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Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one

of the most serious diseases on Brassica crops worldwide and a major threat to

canola production in western Canada. Host resistance is the key strategy for clubroot

management on canola. Several clubroot resistance (CR) genes have been identified, but

the mechanisms associated with these CR genes are poorly understood. In the current

study, a label-free shotgun proteomic approach was used to profile and compare the

proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response

to P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs) were

identified between the resistant (with Rcr1) and susceptible (without Rcr1) samples, and

functional annotation of these DAPs indicates that the perception of P. brassicae and

activation of defense responses are triggered via an unique signaling pathway distinct

from common modes of recognition receptors reported with many other plant–pathogen

interactions; this pathway appears to act in a calcium-independent manner through

a not-well-defined cascade of mitogen-activated protein kinases and may require

the ubiquitin-26S proteasome found to be related to abiotic stresses, especially the

cold-stress tolerance in other studies. Both up-regulation of defense-related and

down-regulation of pathogenicity-related metabolism was observed in plants carrying

Rcr1, and these functions may all contribute to the CR mediated by Rcr1. These

results, combined with those of transcriptomic analysis reported earlier, improved our

understanding of molecular mechanisms associated with Rcr1 and CR at large, and

identified candidate metabolites or pathways related to specific resistance mechanisms.

Deploying CR genes with different modes of action may help improve the durability of CR.
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INTRODUCTION

The soil-borne plasmodiophorid pathogen Plasmodiophora brassicaeWoronin causes the clubroot
disease on Brassica crops, one of the most serious diseases on cruciferous vegetables and
canola/oilseed rape worldwide (Dixon, 2009). In western Canada where over 8 M ha of canola
(Brassica napus L) are grown annually, clubroot disease was first found on canola in 2003 (Tewari
et al., 2005) and has since become a serious threat to canola production due to severe damage
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caused on many farms in the province of Alberta and to
the rapid spread of disease since its discovery (Gossen et al.,
2015). The pathogen can survive in the soil as resting spores
for up to 20 years (Wallenhammar, 1996). As a result,
many conventional disease management methods are ineffective
against clubroot, including cultural practices and fungicide
treatments (Wallenhammar, 1996; Tsusihima et al., 2010; Hwang
et al., 2014; Peng et al., 2014a). Genetic resistance is generally
regarded as the most effective and practical approach to clubroot
management, especially on canola (Peng et al., 2014a).

Several clubroot resistance (CR) genes, mostly from European
fodder turnips (Brassica rapa L. ssp. rapifera), have been
introduced into Brassica crops including oilseed rape (B. napus),
rutabaga (B. napus ssp. napobrassica), and Chinese cabbage (B.
rapa ssp. pekinensis; Yoshikawa, 1981; Bradshaw et al., 1997;
Hirai, 2006; Diederichsen et al., 2009; Piao et al., 2009). Canola
cultivars carrying a single dominant CR gene have also been
released in Canada, but the sources and action modes of these
CR genes remain unknown (Rahman et al., 2014). The resistance
conferred by a single gene, however, is generally not durable. In
fact, the breakdown of CR has been reported on Chinese cabbage,
oilseed rape, and canola (Matsumoto et al., 2012; Diederichsen
et al., 2014; Strelkov et al., 2015). To improve the durability of
CR, CR genes with different modes of actionmay be employed by
pyramiding or rotation and a better understanding of resistance
mechanisms associated with specific CR genes can lay a good
foundation for this approach.

Eight loci of CR genes have been reported previously from B.
rapa, including Crr1, Crr2, Crr3, Crr4, CRa, CRb, CRc, and CRk
(Matsumoto et al., 1998; Suwabe et al., 2003; Hirai et al., 2004;
Piao et al., 2004; Sakamoto et al., 2008), although the resistance
mechanisms are unclear for any of these CR genes. A few studies
looked at the molecular mechanisms of clubroot pathogenesis
using susceptibleArabidopsis thaliana ecotypes and found altered
host metabolism due to P. brassicae infection, including induced
carbohydrate and flavonoid metabolism (Evans and Scholes,
1995; Siemens et al., 2006; Päsold et al., 2010). In addition, the
phytohormones cytokinin and auxin were also related to clubroot
development (Evans and Scholes, 1995; Devos et al., 2006).
The Arabidopsis ecotype Bur-0 is partially resistant to clubroot
through reducing or delaying pathogen-triggered host metabolic
diversion and cell enlargement or proliferation (Jubault et al.,
2013). Noticeably, the Arabidopsis ecotype Tsu-0 carries the
dominant CR gene RPB1 and is able to prevent typical root
swelling despite P. brassicae infection (Fuchs and Sacristán,
1996). Similar information from resistant Brassica crop species
may help identify uniquemechanisms associated with specific CR
genes and allow for more judicious employment of the CR genes
in crop cultivars for durable CR.

