014)
and genome-wide studies have shown the wide-ranging roles of clock components in the control
of gene expression (Gendron et al., 2012; Huang et al., 2012; Nakamichi et al., 2012; Hsu et al.,
2013; Liu et al., 2013; Nagel et al., 2015). These findings include clock control of the plant circadian
oscillator itself as well as many output genes involved in metabolism, physiology, and development.
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Fewer studies, both in plants and animals, have examined the
circadian control of post-transcriptional processes such asmRNA
and protein turnover, and post-translational modifications such
as phosphorylation, ubiquitinylation, and sumoylation (Kim
et al., 2003; Cardone et al., 2005; Reddy et al., 2006; Deery
et al., 2009; Mehra et al., 2009; Mauvoisin et al., 2014a,b;
Seo and Mas, 2014; van Wijk et al., 2014; Choudhary et al.,
2015; Nolte and Staiger, 2015). Additionally, the presumption
that protein oscillations will follow from transcript cycling
is not always borne out. About 20–50% of circadian cycling
proteins in the liver lack accompanying mRNA oscillations
(Reddy et al., 2006; Mauvoisin et al., 2014b; Robles et al.,
2014) and in the suprachiasmatic nucleus only between 11
and 38% of the rhythmic proteins show significantly rhythmic
mRNA (Deery et al., 2009). Studies like these indicate that
transcriptome kinetics do not necessarily predict proteomic
profiles.

Therefore, analysis of the proteome is essential to understand
how cellular processes respond to, and are controlled by, the
circadian clock. Since the development of proteomic techniques
in the last few decades rhythmic proteins have been detected
using high throughput methods including two-dimensional
in gel electrophoresis (2-DE), mass spectrometry (MS), and
MALDI-TOF. Proteomic approaches have been used to identify
clock-associated proteins and circadian oscillations in proteins
in dinoflagellates (Akimoto et al., 2004), Chlamydomonas
reinhardtii (Wagner et al., 2004; Wagner and Mittag, 2009),
and Ostreococcus taurii (Le et al., 2011). Analysis of the
clock-regulated proteome of higher plants has been limited to
one study in rice (Hwang et al., 2011) and the Arabidopsis
phosphoproteome (Choudhary et al., 2015).

To further study the changes in Arabidopsis circadian
proteome and to deepen our understanding of the extent of clock
control of protein oscillations, we use two-dimensional difference
in gel electrophoresis (2D-DIGE) to identify polypeptides
in Arabidopsis seedlings that oscillate in abundance under
constant light. Through the inclusion of an internal standard
(IS) for normalization, this technique allows the analysis of
up to three pools of protein samples simultaneously on a
single 2D gel, thereby minimizing gel-to-gel variability (Alban
et al., 2003). We utilized two different methods of sample
preparation. A comprehensive total protein extract (phenol
extraction) was compared to the protein profile obtained from
D-ribulose bisphosphate carboxylase/oxygenase (RuBisCO)-
depleted samples. This immuno-affinity approach was applied
in an effort to enhance the detection of low abundance proteins
that might be masked by the very high levels of RuBisCO
present in green tissue (Sehrawat et al., 2013; Aryal et al.,
2015).

Together more than 100 oscillating proteins were
identified that are involved in transcriptional regulation,
translation, metabolism, photosynthesis, protein chaperones,
and stress-mediated responses. We were able to highlight
previously undescribed protein oscillations in chaperones
involved in chloroplast import and photosynthesis and make
new connections between the circadian clock and ABA
signaling.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis Columbia ecotype seeds were surface sterilized and
cold-treated for 2 days to synchronize germination. Seeds were
plated on filter paper in petri dish containing growth medium
Murashige and Skoog basal salt mixture, 3.0% sucrose, and 1.0%
agar (pH 5.7). Seedlings were grown under 12 h white fluorescent
light (120 µmol m−2 s−1), 12 h light/12 h dark cycle for 10
days at 22◦C and then maintained under constant light for 24
h before harvesting. The tissues were harvested at the indicated
time points (LL25, LL29, LL 33, LL37, LL41, and LL45) and frozen
immediately (Table S1).

Extraction of Total Proteins for 2D-Dige
Total proteins were extracted with the phenol–methanol method
(Hurkman and Tanaka, 1986) withmodifications. Approximately
0.1 g of tissue were ground into fine powder in liquid nitrogen
and mixed with three volumes of SDS extraction buffer (100
mM Tris-HCl, pH 8.0, 2% SDS, 1% β-mercaptoethanol, 5 mM
EGTA, 10 mM EDTA), vortexed vigorously, and centrifuged at
20,000 × g for 20 min. The supernatant was mixed with an
equal volume of ice-cold phenol (Tris-buffered, pH 7.5–7.9) and
centrifuged at 20,000 × g for 15 min at 4◦C to separate phenol
and aqueous phases. The upper aqueous phase was removed
leaving the interface intact, and the phenol phase was extracted
twice with 50 mM Tris-HCl, pH 8.0. It was then mixed with five
volumes of cold 0.1 M ammonium acetate in methanol and held
at −20◦C overnight to precipitate proteins. After centrifugation
at 20,000 × g for 20 min, the protein pellet was washed three
times with 1 ml of cold 0.1 M ammonium acetate in methanol
and once with ethanol and then resuspended in buffer (30 mM
Tris-Cl, 7 M urea, 2 M thiourea, 4% CHAPS pH 8.5). After
centrifugation, the supernatant was transferred to a new tube, and
the solubilized protein sample concentration was quantified with
2-D quant kit (GE Healthcare) using BSA as a standard.

