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MicroRNAs (miRNAs) are a type of endogenous non-coding small RNAs that play critical

roles in plant growth and developmental processes. Cytoplasmic male sterility (CMS)

is typically a maternally inherited trait and widely used in plant heterosis utilization.

However, the miRNA-mediated regulatory network of CMS occurrence during anther

development remains largely unknown in radish. In this study, a comparative small

RNAome sequencing was conducted in floral buds of CMS line ‘WA’ and its maintainer

line ‘WB’ by high-throughput sequencing. A total of 162 known miRNAs belonging to

25 conserved and 24 non-conserved miRNA families were isolated and 27 potential

novel miRNA families were identified for the first time in floral buds of radish. Of these

miRNAs, 28 known and 14 potential novel miRNAs were differentially expressed during

anther development. Several target genes for CMS occurrence-related miRNAs encode

important transcription factors and functional proteins, which might be involved in

multiple biological processes including auxin signaling pathways, signal transduction,

miRNA target silencing, floral organ development, and organellar gene expression.

Moreover, the expression patterns of several CMS occurrence-related miRNAs and

their targets during three stages of anther development were validated by qRT-PCR.

In addition, a potential miRNA-mediated regulatory network of CMS occurrence during

anther development was firstly proposed in radish. These findings could contribute new

insights into complex miRNA-mediated genetic regulatory network of CMS occurrence

and advance our understanding of the roles of miRNAs during CMS occurrence and

microspore formation in radish and other crops.

Keywords: radish (Raphanus sativus L.), cytoplasmic male sterility, microRNA, target gene, qRT-PCR,

high-throughput sequencing

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2016.01054
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.01054&domain=pdf&date_stamp=2016-07-22
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:nauliulw@njau.edu.cn
http://dx.doi.org/10.3389/fpls.2016.01054
http://journal.frontiersin.org/article/10.3389/fpls.2016.01054/abstract
http://loop.frontiersin.org/people/361017/overview
http://loop.frontiersin.org/people/345188/overview
http://loop.frontiersin.org/people/223423/overview
http://loop.frontiersin.org/people/324758/overview
http://loop.frontiersin.org/people/345027/overview
http://loop.frontiersin.org/people/361131/overview
http://loop.frontiersin.org/people/361137/overview
http://loop.frontiersin.org/people/191997/overview


Zhang et al. Identification of Radish CMS-Related microRNAs

INTRODUCTION

MicroRNAs (miRNAs) are a type of endogenous non-
coding small RNAs of ∼21–24 nucleotides that are known
to be important negative regulators of gene expression at
transcriptional and post-transcriptional level by mediating
mRNA degradation or translational repression (Voinnet, 2009).
In plants, primary miRNAs (pri-miRNAs) are transcribed from
nuclear-encoded MIR genes by RNA polymerase II and cleaved
by Dicer-like1 (DCL1) assisted by the dsRNA binding protein
HYL1 to generate miRNA:miRNA∗ duplexes called pre-miRNAs
(Jones-Rhoades et al., 2006; Kurihara et al., 2006; Ruiz-Ferrer
and Voinnet, 2009). The duplexes are then methylated by HEN1
and one of the strands combines with the argonaute protein1
(AGO1) to form the RNA-induced silencing complex (RISC),
which regulates gene expression through mRNA degradation
with nearly perfect complementarity or translational repression
with partial complementarity (Yu et al., 2005; Jones-Rhoades
et al., 2006; Bodersen et al., 2008).

Cytoplasmic male sterility (CMS) is a maternally inherited
trait in plant, which is unable to produce functional pollen, and
is a widely observed phenomenon in nearly 200 species (Brown
et al., 2003; Hu et al., 2012). CMS lines have been widely used
for the production of F1 hybrid seeds and utilization of heterosis
in many crops, such as cotton, maize, sorghum, wheat, rice,
beet, and rapeseed (Schnable and Wise, 1998; Bentolila et al.,
2002; Kubo et al., 2011). In addition to its crucial breeding tools,
CMS lines also provide important materials for studying anther
and pollen development, and cytoplasmic-nuclear interactions
(Chen and Liu, 2014). CMS is usually due to the effect of
sterilizing factors found in the mitochondrial genome (Touzet
and Meyer, 2014). In most cases, CMS can be restored by
nuclear-encoded fertility restorer (Rf ) gene(s), which relies on
Rf suppressing cytoplasmic dysfunction caused bymitochondrial
genes (Eckardt, 2006). High-throughput sequencing now is
widely used and has been proven to be an excellent application
for the identification of plant miRNAs. As a class of negative
regulators, miRNAs have also been identified and characterized
during anther development in several plant species, including
Arabidopsis (Chambers and Shuai, 2009), Oryza sativa (Wei
et al., 2011; Yan et al., 2015), Gossypium hirsutum (Wei et al.,
2013), Brassica juncea (Yang et al., 2013), and B. rapa (Jiang
et al., 2014). In G. hirsutum, 16 conserved miRNA families
were identified during anther development between the Genetic
male sterility (GMS) mutant and its wild type. In O. sativa,
Wei et al. (2011) identified 292 known miRNAs and 75
novel miRNAs from sporophytic tissues and pollen at three
developmental stages. Additionally, many CMS occurrence-
associated miRNAs have also been identified in some vegetable
crops. In B. rapa, 54 conserved and eight novel miRNA
families involved in pollen development were identified (Jiang
et al., 2014). In B. juncea, 197 known and 93 new candidate
miRNAs during pollen development between CMS line and
its maintainer line were also identified (Yang et al., 2013).
Although a large number of miRNAs during anther development
have been isolated and identified in many crop species, the
miRNA-mediated regulatory network of CMS occurrence during

anther development remain to be clarified in root vegetable
crops.