Previously we evaluated 955 Brassica accessions and identified
a range of CR candidates from a wide range of sources,
including B. rapa, Brassica nigra, and Brassica oleracea (Peng
et al., 2014b). Further studies characterized the CR gene
Rcr1 based on resistance mapping, and transcriptomic analysis
based on RNA sequencing identified over 2000 differentially
expressed genes (DEGs) in plants carrying Rcr1 upon P. brassicae
infection (Chu et al., 2013, 2014). Functional annotation of these

DEGs showed that several defense-related biological processes,
including signaling and metabolism of jasmonate and ethylene
as well as defensive deposition of callose, were up-regulated
substantially in plants carrying Rcr1 (Chu et al., 2014). In
contrast, several DEGs involved in the metabolism contributing
to clubroot symptom development, such as auxin biosynthesis
(Devos et al., 2006) and cell growth/development, showed
lower transcriptional levels. These results indicated several
potential modes of action by Rcr1 in conferring resistance to
clubroot.

In the present study, a proteomic approach was used,
following the transcriptomic study of Rcr1 (Chu et al., 2014),
to gain further insights into the regulation of CR by this
CR gene at a post transcriptional level. Proteomics has been
used in studying plant responses to biotic stresses based on
differentially accumulated proteins (DAPs) as well as their
functional annotation (Mehta et al., 2008; Quirino et al.,
2010). Two-dimensional electrophoresis (2-DE) used to be used
commonly to quantify and compare proteins in different samples
(Gao et al., 2012; Wu J. et al., 2014; Wu S. et al., 2014)
but technical challenges have limited its application in the
post-genomics era, especially for large-scale global profiling of
proteome. Quantitative proteomics, especially the use of label-
free shotgun techniques, has become a popular approach to
replace the 2-DE in studying plant–pathogen interactions (Novo
et al., 2014). Critical metabolic or signaling pathways may be
identified via functional annotation of DAPs, complementing the
findings from other studies such as transcriptomic analysis. This
is the first report on using the quantitative proteomics in studying
mechanism of CR.

MATERIALS AND METHODS

Plants, Pathogen, and Inoculation
The plant/pathogen materials as well as the inoculation protocol
have been described in detail previously (Chu et al., 2014). Briefly,
the F1 generation derived from a crossing between the clubroot
resistant Pak Choy (B. rapa) cv. Flower Nabana (FN) and a
susceptible B. rapa canola line “ACDC” was used throughout
the experiment. ACDC is a self-compatible double haploid line,
highly susceptible to clubroot (Peng et al., 2014b). Pathotype 3
of P. brassicae, the predominant pathogen race found on canola
in western Canada (Strelkov et al., 2007), was used throughout
the study. A resting-spore suspension of P. brassicae (1 × 107

spores/ml) was applied at 5ml/plant immediately after seeding
and inoculated plants were kept in a growth room until sample
collection. ACDC served as the susceptible control to ensure
successful inoculation.

Marker-Assisted Sample Collection
Due to the heterozygosity of FN, the F1 generation segregated
for resistance (Rcr1 present) and susceptibility (Rcr1 absent)
with a ratio at about 1:1 (Chu et al., 2014). To separate the
resistant/susceptible plants, genomic DNA from the first true
leave of each plant was extracted at 7 days post inoculation (dpi)
and tested for the presence/absence of Rcr1 using the polymerase
chain reaction (PCR) with the flanking markers MS1-3 (5′-
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AAAACAAATATCC-ACCACG-3′ and 5′-CTCAATCCCACAA
CCTG-3′) and A3-28 (5′-GAGGCCTCCTTTTCTG-GTTT-3′

and 5′-CCGGAGAAGTTTGATTCGAG-3′; Chu et al., 2014).
Only the plants with consistent genotype designation based
on both markers were selected and used for the experiment.
The effectiveness of these markers has been validated (Rahman
et al., 2014). The whole root system of each plant was removed
at 15 dpi, when secondary infection had likely occurred but
clubbing symptoms were still absent (Sharma et al., 2011; Deora
et al., 2013). The roots were rinsed with tap water to remove
attached soil and debris. Three biological replicates were used for
each treatment, each consisting of nine root samples bulked to
alleviate the variation from individual plants. All samples were
snap-frozen in liquid nitrogen and kept at −80◦C until protein
extraction. Additional 10 plants from each of the inoculated
genotype groups were kept in the growth room and assessed for
clubroot symptoms at 26 and 42 dpi to determine the success
of inoculation (Kuginuki et al., 1999). The disease symptoms
consistently matched the designation of genotyping based on the
markers.