RuBisCO Depletion by Immunoaffinity
Purification
Seedlings were ground into fine powder in liquid nitrogen and
homogenized in (1:3, w/v) buffer (10 mM Tris pH 7.5, 150
mM NaCl, 0.5% NP-40, protease inhibitor). The homogenate
was centrifuged at 12,000 rpm for 20 min at 4◦C. The protein
concentration was determined with the Bio-Rad protein assay
using BSA as a standard. The supernatant was subjected to
immunoaffinity purification (Seppro IgY RuBisCO Spin Column
kit, Sigma-Aldrich) following the manufacturer’s instructions.
Briefly, the column was pre-washed thrice with 500 µL Tris
buffered saline (TBS, 1 mM Tris-HCl, 150 mM NaCl, and pH
7.4). Immuno-capture of RuBisCO was performed by incubating
the supernatant (100 µg protein) with the matrix for 15 min at
25◦C with gentle shaking. After 15 min, the flow through was
collected by centrifugation at 2000 rpm for 30 s. Unbound protein
were removed by washing with TBS. Elution was done with the
stripping buffer (100 mM glycine-HCl, pH 2.5) and the fractions
were immediately neutralized with 1 M Tris-HCl, pH 8.0.
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Protein CyDye Labeling
Proteins were labeled with DIGE-specific Cy2, Cy3, or Cy5
according to the manufacturer’s instructions (GE Healthcare)
with modifications. Briefly, after adjusting pH to 8.5 using NaOH
(100mM), 50µg of proteins were mixed with 400 pmol of CyDye
and incubated on ice in the dark for at least 10 min. The reaction
was stopped by addition of 1.0 µl of 10 mM lysine and incubated
on ice for 10 min. Each sample was covalently labeled with a
fluorophore, either Cy3 or Cy5. A mixture of equal amounts of
protein from every sample in the experiment was labeled with
Cy2 and used as internal standard.

Two-Dimensional Gel Electrophoresis
For analytical 2D-DIGE analysis 50 µg each of Cy3-, Cy5-, and
Cy2-labeled protein samples were mixed together (total 150 µg
of protein). The DIGE sample buffer [7 M urea, 2 M thiourea, 4%
CHAPS, 20 mMDTT, and 0.5% IPG buffer (GE Healthcare)] was
added to bring the volume to 450 µl, and the samples were then
applied to 24-cm Immobiline Drystrips (GE Healthcare) and
rehydrated overnight. IEF was carried out on an Ettan IPGphor II
(GE Healthcare) at 20◦C with a maximum of 50 µA/strip and the
following setting: 500 and 1000 V each for 1 h, a gradient increase
to 8000 V over 3 h, and remaining at 8000 V until an accumulated
voltage of reaching the desired total V-h (72,000 for pH 4–7 IPG
strips). After IEF, IPG strips were equilibrated in equilibration
buffer [6 M urea, 30% (w/v) glycerol, 2% SDS, 50 mM Tris-HCl,
pH 8.0] first with 0.5% DTT and then with 2% iodoacetamide
each for 15 min. The equilibrated strips were then transferred to
12.5% SDS-PAGE gels for the second dimension electrophoresis
using the Ettan Dalt-six (GE Healthcare/Amersham Biosciences)
vertical unit. SDS-PAGE was run overnight: the first step at 80
V, for 1 h, the second step at 120 V, until the bromophenol blue
dye front reached the bottom of gel. Four biological trials were
performed at each time point.

2D-DIGE Image Analysis
Gels were processed using a Typhoon 9410 scanner (GE
Healthcare/Amersham Biosciences) according to the
manufacturer’s recommendations for DIGE image analysis.
The DIGE images were analyzed using Progenesis Same Spots
software v4.0 (Nonlinear Dynamics, Durham, NC). The scanned
images were matched, and artifacts, damaged areas, and spots
on the gels or on the scanner bed were removed. Analysis
using Progenesis software included spot detection, background
subtraction, normalization, and matching. Normalization was
done using an internal standard (IS) sample. The internal
pooled standard allows the comparison of more than two
proteomes without the need to perform pair-wise analysis of
all possible combinations of data points. After automatic spot
detection, manual editing was performed to ensure that spots
were correctly matched between different gels and were not
contaminated with artifacts, such as streaks or dust. Spots were
manually revised with edition tools for correct detection. Gel
groups were established according to the experimental design
and spot normalized volume was used to select statistically
significant (fold change, ANOVA) differentiated spots between
time points. The setting was fixed in each experiment so that

fewer than three spots presence on at least three of the four
replicates, including presence on the reverse labeled one would
be considered as a false positive.