Radish (Raphanus sativus L. 2n = 2x = 18) is an important
annual or biennial root vegetable crop of Brassicaceae family. In
recent years, some conserved and novel miRNAs associated with
taproot thickening, embryogenesis, flowering-time, and heavy
metal stresses had been widely identified in radish (Xu et al.,
2013a; Zhai et al., 2014; Nie et al., 2015; Wang et al., 2015;
Yu et al., 2015). However, there is little information about the
CMS occurrence at the post-transcriptional level in radish. To
systematically explore the roles of miRNAs and their targets
involved in CMS occurrence during anther development in
radish, two small RNA libraries from ‘WA’ (male sterile line),
and ‘WB’ (maintainer, fertile line) floral buds of radish were
constructed. The aims of this study were to identify known and
potential novel miRNAs from the two libraries and investigate
the dynamic expression patterns of the CMS occurrence-related
miRNAs and their targets during anther development in radish
plant. Furthermore, the miRNA-mediated regulatory network of
CMS occurrence during anther development was constructed
in radish. These results would lay a valuable foundation for
elucidating the regulatory roles of CMS occurrence-related
miRNAs in radish and facilitate further dissection of the
molecular mechanisms underlying microspore formation and
CMS occurrence in other crops.

MATERIALS AND METHODS

Plant Materials
The radish cytoplasmic male sterile line ‘WA’ and its maintainer
line ‘WB’ were used as materials in this study. The ‘WB’
was advanced inbred line through multiple self-pollination for
more than 10 generations, while CMS line ‘WA’ was developed
through continuously backcrossing with ‘WB’ for more than
10 generations. ‘WA’ had completely aborted anthers without
pollen, whereas ‘WB’ had normal anthers with fertile pollen
(Figure S1). Thematerials were planted under normal conditions
at Jiangpu Breeding Station of Nanjing Agricultural University,
China. According to the cytological characterization of the
developmental stages identified with paraffin section technique,
the longitudinal length of floral buds reaching 1–1.5, 2–2.5,
and 4–5 mm corresponds to the stage of meiosis, tetrad, and
early microscope, respectively (Figure S1), which was in highly
accordance with results of previous studies (Sun et al., 2012,
2013). Floral buds at three stages were independently collected
from the two lines with three biological replicates. Each sample
was collected from three randomly selected individual plants and
immediately frozen in liquid nitrogen and stored at −80◦C for
further use.

High-Throughput Sequencing of Small
RNAs
Total RNAs were extracted from three stages of floral buds
of ‘WA’ and ‘WB’ using Trizol R© Reagent (Invitrogen, USA)
according to the manufacturer’s protocols, respectively. RNAs
from the three different stages were equally pooled and used for
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two small RNA libraries (WA and WB) construction according
to previously described procedures (Hafner et al., 2008; Xu et al.,
2013b). In brief, small RNA fractions of 18–30 nt were separated
and purified from total RNA by 15% denaturing polyacrylamide
gel electrophoresis. Then the isolated sRNAs were ligated to
5′ and 3′ adaptors and reverse transcribed to cDNA through
SuperScript II Reverse Transcriptase (Invitrogen) and amplified
by PCR. Finally, sRNA libraries were sequenced by the Solexa
sequencer (Illumina) HiSeqTM 2500.

The clean reads were obtained after removing low quality
reads, reads with 5′ primer contaminants or poly-A tails,
trimming reads smaller than 18 nt or longer than 30 nt. The
remaining unique sequences were then mapped to the radish
reference sequences including genomic survey sequences (GSS),
expressed sequence tag (EST) sequences and the radish mRNA
transcriptome sequences (accession number: SRX1671013) using
the SOAP2 program (Li et al., 2009; Xu et al., 2013a).
Only perfect matched sequences with no more than two
mismatches were retained for proceeding analysis. After using
BLAST in GenBank (http://www.ncbi.nlm.nih.gov/genbank/)
and Rfam 12.0 (http://rfam.xfam.org/) database, the clean
reads compared with the non-coding RNAs (rRNAs, tRNAs,
snRNAs, and snoRNA) were removed for further analysis. The
remaining matched reads were aligned with known miRNAs
in miRBase 21 (http://www.mirbase.org/index.shtml) for radish
known miRNAs identification. Then, the unannotated reads
were used to predict potential novel miRNAs using Mireap
software (https://sourceforge.net/projects/mireap/) according to
the previous criteria (Meyers et al., 2008). The stem-loop
structure of miRNA precursors were folded by Mfold (http://
unafold.rna.albany.edu/?q=mfold/RNA-Folding-Form) (Zuker,
2003).

Differential Expression Analysis of miRNAs
between CMS Line and Its Maintainer Line
The frequency of miRNAs from two libraries was normalized
to one million by total number of miRNAs per sample (Gao
et al., 2012). If the normalized read of a given miRNA is
zero, the expression value was set to 0.01 for further use. The
differential expression of miRNAs between the two libraries was
calculated as: Fold-change = log2 (WA/WB). The P-value was
calculated following the previously reported methods (Li et al.,
2009; Zhai et al., 2014). The miRNAs with P ≤ 0.05 and fold-
change ≥ 1 or ≤ −1 were considered as up- or down-regulated
miRNAs between the two libraries during anther development,
respectively.

Prediction and Annotation of Potential
Targets for CMS Occurrence-Related
miRNAs
The potential target genes of the identified miRNAs were
predicted by the plant small RNA target analysis server
(psRNATarget; http://plantgrn.noble.org/psRNATarget/) (Dai
and Zhao, 2011). The criteria used for target prediction in plants
were performed following previous methods (Allen et al., 2005).
To understand the biological functions of the targets, gene

ontology (GO) analysis were performed by Blast2GO program
on the basis of the BLAST searching against the available
Nr database in NCBI. In addition, KEGG Orthology Based
Annotation System (KOBAS2.0; http://kobas.cbi.pku.edu.cn/
home.do) was applied to predict the biological functions of target
genes (Xie et al., 2011). Based on the differentially expressed
miRNAs and their corresponding targets, the miRNA-targets
regulatory network was constructed using Cytoscape_v3.2.1
software (Smoot et al., 2011).