Protein Extraction and Profiling
Each replicate of bulked root samples was pulverized to a fine
powder in liquid nitrogen with mortar and pestle. About 100mg
of sample were used for protein extraction using a filter-assisted
sample preparation method (Wisniewski et al., 2009). Briefly,
a sample was suspended in 8 M urea with 50 mM Tris-HCl
(pH 7.6) and 3 mM DTT, sonicated for 10 s, and incubated in
an Eppendorf thermomixer (Fisher Scientific, Pittsburgh, PA) at
40◦C and 1000 rpm for 20 min. Samples were then centrifuged
and the supernatant was transferred to a 30 k Amicon MWCO
device (Milipore, Etobicoke, ON) and centrifuged at 13,000
g for 30 min. The deposit in the centrifuge tube was buffer
exchanged with 8 M urea containing 100 mMTris-HCl, and then
alkylated with 15 mM iodoacetamide. The urea concentration
in the extract was then diluted to 2 M using the Tris-HCl
buffer (pH 7.6). Protein samples were digested by trypsin at
1:100 (enzyme to substrate ratio) and 37◦C in a thermomixer
(1000 rpm) overnight. Digested peptides were then collected
by centrifugation at 13,000 g for 30 min, and a portion of the
digested peptides (∼20 mg) was desalted using C18 stop-and-go
extraction (STAGE) tips (Rappsilber et al., 2007). For each sample
a C18 STAGE tip was activated with methanol, conditioned with
60% acetonitrile, 0.5% acetic acid followed by 2% acetonitrile, and
then 0.5% acetic acid. Samples were loaded onto the tips and
desalted with 0.5% acetic acid. Peptides were eluted with 60%
acetonitrile, 0.5% acetic acid, and lyophilized in a Savant Speed
Vac (Thermo Scientific,Wilminton, DE) for∼2 h to near dryness.

All protein samples were analyzed with UHPLC-MS/MS
(Thermo Scientific). Liquid chromatography was performed on
an Easy-nLC 1000 UHPLC system, with the mobile phase A
solution consisting of 97.5% MilliQ water, 2% acetonitrile, and
0.5% acetic acid. Mobile phase B solution was 99.5% acetonitrile
and 0.5% acetic acid. The 240-min LC gradient ran from 0%
B to 35% B over initial 210 min, and then to 80% B for the
remaining 30 min. Samples were loaded directly into the column
(50 cm × 75 µm I.D.) packed with 2m C18 media (Thermo

Scientific). The LC was interfaced to a Q-Exactive quadrupole-
Orbitrap mass spectrometer via nano-electrospray ionization
using an Easy Spray source with an integrated column heater set
at 50◦C. An electrospray voltage of 2.2 kV was applied. The mass
spectrometer was programmed to acquire, by data-dependent
acquisition, tandem mass spectra from the top 20 ions in the full
scan from 400 to 1200 m/z. Dynamic exclusion was set to 15 s,
singly-charged ions were excluded, isolation width was set to 1.6
Da, full MS resolution to 70,000 andMS/MS resolution to 17,500.
Normalized collision energy was set to 25, automatic gain control
to 1e6, max fill of MS to 20 ms, max fill MS/MS to 60 ms, and the
underfill ratio to 0.1%.

Protein Identification
Mass spectrometry RAW data files were converted to MGF
format using the msConvert and processed through the
Global Proteome Machine (GPM) software using the X!Tandem
CYCLONE 2011.05.01.1 search engine (http://www.thegpm.
org; Craig and Beavis, 2003, 2004). The peptide sequences
of annotated proteins derived from the Chinese cabbage
(B. rapa ssp. pekinesis) Chiifu-401 reference genome (V1.2;
http://brassicadb.org/brad) was manually inputted into GPM
as the reference database for the search of tandem mass
spectra generated from the LC-MS/MS. Frequently observed
“contaminant” peptides were also included in the database by
incorporating the common Repository of Adventitious Proteins
(cRAP) developed via the GPM organization (ftp://ftp.thegpm.
org/fasta/cRAP). Search parameters were set as 20 ppm and
±0.2 Da mass tolerance for precursor and garment ions,
respectively, and full tryptic specificity with one possible missed
tryptic cleavage would be allowed. Fixed modification was set
as carbamidomethylation of cysteine, and variable modification
included methionine and tryptophan oxidation/dioxidation,
asparagine, and glutamine deamidation. A cut-off expectation
value of 0.1 was required for all proteins identified. The false
positive rate (FPR) was calculated with GPM and set at <1%
using the preset parameters of the program. In addition, the
ρ-score of each search was calculated to determine the model
quality, ranging from 0 (completely randommatch) to 100 (non-
random match). For each genotype, only proteins that were
identified in all three replicates with total spectral counts of six
or more were included in the final data set with the exclusion
of reversed database hits and contaminants (Monavarfeshani
et al., 2013). The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD004425.