Preparative 2D gels loaded with 1mg of protein were used
for spot picking. These gels were loaded with equal amounts of
pooled samples from all 24 samples (six time points from four
biological trials). After electrophoresis the gel was silver stained,
scanned with a transmission-light densitometer (Image Scanner;
GE Healthcare), and aligned with the DIGE reference image with
Progenesis SameSpots to outline the spots of interest selected in
the previous analysis. The spots were excisedmanually from three
preparative gels for each extraction method.

In-Gel Tryptic Digestion, Mass
Spectrometry, and Database Searching
In-gel digestions were performed as described previously
(Shevchenko et al., 2006). Digested peptides in the gel pieces were
recovered by adding 5% formic acid/acetonitrile, desalted using
StageTips with C18 disk membranes (EMPORE, 3M; Rappsilber
et al., 2003), dried in a vacuum evaporator, and dissolved in
9 µL of 5% acetonitrile containing 0.1% trifluoroacetic acid.
An LTQ-Orbitrap XL (Thermo Fisher Scientific) coupled with
an EASY-nLC 1000 (Thermo Fisher Scientific) was used for
nano-LC-MS/MS analyses. A self-pulled needle (150 mm length
× 100-µm i.d., 6-µm opening) packed with ReproSil C18 resin
(3 µm; Dr. Maisch GmbH) was used as an analytical column
with “stone-arch” frit (Ishihama et al., 2002). A spray voltage
of 2400 V was applied. The injection volume was 6 µL, and
the flow rate was 500 nL min−1. The mobile phase consisted of
0.5% acetic acid (A) and 0.5% acetic acid and 80% acetonitrile
(B). A two-step linear gradient of 0–40% B in 30 min, 40–100%
B in 5 min, and 100% B for 10 min was employed. The MS
scan range was m/z 300–1400. The top 10 precursor ions were
selected in the MS scan by Orbitrap at 100,000 resolution and
for subsequent MS/MS scans by ion trap in the automated
gain control mode, where automated gain control values of
5.00e + 05 and 1.00e + 04 were set for full MS and MS/MS,
respectively. The normalized collision-induced dissociation was
set to 35.0. A lock mass function was used for the LTQ-Orbitrap
XL to obtain constant mass accuracy during gradient analysis
(Olsen et al., 2005). Selected sequenced ions were dynamically
excluded for 60 s after sequencing. Mass Navigator version
1.3 (Mitsui Knowledge Industry, Tokyo, Japan) with default
parameters for LTQ-Orbitrap XL was used to create peak lists on
the basis of the recorded fragmentation spectra. The m/z-values
of the isotope peaks were converted to the corresponding
monoisotopic peaks when the isotope peaks were selected
as the precursor ions. To improve the quality of the MS/MS
spectra, Mass Navigator discarded all peaks of <10 absolute
intensity and with <0.1% of the most intense peak in MS/MS
spectra (Ravichandran et al., 2009). Peptides and proteins were
identified by means of automated database searching using
Mascot version 2.3.02 (Matrix Science) in The Arabidopsis
Information Resource database (TAIR10_pep_20101214,
ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/
TAIR10_blastsets/) with a precursor mass tolerance of 3 ppm,
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a fragment ion mass tolerance of 0.8 Da, and strict trypsin
specificity (Olsen et al., 2004), allowing for up to two missed
cleavages. Carbamidomethylation of Cys was set as a fixed
modification, and oxidation of Met and phosphorylation of Ser,
Thr, and Tyr were allowed as variable modifications. Scaffold
(version Scaffold_4.5.3, Proteome Software Inc., Portland,
OR) was used to validate MS/MS based peptide and protein
identifications. Peptide identifications were accepted if they could
be established at >95.0% probability by the Peptide Prophet
algorithm (Keller et al., 2002). Protein identifications were
accepted if they could be established at >99.9% probability and
contained at least two identified peptides. Protein probabilities
were assigned by the Protein Prophet algorithm (Nesvizhskii
et al., 2003). Proteins that contained similar peptides and could
not be differentiated based on MS/MS analysis alone were
grouped to satisfy the principles of parsimony. Contaminants
were removed manually. The mass spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the dataset identifier
PXD004276 (Vizcaíno et al., 2016).

Immunoblotting
Growth conditions and harvest of Arabidopsis seedlings were
as described previously (Choudhary et al., 2015). Total protein
extraction was performed according to Fujiwara et al. (2008).
Protein extracts were size-fractionated by 12% SDS-PAGE.
Immunoblotting was performed using polyclonal RuBisCO
activase antibody (aA-18, sc-15864, Santa Cruz Biotechnology)
with 1:3000 dilution. RCA is known to be phosphorylated and has
two detectable isoforms in Arabidopsis, 43 and 47 kDa (Yin et al.,
2010). Hence, all detectable bands were used for quantitation.
Histone H3 antibody (ab1791, Abcam) was used for loading
control with 1:2000 dilution. Image J software was used for
quantification of protein signal intensity.

GO, STRING, and SOTA Analysis
For Gene Ontology (GO) enrichment information for
differentially expressed significant proteins data sets,
the three GO vocabularies, biological processes, cellular
component, and molecular function were searched using
the GO Slim Classification for plants developed at TAIR
(https://www.arabidopsis.org/tools/bulk/go/index.jsp). The AGI
accession numbers for Arabidopsis were uploaded and ontology
of GO cellular component, biological process, and molecular
function was chosen with other settings as default.