qRT–PCR Validation
Quantitative reverse transcription-PCR (qRT–PCR) was
employed to evaluate the validity of small RNA sequencing
and also to analyze the expression patterns of miRNAs and
their targets during different stages. miRNAs and total RNAs
were extracted from samples and reverse-transcribed to cDNA
using the One Step Primer Script R© miRNA cDNA Synthesis Kit
(Takara Bio Inc., Dalian, China) and SuperScript R© III Reverse
Transcriptase (Invitrogen, USA) following the manufacturer’s
instructions, respectively. All reactions were performed on a
BioRad iQ5 sequence detection system (BIO-RAD) and carried
out in a total volume of 20 µl including 0.2 µM primer pairs,
2 µl diluted cDNA, and 10 µl 2 × SYBR Green PCR Master
Mix (TaKaRa). The PCR amplification reaction was performed
following the previous reports (Zhai et al., 2014). The 5.8S
ribosomal RNA (rRNA) was used as the reference gene for
normalization. All reactions were done in triplicate, the 2−11CT

method was used to calculate the relative expression data (Livak
and Schmittgen, 2001). The statistical analysis was performed
using SPSS 20 software (SPSS Inc., USA) with Duncan’s multiple
range test at the 5% level of significance. The primers for
qRT–PCR were showed in Table S1.

RESULTS

Overview Analysis of Sequences from
Small RNA Libraries
To identify known and potential novel miRNAs involved in
anther development and CMS occurrence, we constructed two
small RNA libraries from the floral buds of ‘WA’ and ‘WB’ line. A
total of 43,068,458 raw reads were obtained from the two sRNA
libraries. After filtering low quality reads, adapter contaminants,
and reads smaller than 18 nucleotides, we obtained 20,287,225
(representing 5,528,061 unique sequences), and 21,989,236
(representing 5,682,107 unique sequences) clean reads fromWA
and WB library, respectively (Table S2). Of these reads, 13.84%
were WA library-specific with 42.68% unique sRNAs, 13.88%
wereWB library-specific with 44.24% unique sRNAs, and 72.28%
were present in both with 13.08% unique sRNAs (Table S3).

By comparing with the NCBI GenBank and Rfam databases,
these clean reads that matched non-coding sRNAs including
rRNAs, snoRNAs, snRNAs, and tRNAs were eliminated. After
that, 27,092 (WA) and 27,764 (WB) unique sequences were
acquired by querying the unique reads against miRBase 21
(Table 1). The remaining 5,388,388 (WA) and 5,511,728 (WB)
unannotated unique reads were used for identification of
potential novel miRNAs (Table 1). The length distribution of
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TABLE 1 | Distribution of small RNAs among different categories in radish.

Category WA WB

Unique sRNAs Total sRNAs Unique sRNAs Total sRNAs

Total 5528061 (100%) 20287225 (100%) 5682107 (100%) 21989236 (100%)

miRNA 27092 (0.49%) 1453994 (7.17%) 27764 (0.49%) 1521955 (6.92%)

rRNA 92089 (1.67%) 2685339 (13.24%) 117885 (2.07%) 3446274 (15.67%)

snRNA 6099 (0.11%) 22072 (0.11%) 6602 (0.12%) 27969 (0.13%)

snoRNA 3383 (0.06%) 10011 (0.05%) 4120 (0.07%) 11837 (0.05%)

tRNA 11010 (0.20%) 1157890 (5.71%) 14008 (0.25%) 514526 (2.34%)

unannotated 5388388 (97.47%) 14957919 (73.73%) 5511728 (97%) 16466675 (74.89%)

FIGURE 1 | Length distribution of small RNAs in WA and WB library.

sRNA reads ranged from 18 to 30 nt in both libraries (Figure 1),
and the most abundant sequences in the two libraries ranged
from 20 to 24 nt, which is the representative size range of
products cleaved by DCLs (Henderson et al., 2006). The most
abundant sRNAs in WA and WB library was 21 and 24 nt long,
which accounted for 28.97 and 31.47%, respectively.

Identification of Known miRNAs during
Anther Development
To identify known miRNAs from the two libraries, the unique
sRNA reads were aligned to known miRNA precursors, and
mature miRNA sequences in miRBase 21, allowing a maximum
of two mismatches. A total of 124 unique reads belonging to 25
conserved miRNA families were identified in the two libraries
(Table 2). The distribution of conserved miRNA family members
was analyzed (Figure S2). A large part of conserved miRNA
families had members of more than three, and miR165/166
family possessed the largest member of 17, followed by
miR156/157, and miR169 with 14 and 11 members, respectively.
However, some conserved miRNA families including miR158,
miR161, miR391, miR395, miR397 miR398, and miR403 had

only one or twomembers. In addition, 38 unique reads belonging
to 24 non-conserved miRNA families were also discovered in
these two libraries, which contained fewer members as compared
with conserved miRNAs (Figure S2).

The number of miRNA reads differed greatly in the two
libraries (Figure S3). For instance, miR156/157 presented the
highest expression abundance with 410,237 in WA library, while
miRNA165/166 displayed the highest expression of 405,255
copies in WB library. Several miRNA families such as miR167,
miR168, miR2118, and miR2199 also displayed extraordinarily
high abundance in both libraries, while some other miRNA
families (miR400, miR828, miR829, miR831, and miR858) were
expressed with relatively low levels of expression with no more
than 100 reads inWA andWB library. In addition, the expression
levels of different members of the same miRNA family varied
drastically (Table S4).

Identification of Potential Novel miRNAs in
Floral Buds
A total of 30 precursor sequences and 27 novel miRNA families
were identified in the two libraries (Table S5). The secondary
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TABLE 2 | Known miRNA families and their expression abundance in WA and WB library.