Identification of Differentially Accumulated
Proteins (DAPs)
The abundance of identified proteins was measured on the
basis of normalized spectral abundance factors (NSAFs). For the
specific protein k in the sample i, for example, the NSAFk was
calculated by dividing the total spectral counts (SpCk) by the
estimated protein length (Lk) to the sum of all proteins identified
in the sample i. A spectral count of 0.5 was added to all spectral
counts initially to compensate for null values, allowing the log
transformation of the NSAF-values prior to statistical analysis
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(McDonald, 2009). Average NSAF-values over three biological
replicates were used to calculate the fold change between resistant
and susceptible treatments, and a t-test was performed to identify
DAPs between the resistant and susceptible treatment, with a cut-
off value at P ≥ 0.05. The collection of DAPs was subjected to
functional annotation.

Functional Classification
Functional annotation of DAPs was performed using Blast2GO
(https://www.blast2go.com; Conesa et al., 2005). The peptide
sequences of all DAPs were extracted and submitted to NCBI for
BLAST search using the Blast algorithm (http://blast.ncbi.nlm.
nih.gov/Blast.cgi) using default parameters with Viridiplantae
(taxid: 33,090) as the organism filter. The BLAST results
were downloaded as xml files and manually inputted into
Blast2GO for gene ontology (GO) mapping. Gene expression
patterns of identified DAPs were visualized by the Mapman
software (http://mapman.gabipd.org/web/guest; Thimm et al.,
2004). The log-base-2 transformed fold changes of DAPs were
used in the Mapman analysis. The mapping file of B. rapa
was generated using the Mercator software and same reference
peptide sequences used for the GPM search described earlier.

RESULTS

Analysis of Proteomics Data
Successful root infection by P. brassicae was confirmed by
clubroot symptoms on all plants carrying no Rcr1 at 26 and 42
dpi, respectively, while none of the plants carrying the CR gene
showed any root swelling (Figure 1A). Based on the reference
peptide sequences of B. rapa Chiifu-401, a total of 2002 and 1859
proteins were identified, respectively, from samples carrying Rcr1
(resistant—R) and not carrying Rcr1 (susceptible—S; Table 1),
with a total of 2229 non-redundant proteins (including those
found in both R and S, as well as exclusively in R or S samples;
Table S1, Supporting Information). NSAF-values are attached
to show the abundance of protein identified and the low FPR-
value found for each replicate, which showed the stringency in
adopting the dataset. Cluster analysis, a quality-control measure
used for shotgun proteomics based on the correlation between
expression profiles among replicates, showed that biological
replicates were separated clearly based on the presence or absence
of Rcr1 (Figure 1B). This indicates that the results are highly
reproducible.

Identification and Functional Annotation of
Differentially Accumulated Proteins (DAPs)
The label-free quantitative proteomic analysis characterized
the differences in protein synthesis between samples carrying
and not carrying Rcr1 in response to P. brassicae infection.
Among the total 2229 proteins, the t-test (p ≤ 0.05) identified
527 DAPs (Table S2, Supporting Information), with 296 DAPs
being increased and 231 decreased in resistant samples
relative to susceptible ones (Figure 1C). Of the total 527
DAPs, 523 were successfully annotated with GO terms using
Blast2GO (Figure S1, Supporting Information) and sorted into
major biological Processes (Figure 1D), including signaling,

TABLE 1 | Summary of Proteins Identified by GPM search.

Genotypes No. identified proteins ρ-Valuea/FPRb (%) No.

proteins

Rep#1 Rep#2 Rep#3 Rep#1 Rep#2 Rep#3

Resistantc 3297 3302 3602 93/0.71 92/0.70 93/0.70 2002

Susceptiblec 3228 3187 3153 93/0.71 93/0.67 93/0.70 1859

aρ-value is calculated by GPM software to evaluate the quality of the search. The value

ranges from 0 (indistinguishable from purely stochastic results) to 100 (putatively all true

positives).
bThe FPR is the false positive rate.
cPlants carrying (resistant) and not carrying (susceptible) the CR gene Rcr1, respectively.

localization, growth, biological regulation, organization of
cellular components, or biogenesis, response to stimulus, and
reproductive, cellular, developmental and metabolic processes.