A functional network of circadian modulated proteins was
predicted using STRING version 10.0 (Szklarczyk et al., 2015;
available at www.string-db.org). Functional protein-association
networks were visualized with high confidence (0.7), with
Arabidopsis thaliana set as the organism.

Self-organizing tree algorithm (SOTA) clustering was used
to obtain the co-expression pattern of differentially expressed
significant proteins (Herrero et al., 2001). Clustering was
performed on log-transformed fold induction expression values
across six time points using Multi Experiment Viewer (MEV)
software (The Institute for Genomic Research). The Pearson

correlation distance was set at 10 cycles and a maximum cell
diversity of 0.9 (Romijn et al., 2005).

RNA Extraction and Quantitative RT-PCR
Total RNA was extracted with RNAzol reagents (Sigma)
according to the manufacturer’s instructions from Col-0
seedlings grown on MS media. After digestion with DNase
I (Invitrogen), 2 µg of total RNA was used to synthesize
cDNA by using oligo-dT and SuperScriptIII reverse transcriptase
(Invitrogen) following themanufacturer’s instructions. The PYR1
gene-specific primers were PYR1qFP: TCCTGCTCCGTCGAA
CAAAACTTC and PYR1qRP: CGCCTCCGATGATACTGA
ATCCG. The UBQ primers were UBQ qFP: TGCGCTGCCAGA
TAATACACTATT and UBQ qRP: TGCTGCCCAACATCA
GGTT. qRT-PCRwas performed using iQ SYBRGreen Supermix
(Bio-Rad) and Bio-Rad CFX96 real-time PCR detection system.

RESULTS AND DISCUSSION

2D-DIGE Reveals Circadian Control over
Protein Abundance Patterns
To gain insight into the circadian regulation of protein expression
patterns, we analyzed the proteome of Arabidopsis seedlings
after entrainment in 12 h light and 12 h dark cycles followed
by free run under constant white light for 24 h. Samples
were subsequently collected at 4 h intervals starting at LL25.
Quantitative proteomics analysis was performed using two-
dimensional difference in gel electrophoresis (2D-DIGE). To
obtain optimal separation of Arabidopsis proteins, we first used
a phenol-methanol extraction method (Hurkman and Tanaka,
1986). In a second approach, RuBisCO-depleted samples were
tested in an effort to enhance the detection of low abundance
proteins that might be masked the very high levels of RuBisCO
present in green tissue (Sehrawat et al., 2013; Aryal et al., 2015).

In both approaches four biological replicates were obtained
for each time point (12 gels for each extraction method; Table
S1). We first analyzed protein samples prepared in parallel from
the same tissue samples on 1-D SDS-PAGE gels (Figure S1)
and then separated the extracts on high resolution 24 cm 2D
gels using the CyDye system (Table S1). The phenol–methanol
and RuBisCO-depletion methods consistently yielded highly
resolution gels with typically ∼1350 protein spots resolved in
each gel (Figure 1, Figure S2). Gel image analysis and protein
spots were quantified using Progenesis same spot software and
spots that reproducibly changed in abundance between two
samples within the time series with p < 0.05 (n = 4) were
selected for further examination (77 for the phenol-extracted
samples and 59 for the RuBisCO-depleted samples; summaries
of peptides matching each protein are in Table S2). A substantial
set of changes are apparent by the colored overlay of the
fluorescence images. Spots of interest were picked manually from
post-electrophoretically silver stained preparative gels and in-gel
trypsin-digested. Protein identities were analyzed by LC-MS/MS
(Figures 1A,B indicated by arrows). MASCOT software (ver.
2.3.02) was used to simultaneously identify proteins.

From the first set of ANOVA-selected differentially-expressed
protein spots, visual inspection narrowed further analysis to 71
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FIGURE 1 | Two-dimensional difference gel electrophoresis (2-D DIGE)

analysis of circadian regulated proteins. (A) Total protein isolated through

a phenol extraction or (B) RuBisCO-depletion method were compared across

the six time points by 2-D DIGE using 24 cm pH 4–7 (left to right) IPG strips

and 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE) gels. Protein spots of interest are numbered. Panel (A) is an

overlap image of gel no. 1 (Table S1) with the LL25 sample labeled with Cy3

and the LL37 sample labeled with Cy5. Panel (B) is an overlap image of gel

no. 4 (Table S1) with the LL29 sample labeled with Cy3 and the LL33 sample

labeled with Cy5.

spots from the phenol-extracted samples, and 40 spots from
the RuBisCO-depleted samples which showed circadian-like
waveforms (Tables S3, S4). Some peptides were identified in
multiple spots, which was likely caused by post-translational
modifications that shift the mobility in 2D gels. Typically many
proteins of different families were identified within a single gel
spot. Spot identity was then assigned to the protein having the
highest percentage of totalMS spectra coming from that spot (top
hit; Tables S5, S6; see Section Methods and Conclusion).

The co-expression profile of the oscillating peptides was
represented by a heat map (Figure S3) using the MEV software
(The Institute of Genomic Research, TIGR; Saeed et al., 2003).