Family Number of members miRNA reads Total reads Ratio (WA/WB)

WA WB

CONSERVED miRNA

miR156/157 14 410237 304695 714932 1.35

miR158 2 15565 7641 23206 2.04

miR159 4 1726 1157 2883 1.49

miR160 6 13463 18893 32356 0.71

miR161 1 152 0 152 –

miR162 3 1211 1379 2590 0.88

miR164 5 9831 9100 18931 1.08

miR165/166 17 321161 405255 726416 0.79

miR167 8 318811 276963 595774 1.15

miR168 3 137677 135624 273301 1.02

miR169 11 36871 37179 74050 0.99

miR171 6 3241 4824 8065 0.67

miR172 7 9866 13246 23112 0.74

miR319 4 508 976 1484 0.52

miR390 5 7594 10560 18154 0.72

miR391 2 3769 3177 6946 1.19

miR393 3 1789 1643 3432 1.09

miR394 3 358 348 706 1.03

miR395 2 45236 44 45280 1028.09

miR396 6 3751 2853 6604 1.31

miR397 1 13 60 73 0.22

miR398 2 223 285 508 0.78

miR399 3 108 80 188 1.35

miR403 2 1455 1306 2761 1.11

miR408 4 3431 7780 11211 0.44

NON-CONSERVED miRNA

miR400 2 43 33 76 1.30

miR447 1 189 245 434 0.77

miR482 2 2073 35 2108 59.23

miR529 3 68 55 123 1.24

miR535 2 2229 83 2312 26.86

miR824 2 651 681 1332 0.96

miR825 1 354 479 833 0.74

miR827 3 1932 2558 4490 0.76

miR828 1 5 71 76 0.07

miR829 1 36 98 134 0.37

miR831 1 87 58 145 1.50

miR845 3 5094 5262 10356 0.97

miR854 1 640 468 1108 1.37

miR858 1 0 26 26 0.00

miR859 1 671 0 671 –

miR860 1 248 215 463 1.15

miR948 1 0 336 336 0.00

miR1878 1 0 1584 1584 0.00

miR1885 2 1961 4902 6863 0.40

miR2111 4 91 206 297 0.44

miR2118 1 42998 60406 103404 0.71

miR2199 1 42085 44471 86556 0.95

miR3444 1 0 452 452 0.00

miR5654 1 1298 1705 3003 0.76
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structures of these predicted novel miRNA precursors were
displayed in Figure S4. In addition to secondary structure
prediction, identification of complementary sequences of the
mature miRNAs is another way to provide forceful evidences
for these predicted novel miRNAs (Meyers et al., 2008). Out
of these potential novel miRNAs, only seven miRNAs with
mature and complementary miRNA∗s were detected as the
novel miRNA candidates (Table 3). In the present study, the
length of these mature miRNAs ranged from 20 to 23 nt,
with a distribution peak at 21 nt (60.0%). Furthermore, the
length of these potential novel miRNA precursors ranged
from 72 to 255 nt with the average length of 142.6 nt. The
minimum free energy (MFE) value ranged from −97.83 to
−22.9 kcal/mol with an average value of −48.32 kcal/mol.
In addition, nine potential novel miRNAs were expressed in
both libraries, while a total of 14 and 8 potential novel
miRNAs were WA library-specific, and WB library-specific,
respectively (Table S5). Most of these potential novel miRNAs
had relatively low expression levels when compared with known
miRNAs, and the expression levels of miRNA∗ sequences were
obviously less than those of their corresponding mature miRNAs,
which was consistent with the viewpoint that miRNA∗ strands
degraded quickly during the biogenesis of mature miRNAs
(Rajagopalan et al., 2006).

Identification of CMS Occurrence-Related
miRNAs during Anther Development in
Radish
To identify miRNAs involved in CMS occurrence during
anther development in radish, the differential expression of
miRNAs in WA, and WB library was analyzed. Based on
these rigorous set of criteria above, a total of 28 known
and 14 potential novel miRNAs were differentially expressed
during anther development (Figure 2, Table S6). Among them,

17 miRNAs including 11 known and 6 novel ones were
up-regulated, and 25 miRNAs including 17 known and 8
novel ones were down-regulated. Of these, 15 miRNAs were
differentially expressed at a ratio greater than 10-fold, including
13 known, and two novel miRNAs. Especially, two miRNAs,
miR395x (17.77-fold) and rsa-miRn3 (11.09-fold) were the
most significantly up-regulated known and novel miRNA,
respectively (Figure 2). In addition, many of these CMS
occurrence-related miRNAs including miR169m, miR171b-3p,
miR396b, miR482c-5p, miR1878-3p, and miR3444a-5p were
confined to be expressed only in the WA library, whereas
miR171a-3p, miR396a, miR482a-5p, and miR859 were only
detected in the WB library. The findings suggested that these
miRNAs may play critical roles during anther development in
radish.

Target Prediction of CMS
Occurrence-Related miRNAs in Radish

Target prediction is a prerequisite to understand the biological
functions of miRNAs during anther development. In this study, a
total of 489 target transcripts were predicted for all the identified
miRNAs in radish (Tables S7, S8). To further understand
the biological functions of miRNAs, the annotation of these
target transcripts were classified into three GO ontologies using
the Blast2GO program (http://www.blast2go.com), including 21
biological processes, 12 cellular components, and 10 molecular
functions (Figure 3). The main terms in biological processes
were “cellular process” (GO: 0009987), “metabolic process”
(GO: 0008152), “single-organism process” (GO: 0044699), and
“biological regulation” (GO: 0065007). In regard to cellular
components, “cell” (GO: 0005623), “cell part” (GO: 0044464),
and “organelle” (GO: 0043226) were the three most abundant
terms. In addition, “binding” (GO: 0005488) and “catalytic

TABLE 3 | Novel miRNAs with their complementary miRNA*s during anther development in radish.

miRNA name Reads Mature sequence (5′–3′) Arm Size LP (nt) MFE (kcal/mol) miRNA location