Functional Classification of DAPs
The expression pattern of DAP was visualized using the Mapman
for insights into the biological context of DAP between resistant
and susceptible samples (Table S4, Supporting Information).
When mapped to biotic stress, 145 of the DAPs were successfully
assigned with a bin code involved in redox regulation, signaling,
secondary metabolism, cell wall metabolism, proteolysis process,
and response to abiotic stresses (Figure 2). Additionally, 139
of the DAPs were also mapped to several metabolic pathways,
including cell wall construction, amino acid metabolism,
glycolysis process and mitochondrial electron transport (MET),
as well as secondarymetabolism including ligninmetabolism and
sulfur-containing glucosinolate metabolism (Figure 3) catalyzed
by the myrosinase. Several primary metabolism processes were
also differentially regulated in resistant samples, with MET being
enhanced and glycolysis process reduced (Figure 3; Table S4,
Supporting Information).

Among the 145 DAPs assigned to the “biotic stress,” 38
were associated with proteolysis in resistant samples, with
23 and 15 showing increased and decreased abundance,
respectively(Figure 2; Table S4, Supporting Information).
One proteolysis-related DAP (linked to Bra010706) with
increased abundance encodes a cysteine proteinase, and
13 other proteolysis-related DAPs were associated with
ubiquitin-dependent protein catabolic processes (Table S3,
Supporting Information). Many proteins involved in calcium
signaling pathways were down-regulated in resistant samples,
including one calmodulin (Bra034317), one calcium-dependent
protein kinase (Bra013719), and two calcium binding proteins
(Bra021896 and Bra016564), as well as a DAP (Bra004784)
encoding a protein similar to the mitogen-activated protein
kinase 6 (MAPK6) in Arabidopsis. In contrast, the DAP
(Bra011137) which encodes a protein similar to MAPKK2 was
up-regulated, and so was the one (Bra017049) which encodes a
protein similar to E3 ubiquitin-protein ligase HOS1 (At2g39810)
found in Arabidopsis (Table S3, Supporting Information). The
B. rapa EDS1 protein (Bra018085) was also up-regulated. Several
DAPs related to reactive oxygen species (ROS) metabolism
were observed in resistant samples (Table S3, Supporting
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FIGURE 1 | (A) Roots of Brassica rapa plants carrying Rcr1 (resistant) and not carrying Rcr1 (susceptible) at 26 and 42 days post inoculation (dpi) with

Plasmodiophora brassicae. Club symptoms did not develop on plants carrying the resistance gene Rcr1. (B) A color map of 2229 non-redundant proteins identified in

three biological replicates of resistant and susceptible plants. The darker color represents greater abundance, as determined by normalized spectral abundance factor

(NSAF)-values. R, Resistant; S, Susceptible; Rep, Replicates. (C) Among the 2229 non-redundant proteins, 527 were differentially accumulated with 296 being

up-regulated and 231 down-regulated. (D) Functional classification of the differentially accumulated proteins (DAPs).
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FIGURE 2 | Annotation of 145 DAPs in relation to signaling pathways involved in biotic/abiotic stress responses based on the analysis using the

software Mapman. The blue and red colors indicate up- and down-regulation, respectively, and gray circles indicate no DAPs identified in these categories. The

annotation information is summarized in Table S4 (Supporting Information).

Information); the abundances of two protein disulfide isomerase
(PDI: Bra010413 and Bra005546) were significantly increased
upon infection. Additionally, one cytosolic ascorbate peroxidase,
one catalase and two membrane steroid-binding proteins
(MSBPs) associated with redox regulation were down-regulated
(Table S3, Supporting Information). We also observed that the
abundance in 11-pyyroline-5-carboxylate synthase (Bra005012)
was decreased in resistant samples (Table S3, Supporting
Information).

DISCUSSION

As the first attempt of using the quantitative proteomics to
decipher CR mechanisms, this study has provided important
clues to the modes of action associated with the CR gene Rcr1
and highlighted the possibility of using this tool to differentiate
the mode of action among CR genes. The label-free LC-MS/MS
proteomic analysis is efficient for characterizing differences in
proteomes between resistant and susceptible samples, with a

total of 527 DAPs identified. Surprisingly, only a few of them
could be related to the prior transcriptomic analysis (Chu et al.,
2014), suggesting some of the post-translational events are able
to regulate the protein metabolism without significant changes
in transcriptomes. The biological context of these DAPs can be
further analyzed by mapping them into different categories based
on Mapman ontology, thus linking specific functions to the CR.