The phase distributions of the cyclic proteins were similar
for both datasets, with a similar number of peak phases
across the time series (Figures 2A,C). These results differ
from a recent circadian phosphoproteome analysis where peak
phosphopeptide abundance occurred just after subjective dawn
and subjective dusk (Choudhary et al., 2015). mRNA phasing
patterns in Arabidopsis were more evenly distributed across
day and night, though there was still a slight bias toward near
dusk and near dawn (Harmer et al., 2000). Rhythmic proteins
from both extraction methods mostly correlated with rhythmic
transcripts (56 and 69%; phenol-extracted and RuBisCO-
depleted, respectively; Figures 2B,D). Thus, between ca. 30 and
40% of rhythmic proteins derive from non-rhythmic transcripts,
and these were not associated with a particular circadian phase
(Figures 2B,D). These results are similar to an Arabidopsis
phosphoproteomic study which reported that more than half of
the cycling phosphopeptides came from genes with arrhythmic
transcripts (Choudhary et al., 2015). Similar findings were
reported frommouse liver studies, where 20–50% of the rhythmic
proteins did not exhibit corresponding rhythmic transcripts
(Reddy et al., 2006; Mauvoisin et al., 2014b; Robles et al.,
2014). Taken together, these results emphasize the importance of
circadian control over post-transcriptional and post-translational
processes that lead to the net result of rhythmic patterns of
protein abundance.

Immunoaffinity Removal of RuBisCO
RuBisCO-depletion spin columns (Seppro R© IgY affinity
purification; SIGMA) effectively removed the large and small
subunit of RuBisCO (Figure 3; compare boxed areas in Figures
S2A,B). One indication of the effectiveness of RuBisCO depletion
is the many fewer number of RuBisCO peptides identified in
the depleted samples (10) compared to the phenol-extracted
samples (45; Table S7). Surprisingly, only four proteins were
found common to both data sets as the top hit in the respective
spots: cold, circadian rhythm RNA-binding 2 (CCR2/ATGRP7;
spot P69 and S59), phosphoglycerate kinase 1 (PGK1; spot
P42 and S50), RuBisCO activase (RCA; spot P06, P12 and spot
S11), and ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO) small subunit (RBCS; spot P73 and S49; Tables S3, S4;
Figure 4). CCR2/ATGRP7 is an RNA-binding protein that is part
of a molecular slave oscillator associated with the Arabidopsis
circadian system (Schmal et al., 2013). Both extraction methods
showed the same late-day peak phase of CCR2 protein (Heintzen
et al., 1997), similar to the transcript, but the amplitude of
oscillation was more robust using the RuBisCO-depletion
extraction method (Figures 4A–C).

Peak RCA protein abundance was early-day phased for
both methods and slightly phase-delayed relative to peak RCA
mRNA abundance (Figures 4D–F). We validated these results
by immunoblot using whole seedling extracts grown under
the same entrainment and free-running conditions. Peak RCA
levels occurred at the same phase and with similar amplitude
as that obtained from the two 2D-DIGE data sets (Figure 5).
Both approaches resolved oscillations with a two-fold or less
range in abundance, indicating a high degree of sensitivity and
reproducibility using 2D-DIGE/MS.
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FIGURE 2 | Protein distribution by circadian phase and mRNA rhythmicity. Number of rhythmic proteins (Phenol extracted) are shown as the number above

the two bars for each phase of peak occurrence (A) and relative to whether the respective mRNA is also rhythmic (B). Peak phasing of rhythmic proteins are further

shown according to whether the respective mRNA is rhythmic (dark bar) or whether the respective mRNA is arrhythmic (gray bar). (C,D) Results for same categories

obtained from RuBisCO-depleted protein extracts. Discrepancies between the total number of proteins and the sum of the two bars for each phase is due to mRNA

data missing from DIURNAL.

PGK1 is an essential enzyme that catalyzes the reversible ATP-
dependent phosphorylation of 3-phosphoglycerate (3-PGA) in
the chloroplast, as well participating in the glycolytic pathway in
the cytosol (Morisse et al., 2014). PGK1 protein oscillations from
the RuBisCO-depleted samples were phased very similar to the
transcript (Figures 4G–I).

Two to three isoforms of the RuBisCO small subunit
(RBCS3B/RBCS2B and RBCS1A) showed different phases of
peak oscillation (Figures 4J–L). RBCS3B/RBCS2B (spot S49;
Table S4) maximally accumulated during subjective day,
dropping to lowest levels in the early evening. RBCS1A (spot P73;
Table S3) was anti-phasic to 2B/3B, rising to maximal levels at
subjective dusk. The significance of these two forms of RuBisCO
peaking at different times is unclear. Interestingly, RBCS1A
expression is highest in plants grown at low temperatures, with
levels dropping in plants grown at higher temperatures. However,
RBCS3B/RBCS2B expression rises strongly with increasing
growth temperatures (Yoon et al., 2001). Further work on the
phasing and oscillation amplitude of these RBCS proteins in
plants grown at different temperatures could be very informative.