WA WB

rsa-miRn3 443 0 TATTCCGACGACAATTCCGACG 5′ 22 100 –56.31 CL2831.Contig4,Contig6

rsa-miRn3* 8 0 TCGGAATTCCGTCGGAATATA 3′ 21 100 –56.31 CL2831.Contig4,Contig6

rsa-miRn4 519 637 AATGTATGTAGTCCAATCTAT 5′ 21 117 –66 CL2870.Contig2

rsa-miRn4* 18 6 ACATTGGACTACATATATTAC 3′ 21 117 –66 CL2870.Contig2

rsa-miRn5 1141 1452 GCTTCCATATCTAGCAGTAGG 5′ 21 184 –75.8 CL2916.Contig2

rsa-miRn5* 6 12 TACCGATAGATGTGGAAGCGT 3′ 21 184 –75.8 CL2916.Contig2

rsa-miRn7 21141 24827 TTTGCGTGAGTATGTGGATGT 5′ 21 119 –49 CL4600.Contig2

rsa-miRn7* 32 42 ATCCACATACTCACGAAAATC 3′ 21 119 –49 CL4600.Contig2

rsa-miRn9a 771 1062 CGTTCAGTTCTCCTTTTGCTTC 5′ 22 106 –47.24 Rsa#S43006900

rsa-miRn9a* 7 28 AGCAAACGAGAATTGAACGGA 3′ 21 106 –47.24 Rsa#S43006900

rsa-miRn19 0 186 GAACGATATAAAAGATCATGGA 5′ 22 105 –30.2 CL6156.Contig1, Contig2

rsa-miRn19* 0 44 TATGGCCTTTATATCGTATTCG 3′ 22 105 –30.2 CL6156.Contig1, Contig2

rsa-miRn24 0 25 GGTGCAGTTCGGGACTGATTG 5′ 21 110 –48.8 FD955742

rsa-miRn24* 0 10 ATTGGCTCCCGCCTTGCATCAA 3′ 22 110 –48.8 FD955742

LP (nt), The length of precursor; MFE (kcal/mol), Minimum free energy.
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FIGURE 2 | Comparative relative expression of differentially expressed known (A) and potential novel (B) miRNAs between WA and WB library from

radish floral buds.

activity” (GO: 0003824) were the most abundant subcategories
in the molecular functions.

To understand the biological functions of the isolated
miRNAs in radish, the miRNA-cleaved mRNAs during anther
development were identified. In this study, 489 potential target
sequences for 53 known, 16 potential novel and 84 unclassified
non-conserved miRNAs from the transcripts of WA and
WB library were further annotated by BLAST search against
Arabidopsis sequences using KOBAS 2.0 program (Tables S7,
S8). Among these predicted targets, a large proportion of them
are known transcription factor families such as auxin response
factors (ARFs), basic-leucine zippers (bZIPs), myb domain
proteins (MYBs), and squamosa promoter-binding proteins
(SPLs), which could play essential roles in anther development
and CMS occurrence of radish. Moreover, several target genes

encoding functional proteins play roles in a broad range of
biological processes including agamous-like MADS-box protein
16 (AGL16), argonaute (AGO), F-box protein (F-box), NAC
domain containing protein 96 (NAC096), pentatricopeptide
repeat-containing protein (PPR), and protein TRANSPORT
INHIBITOR RESPONSE 1 (TIR1) (Tables 4, S7). To gain
further insight into the correlations between miRNAs and their
targets, the miRNA-targets regulatory network was constructed
(Figure S5, Table S9). Among them, 26 miRNAs including 19
known and 7 potential novel ones, and 87 unique targets formed
a total of 93 miRNA–targets pairs with negatively correlated
expression during anther development. In general, these results
suggested that the differentially expressed miRNAs may play
fundamental regulatory roles in diverse aspects of biological
processes during anther development of radish.
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FIGURE 3 | Gene ontology classification of the predicted targets for differentially expressed miRNAs.

qRT–PCR Validation of miRNAs and Their
Targets during Anther Development
To verify the quality of small RNA sequencing and analyze
the expression patterns of CMS occurrence-related miRNAs
in radish, a total of 15 miRNAs were randomly selected for
qRT-PCR analysis. It was shown that the expression patterns
of these miRNAs from qRT-PCR displayed a similar tendency
with those from small RNA sequencing (Figure 4). To further
study the dynamic expression patterns of CMS occurrence-
related miRNAs and their corresponding targets during anther
development, a total of 12 predicted target genes, SPL3
(Rsa#S43017568 targeted by miR156a), PPR (Rsa#S42049270
targeted by miR158b-3p), ARF16 (Rsa#S42581764 targeted by
miR160a), HRE1 (Rsa#S43010415 targeted by miR164b-3P),
TIR1 (FD955493 targeted by miR393a), AGO5 (Unigene20881
targeted by miR396b), Transducin/WD-40 (Rsa#S41989522
targeted by miR396b-3p), F-box (CL2205.Contig1 targeted
by miR3444a-5p), HB20 (Rsa#S43028702 targeted by rsa-
miRn13), NAC096 (Unigene22510 targeted by rsa-miRn15),
RDM4 (CL8993.Contig1 targeted by rsa-miRn17), and UBQ1
(Rsa#S42012413 targeted by rsa-miRn27), were examined by
qRT-PCR at three different stages of meiosis, tetrad, and early
microspore. As shown in Figure 5, miR158b-3p, miR160a,
miR164b-3p, and miR396b-3p were up-regulated and the
expression levels maximized at meiosis stage, and then decreased
at tetrad and early microspore stage. In addition, miR156a,
miR393a, and miR3444a-5p were down-regulated at meiosis

stage, and the expression levels then peaked at tetrad stage, but
rapidly decreased at early microspore stage. miR396b showed an
up-regulated expression pattern and peaked at tetrad stage, and
then slightly decreased at early microspore stage. For the novel
miRNAs, the expression levels of rsa-miRn13 and rsa-miRn27
were up-regulated at meiosis and tetrad stage, but dramatically
decreased to the minimum at early microspore stage. Moreover,
rsa-miRn15 was down-regulated at meiosis and tetrad stage, but
rapidly increased to the maximum at early microspore stage.
Transcripts of rsa-miRn17 reached its maximum at meiosis
stage, but sharply declined at tetrad and early microspore stage.
Furthermore, some negative correlations could be found between
the expression levels of miRNAs and their corresponding target
genes during various anther development stages, suggesting that
miRNA-mediated mRNA silencing may be involved in CMS
occurrence during anther development in ‘WA’ and ‘WB’ line
(Figure 5).