Proteins Involved in Responses to
Rcr1-Mediated Clubroot Resistance
Proteolysis and signaling: Among the DAPs assigned to the
“biotic stress,” many were associated to proteolysis with either
increased or decreased abundances in the resistant samples
upon pathogen infection. One of the noteworthy DAPs with
increased abundance is linked to the gene Bra010706, which
encodes a cysteine proteinase similar to RD19 in Arabidopsis
(At4g39030) where it is required for resistance against a
soil-borne disease caused by the bacterial pathogen Ralstonia
solanacearum (Bernoux et al., 2008). This resistance is mediated
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FIGURE 3 | The visualization of 139 DAPs in metabolism categories using Mapman. The blue and red colors indicate up- and down-regulation, respectively,

and gray circles indicate no DAPs identified in these categories. The annotation information is also summarized in Table S4 (Supporting Information).

by the gene RRS1-R which recognizes the type-III effector PopP2
from the bacterium. When PopP2 is present, both RRS1-R and
RD19 can be translocated to the cell nucleus where PopP2
interacts with both proteins (Deslandes et al., 2003; Bernoux
et al., 2008). Similarly, Rcr1 was identified as a putative TIR-
NBS-LRR type of R gene in our earlier work (Chu et al.,
2014). Together these results indicate that this recognition
mode via RRS1-R-PopP2-RD19 is potentially a candidate for
recognition of P. brassicae by Rcr1. At the same time, the
structural differences between Rcr1 and RRS1-R may show that
the subsequent signal-transduction processes in inducing defense
responses differ; RRS1-R is an atypical TIR-NBS-LRR gene with
the presence of a C-terminal WRKY DNA binding domain
(Deslandes et al., 2002; Eulgem and Somssich, 2007), and can
induce downstream gene transcription directly by re-localization
to the nucleus when PopP2 is present (Deslandes et al., 2003).
None of the Rcr1 candidate genes, however, carries any DNA
binding domain (Chu et al., 2014). Therefore, additional signal
transduction would be required to connect the perception of

P. brassicae to the expression of downstream genes mediated by
Rcr1.

In addition to cysteine proteinase, 13 other proteolysis-
related DAPs were associated with a process catalyzed by
ubiquitin-dependent proteins, and this suggests a possible
role for an ubiquitin-related proteasome system in the Rcr1-
mediated CR. These proteins include five 26S proteasome non-
ATPase regulatory subunits (Bra040915, Bra028611, Bra013838,
Bra028748, and Bra032291), five 20S proteasome subunits
(Bra033011, Bra040561, Bra008402, Bra038162, and Bra008308),
an ubiquitin carboxyl-terminal hydrolase (Bra009210), the
ubiquitin fusion degradation 1 (Bra030307) and an E3 ubiquitin
protein ligase (Bra017049). The ubiquitination system plays
regulatory roles inmany biological processes upon the perception
of pathogen, including oxidative burst, hormone/ion signaling,
gene transcription, and programmed cell death (Trujillo and
Shirasu, 2010). The ubiquitination of receptors and subsequent
activation of signaling pathways have received much attention
in recent years, including FLS2 in Arabidopsis (Göhre et al.,
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2008; Gimenez-Ibanez et al., 2009; Lu et al., 2011), XA21 in
rice (Wang et al., 2006), and Cf-9 in tomato (González-Lamothe
et al., 2006; Yang et al., 2006). It is possible that ubiquitination-
mediated signaling pathways serve also a connection between the
perception of P. brassicae and activation of downstream defense
genes.