GO Analysis
For further characterization we performed GO analysis using
TAIR Slim GO for cellular component, molecular function and

biological process. The cellular component representation is
extremely similar for both the protein extraction procedures, but
there is slightly less representation of chloroplast and plastid
protein in the RuBisCO-depleted extracts (48 vs. 50%), possibly
reflecting the removal of RuBisCO (Figure 6A). Within the
molecular function category, proteins involved in enzymatic
activity and protein and nucleotide binding are the major
players in both data sets. At the biological process level proteins
related to stress response and protein metabolism are the major
contributors (Figure 6). Thus, the two types of extractions
displayed a high degree of similarity in the relative contribution
of three different GO vocabularies examined.

String Analysis
The STRING database allows accumulated protein-protein
interaction data to be assembled and viewed as interaction
networks (Szklarczyk et al., 2015). Using STRING we identified
and focus on groupings of rhythmic proteins associated with
photosynthesis (the phenol-extracted and RuBisCO-depleted
data sets) and chaperones (phenol-extracted data set; Figure 7).

Photosynthesis
Taken together the two proteome data sets identified 10
proteins or protein families associated with photosynthesis that
oscillate with a circadian period (Figures 7A,B). As noted above,
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members of the RBCS protein family, RCA and PGK1 were
common to both approaches. Two proteins involved in the
regulation of photosystem II appear in more than one spot
and with different peak phases (PSBO2; S22, S23, S25, and

FIGURE 3 | RuBisCO depletion from total protein extracts. Silver stained

SDS-PAGE (12%) gel showing RuBisCO depletion after immunoaffinity

purification using a Seppro IgY-RuBisCO spin column. Large (LSU) and small

(SSU) subunit of RuBisCO are marked. M, Molecular weight marker; T, Total

protein; U, Unbound protein fraction; SB, Specifically bound proteins.

PSBP-1; P16, P22; Tables S3, S4). Both undergo post-translational
modifications (PhosPhAt 4.0; Zulawski et al., 2013), which may
account for the same polypeptides migrating into different gel
spot positions. The different peak phasings among the spots are
intriguing and suggest a change in the extent of the modification
within each protein (likely phosphorylation; Zulawski et al.,
2013) over circadian time (Tables S3, S4).

Two proteins with nearly identical profiles, PETC/PGR1 (spot
S42; Table S4) and ATPC1 (spot S13; Table S4), show maximum
accumulation at LL 45, 3 h before subjective dawn. PETC/PGR1
is a component of the cytochrome b6-f complex and confers
resistance to photo-oxidative damage (Maiwald et al., 2003).
ATP synthase gamma chain 1 (ATPC) is an essential element
of the light-dependent regulation of chloroplast ATP synthase
activity (Wu et al., 2007). It is intriguing that under constant
light the maximum accumulation of both proteins occurs well
before the anticipated time of dawn. It is possible that under
normal dark/light conditions the onset of light acutely induces an
additional boost in accumulation of both proteins, which would
be additive to the high baseline established by circadian system
in the dark. This would enhance, during the daylight hours, the
levels of both proteins which are so necessary to photosynthesis.

Chaperones
Both proteome data sets identified circadian oscillations in
chaperone levels. The plastid-localized chaperonin 60 alpha2 and
beta3 (Cpn60α2 and Cpn60β3) were identified in the phenol-
extracted data set (Table S3). Cpn60 is found in the stroma
and is instrumental in the maturation of RuBisCO large subunit

FIGURE 4 | Expression profile of four oscillating proteins found common to the Phenol-extracted and RuBisCO-depleted data sets. Protein oscillations

for CCR2 (A,B) RCA (D,E) PGK1 (G,H) and RBCS (J,K) are double-plotted and comparisons with the transcript profiles of CCR2 (C), RCA (F), PGK1 (I) and RBCS

(L) should begin with the second half of the time series (LL24). Transcript levels from DIURNAL. Error bars show standard deviation from 4 biological trials. The

transcript profiles for AT5G38410 and AT5G38420 are not available from the DIURNAL website. See text for details.
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FIGURE 5 | RuBisCO activase protein oscillation in constant light.

Immunodetection of RuBisCO activase (RCA) protein abundance. Ten-day-old

Arabidopsis Col-0 seedlings grown under LD cycles were released to

continuous light and harvested at the indicated time. White and gray bars

indicate subjective day and night. Protein level was quantitated relative to

histone H3 and normalized to the level of LL25. Error bars indicate s.e.m. from

two biological replicates.

(RbcL), RuBisCO activase (RCA), and other enzymes associated
with photosynthesis (Trösch et al., 2015). The two most robust
instances of Cpn60α2 and Cpn60β3 cycling (P03 and P10; Table
S3) are maximally phased at mid to late in the day phase.
This is very similar to the phasing of the stroma-localized
cpHSC70-1 (P02; Table S3). cpHSC70s are essential to chloroplast
development and are key to the import of plastid stromal proteins
(Latijnhouwers et al., 2010; Su and Li, 2010; Flores-Pérez and
Jarvis, 2013).

ClpC/Hsp93-V was identified in the RuBisCO-depleted data
set (S01, S02; Table S4). This chaperone is also involved
in plastid protein import, particularly with the TOC/TIC
(translocon at the outer/inner chloroplast envelope membrane)
complex (Flores-Pérez and Jarvis, 2013). Both isolates were
phased with highest presence during the early and mid-
day. Taken together, the similar phasing of maximal protein
expression of these three plastid-associated chaperones (Cpn60,
cpHSC70, and ClpC/Hsp93-V) indicate the importance for
strong circadian coordination of plastid protein import and
maturation.