DISCUSSION

High-throughput sequencing technology helps identify a large
number of miRNAs and targets associated with CMS occurrence
during anther development in several plant species (Wei et al.,
2011, 2013; Fang et al., 2014; Yan et al., 2015), and provide
an effective way to evaluate the expression profiles of miRNAs
and targets in different tissues at different developmental stages.
The production of functional pollen grain is a prerequisite
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TABLE 4 | Identified candidate targets for some known and potential novel miRNAs during anther development.

miRNA Target sequence Target gene Target gene annotation

miR156a Rsa#S41982434 CYP705A15 Cytochrome P450, family 705, subfamily A, polypeptide 15

Rsa#S43017568 SPL3 Squamosa promoter-binding-like protein 3

CL289.Contig1 SPL5 Squamosa promoter-binding-like protein 5

CL2234.Contig1 SPL13 Squamosa promoter-binding-like protein 13

Unigene3780 OTP82 Chloroplast RNA editing factor

miR158b-3p Rsa#S42049270 PPR Pentatricopeptide repeat-containing protein

miR159a Rsa#S42037487 MYB101 Myb domain protein 101

Rsa#S41979156 SPL Putative transcription factor SPL

CL8717.Contig1 SPL Putative transcription factor SPL

miR160a Rsa#S42581764 ARF16 Auxin response factor 16

Unigene466 Hydroxymethylglutaryl-CoA lyase

miR161 CL1282.Contig1 MSL10 Mechanosensitive channel of small conductance-like 10

Unigene28541 Transcription initiation factor TFIIE alpha subunit

miR169b CL2169.Contig1 26S proteasome non-ATPase regulatory subunit 14

miR169m CL8331.Contig1 Sulfite exporter TauE/SafE family protein

miR171a-3p FD953436 Peroxisomal nicotinamide adenine dinucleotide carrier

CL271.Contig2 LTP4 Non-specific lipid-transfer protein 4

miR393a FD955493 TIR1 Protein TRANSPORT INHIBITOR RESPONSE 1

Unigene359 EMB2726 Elongation factor Ts family protein

miR395a Unigene14836 Putative F-box/kelch-repeat protein

miR396a CL879.Contig1 Transducin/WD-40 repeat-containing protein

CL6202.Contig1 SIP2;1 Putative aquaporin SIP2-1

miR396b Unigene20881 AGO5 Argonaute 5

Unigene22800 PPR Pentatricopeptide repeat-containing protein

miR396b-3p Rsa#S41989522 Transducin/WD-40 repeat-containing protein

miR397a CL379.Contig2 D-glycerate 3-kinase

Unigene14031 Syntaxin/t-SNARE family protein

miR403 Rsa#S41987411 AGO2 Argonaute 2

CL3585.Contig3 AGO2 Argonaute 2

miR482c-5p CL561.Contig2 Serine/threonine protein kinase

CL561.Contig4 Protein kinase family protein

miR854 Rsa#S42041817 Carboxylate clamp-tetratricopeptide repeat protein HOP2

Rsa#S41978503 F-box F-box protein

CL5880.Contig1 bZIP bZIP transcription factor

miR1878-3p Rsa#S42043459 Putative metal tolerance protein C3

miR1885b CL9579.Contig1 CSLE1 Cellulose synthase-like protein E1

Unigene1615 Probable 26S proteasome non-ATPase regulatory subunit 3b

miR2111a-3p CL444.Contig1 AHL19 AT-hook motif nuclear-localized protein

(Continued)
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TABLE 4 | Continued

miRNA Target sequence Target gene Target gene annotation

miR2111b-3p CL4779.Contig1 GLN1.3 Glutamine synthetase cytosolic isozyme 1-3

miR2199 Rsa#S42571099 AGL16 Agamous-like MADS-box protein AGL16

miR3444a-5p Rsa#S42004586 PRX Q Peroxiredoxin Q

Rsa#S42563276 AGP16 Arabinogalactan protein 16

Rsa#S43011644 FLA3 Fasciclin-like arabinogalactan protein 3

CL2205.Contig1 F-box F-box protein

rsa-miRn2 Rsa#S42571626 Putative pectate lyase 18

rsa-miRn10 CL6997.Contig1 GR-RBP2 Glycine-rich RNA-binding protein 2

CL7005.Contig1 ATR1 NADPH–cytochrome P450 reductase 1

rsa-miRn13 FD957134 HB20 Homeobox-leucine zipper protein ATHB-20

rsa-miRn15 Unigene22510 NAC096 NAC domain containing protein 96

rsa-miRn16 Unigene25057 Bromo-adjacent homology (BAH) domain-containing protein

rsa-miRn20 CL9688.Contig1 PKP-BETA1 Plastidial pyruvate kinase 2

Unigene18839 Anticodon-binding domain-containing protein

FIGURE 4 | Comparison of relative expression levels of miRNAs between qRT-PCR and small RNA sequencing in radish. Data are means ± SD from

triplicate assays.

for the propagation in flowering plants, and the tapetum
cell plays a critical role in microspore and pollen formation
(Goetz et al., 2001). Unlike the radish CMS line ‘WA’ having

no pollen in aborted anthers, its maintainer line ‘WB’ has
normal anthers with fertile pollen (Figure S1). Cytological
studies show that there is no visible difference between these
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FIGURE 5 | qRT-PCR validation of differentially expressed miRNAs and its corresponding target genes in floral buds of ‘WA’ (in green) and ‘WB’ (in

blue). (S1) meiosis stage, (S2) tetrad stage, (S3) early microspore stage. Data are means ± SD from triplicate assays.