In the bacterial flg22–FLS2 interaction on Arabidopsis, flg22
is able to activate both the calcium-dependent protein kinase
and MAPK cascades that subsequently induce downstream
transcription factors (Asai et al., 2002; Boudsocq et al., 2010).
In separate studies, MAPK6 could also modulate calcium flux
to regulate Arabidopsis root growth under abiotic stresses (Han
et al., 2014, 2015). In the current study, many proteins involved
in calcium signaling pathways were down-regulated in resistant
samples (Results Section Functional classification of DAPs). In
contrast, one DAP which encodes an AtMAPKK2-like protein
(Bra011137), was significantly up-regulated. MAPKK2 has been
shown to regulate MAPK6 and MAPK4 in response to cold
and salt stress (Teige et al., 2004). Moreover, MAPK4 is able
to induce salicylic acid-dependent but suppress jasmonic acid
and ethylene-dependent disease resistance by regulating EDS1
and its interacting partner PAD4 (Brodersen et al., 2006). Our
previous transcriptomic analysis of Rcr1 identified that jasmonic
acid/ethylene are the major signaling molecules inducing CR
while salicylic acid-mediated signaling pathways are not induced
(Chu et al., 2014). Thus, the up-regulation of B. rapa EDS1
and absence of a partner B. rapa PAD4 protein in resistant
samples potentially point to an unique mechanism against
P. brassicae controlled by a MAPKK2-like kinase and other
kinase cascades, inducing jasmonic acid and ethylene-dependent
signaling pathways. The enhanced expression of MAPKK2-
like kinase also points to possible common host responses to
cold and disease stresses. In addition to MAPKK2, another
putative regulator against cold stresses was also up-regulated in
resistant samples and this DAP (Bra017049) encodes a protein
similar to the E3 ubiquitin-protein ligase HOS1 (At2g39810)
in Arabidopsis. HOS1 is required for the ubiquitination of the
transcription factor ICE1 and desensitization of the host to
freezing (Dong et al., 2006). Since HOS1 is the key to the
specificity of ubiquitin complex (Jackson et al., 2000), it is
reasonable to deduce that this DAP (Bra017049) may also target
a protein similar to ICE1 in B. rapa and induce downstream gene
transcription against clubroot, in lieu of cold-tolerance responses.

Other Potential Host-Defense Responses
Upon the recognition of invading pathogen, one of the earliest
responses from the host cell is the production of reactive oxygen
species (ROS; Torres et al., 2006). This oxidative burst is strictly
regulated by a group of enzymes, including ascorbate peroxidase,
superoxide dismutase, catalase, and glutathione, to maintain
the homeostasis of ROS and restrict ROS-induced damage to
the cell (Mittler et al., 2004). The current study identified
several DAPs related to ROS metabolism; the abundances of two
protein disulfide isomerases (PDI, Bra010413, and Bra005546)
were significantly increased in resistant samples upon pathogen
infection. PDI belongs to the thioredoxin superfamily with a
major function in oxidative folding of polypeptide (Wilkinson

and Gilbert, 2004; Ellgaard and Ruddock, 2005). A novel PDI
identified from the plantOldenlandia affinis is involved in folding
of insecticidal cyclotides (Gruber et al., 2007), and increased PDI
has also been observed on wheat in response to infection by
the hemibiotrophic fungal pathogenMycosphaerella graminicola
(Ray et al., 2003). It is possible that PDI may also function
similarly in B. rapa and generate anti-microbial proteins against
P. brassicae. Additionally, a cytosolic ascorbate peroxidase, a
catalase, and two MSBPs associated with the redox regulation
were down-regulated. The decrease in the expression of ascorbate
peroxidase and catalase may contribute to the accumulation of
ROS that serves as signaling in inducing downstream defense
responses (Kottapalli et al., 2007; Li et al., 2011). The MSBPs
may play role in regulating the sterol homeostasis that can
be important to root cortical infection by P. brassicae; the
MSBP 1 (MtMSBP1) in the plant Medicago truncatula has
been shown to be a determining factor for the symbiosis of
Arbuscular mycorrhiza in the root cortex (Kuhn et al., 2010). The
down-regulation of two MSBPs in B. rapa carrying Rcr1 may
disrupt secondary infection of root cortex by P. brassicae and
consequently hinder the clubroot development.

The role of plant secondary metabolism has been well-studied
for disease resistance in many host–pathogen systems. In the
current study, twomajor processes of secondarymetabolismwere
identified; the breakdown of sulfur-containing glucosinolates
mediated by myrosinase and lignin metabolism (Figure 3). In
Arabidopsis, glucosinolate-myrosinase system has been shown
to generate secondary metabolites with anti-microbial activity
against a broad spectrum of insects and fungal pathogens
(Bednarek et al., 2009; Falk et al., 2014). It is unclear if the
glycosinolate-myrosinase would function similarly in B. rapa
as in Arabidopsis due to sketchy information on glucosinolate
metabolism in B. rapa. In a metabolomic study, however,
several phytoalexins putatively deriving from the glucosinolate
metabolism were increased in B. rapa roots carrying Rcr1 upon
P. brassicae infection (Song and Peng, unpublished data), and
this would suggest the possibility for anti-microbial agents
via the glucosinolate-myrosinase metabolism. Induced cell-wall
lignification has been characterized as a host resistant response
in many pathosystems, including wheat-Blumeria graminis f.sp.
tritici (Bhuiyan et al., 2009). Lignin can strengthen the physical
barrier to infection (Ride, 1983). In the present study, several
enzymes involved in lignin biosynthesis were up-regulated in
resistant samples carrying the CR gene Rcr1, suggesting a
potential role for lignin in CR possibly by reinforcing the cell wall
to restrict secondary infection in root epidermal and cortical cells.
Two up-regulated peroxidases identified may facilitate the cross-
linking of monolignols to form the lignin polymer (Francoz et al.,
2015).