Additionally, the cytosolic co-chaperone Hop2 (HSP70 and
HSP90 organizing protein) was rhythmically expressed with a
morning peak phased slightly earlier than the plastid-associated
chaperones (P29, P32; Table S3). Hop can bind to HSP90 and
HSP70 simultaneously and acts to facilitate the transfer of
nascent client proteins through the intermediate steps that lead to
the fully mature client (Zhang et al., 2003; Baindur-Hudson et al.,
2015). Interestingly, the Hop co-chaperone has been found in a
large complex in association with HSP90 and various chloroplast
preproteins (Fellerer et al., 2011). This finding, together with the
oscillations in Hop2 levels (Table S3) suggests that maturation of
chloroplast-bound proteins, prior to plastid entry, is also under
circadian clock control.

HSP70 is well-established as an early-interacting partner in
HSP70/HSP90-dependent protein maturation in a wide range of
processes in plants and animals (Sung and Guy, 2003; Jung et al.,
2013; Radons, 2016). HSP70 was recovered from four different
spots in the phenol-extracted data set (P01, P07, P30, and P31;
Table S3) which correspond to two cytosolic forms, HSP70-
1/HSC70-1 and HSP70-4 (Lin et al., 2001). Both forms showed
early to mid-day peaks in protein oscillations that matches well
with peak Hop2 expression (Table S3). The phasing coincidence
of these key players in protein maturation adds further support
to the notion of circadian regulation in the formation/activity
of a HSP70–Hop2–HSP90 complex that processes chloroplast
preproteins.

We previously reported robust oscillations in the
phosphorylation state of HSP70-1/HSC70-1 (Choudhary
et al., 2015). Comparison of HSP70-1/HSC70-1 protein
oscillation with its phospho-oscillation indicates a slightly
earlier peak in protein levels (LL 33; Table S3) compared to the
phosphorylation peak (LL 37). This may indicate that much of
the oscillation in HSP70-1/HSC70-1 phosphorylation follows
from circadian-driven changes in its protein levels.

There are a number of ways the nuclear-based circadian
system exerts control over the chloroplast (Atkins and Dodd,
2014). The clock-regulated nuclear-encoded sigma factor
SIG5 can confer oscillations on certain chloroplast-encoded
transcripts, demonstrating one level of nuclear control over
chloroplast function (Noordally et al., 2013). Direct circadian
regulation of tetrapyrolle biosynthesis gene expression and
chlorophyll-binding protein gene expression also contribute
to chloroplast assembly and function (Millar and Kay, 1991;
Matsumoto et al., 2004). Our above results linking clock control
of chaperone-mediated protein maturation now reveal an
additional level of circadian control to chloroplast assembly and
photosynthesis activity.

Abscisic Acid (ABA) Signaling
Of special note is the distinct circadian oscillation in the
abundance of the ABA receptor (PYR1/RCAC11, S37; Table S4;
Figure S4). The peak levels occur just after subjective dusk (LL
41) and does not track mRNA levels. DIURNAL (Mockler et al.,
2007) reports no apparent mRNA oscillation for the first 24 h
in constant light (Table S4), but a there is a weak oscillation
with peak transcript level near LL28-29 (Table S4; Figure S4),
anti-phase with the protein peak. This finding is striking in the
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FIGURE 6 | Functional classification of the phenol-extracted circadian-regulated proteins by GO analysis. Percentage GO terms were displayed for three

GO vocabularies: (A) Cellular component, (B) Biological process, and (C) Molecular function. (D–F) Results for same categories obtained from RuBisCO-depleted

protein extracts.

context of other known levels of clock control over the ABA
system.

The ABA signaling pathway begins with three type of
components, the ABA receptor (PYR/RCAC proteins), protein
phosphatase 2C (PP2C), and sucrose nonfermenting-1 (SNF1)-
related protein kinase 2 (SnRK2; Yoshida et al., 2015). The
downstream signaling initiated by PYR/RCAC binding of ABA
strongly relies on the phosphorylation of numerous substrates
by SnRK2s at many stages of plant development (Yoshida et al.,
2015). A previous phosphoproteomic study identified subjective
dusk/early evening (LL37-45) peak phosphorylation of two
SnRK2 proteins (SNRK 2.2 and SNRK 2.3), the ABA-regulated
transcription factor AREB1/ABF2 and ABA-responsive gene
COR78/RD29a (Choudhary et al., 2015). An ABA/PYR1/PP2C
complex activates SnRK2; hence the similar circadian phasing
of the receptor and kinase components will accentuate systemic
responsiveness to ABA levels in a late-day phase-dependent way.
As well, ABA levels tend to peak in the late afternoon/early
evening under light/dark cycles, further heightening ABA
signaling potential at this time (Nováková et al., 2005; Lee
et al., 2006; Fukushima et al., 2009). Circadian regulation
of the transcript abundance of numerous ABA signaling
components (e.g., SnRK2.6, ABI1, ABF3, RCAR1, and others
Seung et al., 2012) that are similarly dusk/early evening phased

highlights the importance of ABA responsiveness late in the
day.