two lines during the meiosis and tetrad stage (Figure S1).
Thereafter, as compared with ‘WB’, the expanded, and vacuolated
tapetum cells of ‘WA’ resulted in microspore degeneration
and finally aborted anther with no pollen grains (Figure S1).
However, few studies on the relationships between miRNAs
and CMS occurrence during anther development in radish were
conducted. The lack of CMS occurrence-related genes seriously
hampered our understanding of molecular mechanism in CMS

occurrence, which became an obstacle to utilize the heterosis
of radish. To uncover the miRNA-mediated regulatory network
of CMS occurrence during anther development, a comparative
small RNAome sequencing was conducted in ‘WA’ and ‘WB’
line in this study. To our current knowledge, this study is
the first investigation on identification and characterization
of miRNAs, and their targets during anther development in
radish.
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FIGURE 6 | The hypothetical schematic model of miRNA-mediated regulatory network of CMS occurrence during anther development in radish. The

up- and down-regulated miRNAs are in red and green, respectively. Agamous-like MADS-box protein AGL16 (AGL16), argonaute 2 (AGO2), argonaute 5 (AGO5), auxin

response factor 16 (ARF16), basic leucine-zipper (bZIP), F-box protein (F-box), myb domain protein 101 (MYB101), NAC domain containing protein 96 (NAC096),

pentatricopeptide repeat-containing protein (PPR), protein TRANSPORT INHIBITOR RESPONSE 1 (TIR1), squamosa promoter-binding like protein 3 (SPL3).

With the application of high-throughput sequencing
technology, it has provided an efficient tool to identify a quite
comprehensive set of miRNAs at different stages and to reveal
the miRNA-mediated regulatory network of CMS occurrence
during anther development in plant. In this study, the length
distribution of sRNAs suggested that the 24 nt sRNAs were
the most abundant, followed by 21 nt sRNAs, which has been
reported in Arabidopsis (Voinnet, 2009), Prunus mume (Gao
et al., 2012), O. sativa (Ma et al., 2013), and Medicago truncatula
(Eyles et al., 2013). The whole frequent percent of 21 and 24
nt small RNAs (28.33 and 30.07%, respectively) in radish was
strikingly different from that of B. juncea, which 21 nt RNAs
had high abundance (> 95%), and 24 nt RNAs possessed low
frequency (1.1%) (Yang et al., 2013). Interestingly, the same
tendency also existed when compared with B. rapa in which
24 nt sRNAs were the most dominant, followed by 21, 22, and
23 nt small RNAs (Jiang et al., 2014), it could be speculated
that the genetic relationship between radish and B. rapa is
closer than that between radish and B. juncea in the process of
evolution.

Identification a set of miRNAs is a crucial step to promote
our understanding of miRNA-mediated regulatory network of
anther development and CMS occurrence. Recently, numerous
studies have presented that the majority of known miRNAs
in plantae are evolutionarily conserved (Chen et al., 2012;
Barvkar et al., 2013). The diversity of known miRNA families
in radish might be decided by the abundance and number of
members. In the present study, a large number of conserved
miRNAs expressed relatively higher levels compared with non-
conserved ones, which was in agreement with previous researches
in other species (Gao et al., 2012; Wang F. D. et al., 2012;

Wang Z. J. et al., 2012; Fang et al., 2014). In addition, several
studies have reported a number of known and potential novel
miRNAs involved in anther development and CMS occurrence
in B. juncea (Yang et al., 2013), B. rapa (Jiang et al., 2014), Citrus
reticulata (Fang et al., 2014), G. hirsutum (Wei et al., 2013),
and O. sativa (Yan et al., 2015), which greatly enhanced our
knowledge of the regulatory roles of miRNAs in CMS occurrence.
In this study, 28 known miRNAs were differentially expressed
and the majority of these miRNAs were down-regulated during
anther development. The differential expression patterns of
rsa-miR160a and rsa-miR169b were consistent with those
observed in O. sativa (Yan et al., 2015). Moreover, the expression
pattern of rsa-miR396b and rsa-miR171a-3p was similar to that
identified in G. hirsutum and B. rapa, respectively (Wei et al.,
2013; Jiang et al., 2014). Interestingly, the targets of the miR160
contain three critical regulators, ARF10, ARF16, and ARF17,
which are important in mediating gene expression response to
the plant hormone auxin and regulating floral organ formation
(Mallory et al., 2005; Wang et al., 2005; Chapman and Estelle,
2009; Liu et al., 2010). The expression level of rsa-miR160a was
down-regulated in ‘WA’ and validated by qRT-PCR (Figures 5,
S5). Thus, it could be speculated that the decreased abundance
of rsa-miR160a may partially increase the expression of ARF16,
finally resulting in abnormal pollen development in the sterile
line ‘WA’.

According to the negative correlation between differentially
expressed miRNAs and their corresponding targets (Figure S5),
a hypothetical schematic model of miRNA-mediated regulatory
network of CMS occurrence during anther development in radish
was put forward (Figure 6). As shown in the regulatory network,
targets of these differentially expressed miRNAs containing
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important transcription factors (TFs) and functional proteins
are involved in many biological processes, including auxin
signaling pathways, signal transduction, miRNA target silencing,
floral organ development, and organellar gene expression. For
instance, SBP-box genes targeted by miR156, a group of TFs
with significant regulatory functions controlling the transition
from the vegetative phase to the floral phase in Arabidopsis,
O. sativa, and Zea mays (Chuck et al., 2007; Gandikota et al.,
2007; Jiao et al., 2010). It was reported that three genes, LEAFY,
FRUITFULL, and APETALA1, are directly activated by SPL3 to
regulate the timing of flower formation (Yamaguchi et al., 2009).
Additionally, multiple SPL genes can lead to fully fertile flowers
and regulate cell division and differentiation in Arabidopsis (Xing
et al., 2010). In the present study, up-regulation of the rsa-
miR156a decreased the expression of SPL3 in ‘WA’ compared
to ‘WB’ (Figure 6, Table S7), leading to disordered floral organ
development, cell division, and differentiation in radish. MiR159
is required for normal anther development, in which it regulates
the expression of genes encoding MYB TFs (Achard et al., 2004;
Tsuji et al., 2006). MYB TFs are involved in the control of plant
development, determination of cell fate and identity, primary,
and secondary metabolism (Stracke et al., 2007; Gonzalez et al.,
2008; Kang et al., 2009). AtMYB103, specifically expressed in
tapetums and middle layers of anthers, is important for pollen
development, especially the pollen exine formation (Zhang et al.,
2007; Chen et al., 2014). Down-regulation of the AtMYB103
resulted in earlier degeneration of tapetum and pollen grains
aberration during anther development in A. thaliana (Zhang
et al., 2007). In rice, anther and pollen defect in floral organ
development are also found in the loss-of-function mutations of
MYB (Kaneko et al., 2004). In the present study, the rsa-miR159a
was found to be up-regulated in ‘WA’ line compared to ‘WB’
line (Figures 6, S5), indicating that the increased abundance
of rsa-miR159a partially decreased the expression of MYB101,
hampering normal tapetum development, callose dissolution,
and exine formation in radish anthers. Moreover, AGL16,
belonging to MADS-box transcription factors, was identified to
be targeted by rsa-miR2199. The MADS-box TFs are essential
regulators of the development of the floral meristems and floral
organs in plants (Chen et al., 2014). These evidences indicated
that rsa-miR2199 might be an essential component of gene
regulatory network that involved in radish CMS occurrence
(Figure 6).