Cross-Talks between Host Responses to
Abiotic and Biotic Stresses
Many of the molecular events induced by abiotic stresses may
also been found in association with biotic stresses, as shown in
the current study that the signaling network of plant cells may be
shared by both stress-resistance responses. For example, several
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signaling molecules reported previously being involved in cold-
stress resistance are up-regulated in resistant samples carrying
Rcr1, and this commonality has been discussed extensively above.
Furthermore, the oxidative burst is another critical host response
to both abiotic and biotic stresses (Torres and Dangl, 2005).
In the current study, 11 proteins with increased abundance
are assigned to abiotic stress responses for resistant samples
upon P. brassicae infection (Figure 2), including chloroplastic
and mitochondrial head shock proteins, germin-like protein,
MLP-like proteins, methytransferse, and desiccation responsive
proteins. The specific functions of these DAPs relating to CR
mediated by the CR gene Rcr1 are still unclear at this point.

Metabolism
Several processes of primary metabolism were also differentially
regulated in CR mediated by Rcr1, including enhanced MET and
reduced glycolysis (Figure 3; Table S4, Supporting Information).
Plant defense is an energy-consuming process resulting from
enhanced demand on certain metabolism and cytological
activities. Glycolysis and MET are two major pathways for plant
respiration which can be stimulated during defense responses
to generate ATP and carbon skeletons (Bolton, 2009). It has
been demonstrated that glycolysis is contributing to disease
resistance in several plant-pathogen interactions, including rice-
Rhizoctonia solan (Danson et al., 2000; Mutuku and Nose,
2012) and wheat-Puccinia triticina (Bolton et al., 2008). In our
study, however, the expression of proteins related to glycolysis,
especially the major regulator phosphofructokinase (PFK), was
reduced while those related to MET were up-regulated in
resistant samples. This result suggests that MET serve as the
major energy source required for defense responses mediated
by Rcr1 against clubroot. It is also possible that the down-
regulation of glycolysis serves as another defense response by
inhibiting certain pathogen-induced metabolism (carbohydrate
or auxin, for example) favoring excessive cell growth and
division. During a compatible interaction between Arabidopsis
and P. brassicae, an increased carbon flow toward glycolysis
was observed (Jubault et al., 2013; Schuller et al., 2013). The
pathogen-induced arginine catabolism appeared to be inhibited
in resistant samples. In Arabidopsis, proline deriving from the
arginine catabolism accumulated substantially in a susceptible
ecotype upon P. brassicae infection while such an accumulation
was not observed in the partially resistant ecotype Bur-0 (Jubault
et al., 2008). In the current study, the abundance in11-pyyroline-
5-carboxylate synthase (Bra005012) was decreased in resistant
samples. This enzyme catalyzes the rate-limiting step of proline
biosynthesis responding to environmental stresses (Zheng et al.,
2014). Even two of the enzymes involved in arginine biosynthesis
were up-regulated, the down-regulation of this key enzyme in
proline biosynthesis may indicate that the P. brassicae-induced
arginine catabolism and proline biosynthesis are both disrupted
in resistant samples carrying Rcr1.

CONCLUSIONS

In the present study, the label-free shotgun proteomic approach
was used to analyze the interaction between P. brassicae and

B. rapa carrying Rcr1 for better understanding of molecular
mechanisms associated with this CR gene. The results indicate
that the pathogen perception by the host carrying Rcr1 is
potentially through a novel signaling pathway in a calcium-
independent manner through an unique MAPK cascade and
may require the ubiquitin-26S proteasome which has been linked
to cold-stress tolerance. A range of biological processes was
also identified in resistant samples where they were either up-
regulated for host-defense responses or down-regulated for the
metabolism favoring disease development. The former include
higher ROS accumulation, breakdown of sulfur-containing
glucosinolates and lignin biosynthesis, whereas the latter may
include decreased glycolysis and arginine catabolism. To our
knowledge, this work is the first proteomic study onCR conferred
by a specific CR gene in a Brassica crop species. The study
provides further insights into the resistance modes of action for
Rcr1 by comparing the results with those from transcriptomic
analysis, and identifies additional candidate signaling/metabolic
pathways for further biochemical or genetic studies to verify CR
mechanisms. Ultimately, we hope employ multiple CR genes
based on their modes of action in canola breeding to develop
cultivars with more durable resistance against clubroot.
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