Further, there is a complex interaction between the core
circadian system and ABA-responsive factors. TOC1 binds to
the promoter of the ABA-related gene ABAR/CHLH/GUN5,
repressing its expression and conferring a circadian pattern to
ABAR transcript accumulation. Reciprocally, TOC1 expression
increases in response to ABA, which requires the presence
of ABAR (Legnaioli et al., 2009; Pokhilko et al., 2013). The
TOC1-related protein, PRR7, is similarly required for correct
phasing of ABA-mediated gene expression (Liu et al., 2013).
Additionally, the clock-regulated ABA-inducible R2R3-type
MYB transcription factor, MYB96, binds to the TOC1 promoter
affecting clock-dependent gating of ABA responses (Lee et al.,
2016). The addition of a circadian oscillation in ABA-receptor
(PYR1) levels now adds further complexity to the regulation of
these downstream interrelationships.

CONCLUSIONS

Through 2D-DIGE, coupled with mass spectrometry, we
surveyed the Arabidopsis seedling proteome for circadian-
regulated proteins using two different protein extraction
techniques. We supplemented a standard phenol-extraction
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FIGURE 7 | Interaction networks within circadian protein data sets. (A) Phenol-extracted and (B) RuBisCO-extracted data sets. Network mapping performed

using the STRING protein interaction algorithm based on the STRING database using high confidence parameters. Proteins not connected with network were

removed for better visualization. Line colors indicate the types of evidence for each association. Circled groupings indicate (a) chaperone-related and (b,c)

photosynthesis-related networks.
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approach with an immuno-depletion technique in an effort
to identify low abundance proteins that might be masked by
the overwhelming presence of RuBisCO. Among the proteins
which cycled in abundance, 287 proteins were found overlapping
between the two methods (Table S7) and only four emerged as
similar top hits within their respective spots (Figure 4). These
results indicate that the apparent discrepancies between the
datasets do not come from two very different sets of results, but
arise more from differences in the relative abundances among
the many proteins recovered that are common to both extraction
methods. From this perspective, the two extraction approaches
were complementary and together enhanced our discovery of
novel circadian-regulated proteins.

Two-dimensional electrophoresis (2-DE) does not have the
resolution to separate all proteins into one single spot for
each. Generally each spot contains more than one protein and
the same protein may be detected from different spots due
to post-translational modifications or proteolytic cleavage. The
number of proteins detectable from any spot depends on the
method used for identification, e.g., MALDI-TOF can detect
fewer peptides than LC-MS/MS. In the present study we used
an LTQ-Orbitrap XL, the most advanced MS technique, which
enhanced detectability. Hence, more than one protein per spot is
often detected (Thiede et al., 2013).

For each spot we selected the top hit or protein as the one
having the most spectra, assuming that the top hit protein is the
major contributor to spot pattern determination. It is practically
not feasible to select a spot from each of the six analytical gels
and analyze that same spot for each of the six time points.
Hence, pooled samples were used for the preparative gels (see
SectionMethods). It is possible that the same non-cycling protein
present at a given spot over the time series could obscure the
oscillations of a less abundant protein, which will reduce recovery
of low abundance, oscillating proteins. But this would likely
show up as the top hit, but not be processed because we only
analyzed spots showing oscillations. This same occurrence could
also simply dampen the amplitude of amore dominant oscillating
protein. Since all the time points were pooled for MS only
proteins aberrantly very high at one or two time points could
emerge as the top hit but not be the same protein responsible
for the oscillating pattern. As well, multiple proteins with similar
abundances within a spot could obscure or alter the waveform of
an oscillating protein; in these cases interpretations must proceed
with caution. In instances where the scores are very similar or
identical we consider both the MW and PI for spot identity or if

both parameters are similar we show both proteins as candidates
(e.g., P77, S18; Tables S5, S6).

Often oscillations in protein levels reflect transcript rhythms,
but with a phase delay of 2–3 h or more (Fujiwara et al.,
2008; Nusinow et al., 2011; Rawat et al., 2011; Robles et al.,
2014). Our results here, and previously (Choudhary et al.,
2015), show that more than 35% of the rhythmic proteins
lack a corresponding rhythmic transcript, in line with studies
in other circadian systems (Reddy et al., 2006; Deery et al.,
2009; Mauvoisin et al., 2014b; Robles et al., 2014). Clearly, a
significant number of circadian-regulated proteins are being
missed by a reliance on transcript oscillation as an indicator
of polypeptide rhythms. Recent findings demonstrate that
these rhythms may arise through circadian control of protein
synthesis/translation (Künne et al., 1998; Jang et al., 2015;
Janich et al., 2015; Missra et al., 2015; Feeney et al., 2016),
protein turnover (Kim et al., 2003, 2007, 2011; van et al.,
2011; Yoo et al., 2013; Stojkovic et al., 2014; DeBruyne et al.,
2015), or a combination of the two. The circadian regulation
of proteostasis appears underappreciated as a mechanism
to control polypeptide levels. Our results will help initiate
further investigations into the post-translational regulation of
pathways and processes regulated by the Arabidopsis circadian
system.
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