Apart from key TFs, a variety of genes which encode
important functional proteins, such as PPR proteins, F-box
proteins, AGO proteins, and protein TRANSPORT INHIBITOR
RESPONSE 1 (TIR1), were also considered to play important
roles in CMS occurrence during anther development. PPR
protein genes were identified as targets of miR158 (Lurin et al.,
2004; Sunkar and Zhu, 2004). Previous studies indicated that
PPR proteins are mostly located in the mitochondria and
chloroplast and play crucial roles in pollen development, specific
RNA sequence binding, post-transcriptional splicing and mRNA
stability regulating (Okuda et al., 2006; Wang et al., 2006; Saze
and Kakutani, 2007; Fujii and Small, 2011). In addition, some
PPR proteins have also been identified as fertility-restoring genes
(Rf ) for CMS occurrence (Desloire et al., 2003; Wang et al., 2008;
Yasumoto et al., 2009). In this study, rsa-miR158b-3p targeting

the gene encoding PPR protein was up-regulated and the PPR
gene was suppressed in ‘WA’ line compared with ‘WB’ line, and it
could be suggested that the regular expression of CMS-associated
mitochondrial genes and suppression of PPR gene result in
sterility in radish ‘WA’ line (Figures 5, S5). Moreover, F-box
proteins are involved in the regulation of various developmental
processes in plants, including floral meristem, floral organ
identity determination, and photomorphogenesis (Jain et al.,
2007). The expression of rsa-miR3444a-5p was down-regulated
at meiosis stage, and then peaked at tetrad stage, but rapidly
decreased at early microspore stage, and a negative correlation
was found between the expression levels of rsa-miR3444a-5p
and its target gene which encoding F-box protein at three
different stages according to the qRT-PCR analysis (Figure 5).
In addition, F-box gene targeted by osa-miR528 was found to
be involved in the regulation of the abortion process in male
sterile line of rice. Moreover, the other 23 genes including APG2,
AGP16, FIO1, FLA3, FLA5, NAC083, NSP5, TRP1, and VIP1
were also the targets of rsa-miR3444a-5p, indicating that the
miRNA has multiple effects on the targets (Figure S5). All of
these genes targeted by rsa-miR3444a-5pmight function together
to regulate the CMS occurrence during anther development in
radish. Additionally, AGO proteins were reported to be involved
in diverse biological processes including hormone response,
developmental regulation, and stress adaptation (Yang et al.,
2013). Up-regulation of TIR1 enhances auxin sensitivity, and
causes altered leave phenotype and delayed flowering (Chen et al.,
2011). In this study, AGO2 and AGO5 was targeted by miR403
and miR396b, respectively, and TIR1 was targeted by miR393a,
indicating miR403, miR396b, and miR393a might modulate the
hormone response to play roles in the microspore development
and CMS occurrence.

In summary, CMS occurrence-associated miRNAs and their
targets between the male sterile line ‘WA’ and its maintainer line
‘WB’ were firstly identified and characterized in radish. These
results provide a valuable foundation for unraveling the complex
miRNA-mediated regulatory network of CMS occurrence and
facilitate further dissection of roles of miRNAs during CMS
occurrence and microspore formation in radish and other
crops.
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Figure S1 | Micrographs of anthers at different developmental stages in

the CMS line ‘WA’ (A–E) and its maintainer line ‘WB’ (F–J). Panels (A,F)

Meiosis stage. Panels (B,G) Tetrad stage. Panels (C,H) Early microspore stage.

Panels (D,I) Pollen stage. Panels (E,J) Flower morphology.

Figure S2 | Distribution of known miRNA family members identified in

radish.

Figure S3 | Abundance of each known miRNA family in radish.

Figure S4 | Precursor sequences and the predicted second structures of

novel miRNAs in radish. The mature miRNAs are in red and miRNA∗s are in

blue (“.” represent base mismatches, “(” represent base matches).

Figure S5 | The miRNA mediated regulatory network constructed by

Cytoscape_v3.2.1. The red, yellow and green ellipses represent the know

miRNAs, potential novel miRNAs and target genes, respectively.

Table S1 | Primers of miRNAs and targets in radish for qRT-PCR.

Table S2 | Statistical analysis of sequencing reads from the WA and WB

sRNA library in radish.

Table S3 | Summary of common and specific sequences between WA and

WB sRNA library.

Table S4 | Detailed information of known miRNAs identified from radish

WA and WB library.

Table S5 | Detailed information of novel miRNAs identified from radish WA

and WB library.

Table S6 | Differentially-expressed miRNAs between WA and WB in radish.

Table S7 | Putative targets of known and novel miRNAs identified in radish.

Table S8 | Predicted targets for non-conserved miRNAs in radish.

Table S9 | The detailed information of miRNA-targets for regulatory

network construction.
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