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INTRODUCTION

The chloroplast (CP) is a plant organelle originated from cyanobacteria through symbiosis and had
become an important component of the plant cell. It is the reaction center for the photosynthesis
and also for several steps in the biosynthetic pathways of fatty acids, vitamins, pigments and
amino acids. The CP genome is highly conserved in land plants (Raubeson and Jansen, 2005).
The CP genome is circular and exhibits a quadripartite genome structure consisting of a large
single copy region (LSC) and a small single copy region (SSC), separated by a pair of inverted
repeats (IRs) with a few exceptions where loss of an IR or the SSC was observed. The size of the
CP genome varies from 19 to 217 Kb in land plants, and the IRs are usually 20–26 kb in length
(http://www.ncbi.nlm.nih.gov/genome/organelle/). Lack of recombination makes the CP genome
an ideal target for phylogenetic studies (Ravi et al., 2008; Wu and Ge, 2012).

Arachis hypogaea L. also known as groundnut is an herbaceous plant belonging to the Fabaceae
family. It has an allotetraploid genome (AABB; 2n = 4x = 40) with a size of about 2.8 Gb. There
have been many speculations regarding the ancestors of A and B subgenomes of A. hypogaea and
proved to have originated through a hybridization event betweenArachis ipaensis L. (B subgenome)
and Arachis duranensis L. (A subgenome) (Kochert et al., 1996; David et al., 2016). It is one of
the major edible oilseed crops in the world, and India is the second largest producer accounting
for about 15% of the world production (FAOSTAT, 2015). Kernels of A. hypogaea L. contains 43–
50% oil and 23–26% proteins. The oil comprises majorly of palmitic acid (16:0), stearic acid (18:0),
oleic acid (18:1), linoleic acid (18:2), arachidic acid (20:0), eicosenoic acid (20:1), behemic acid
(22:0), and lignoseric acid (24:0) along with trace amounts of palmitoleic acid (16:1). The mono
and poly-unsaturated fatty acids, oleic acid and linoleic acid constitute about 75% of the total
oil content (Shiv, 1982). Many attempts have successfully been made to improve the crop yield,
drought resistance, disease resistance and other characteristics of A. hypogaea L. using classical
breeding as well as genetic engineering using nuclear transformation. Chloroplast transformation
by homologous recombination for producing transgenic plants is also possible due to the presence
of candidate loci on the CP genome. Additionally, Genetic engineering of chloroplast genome when
compared to nuclear transformation is environment-friendly; it minimizes the pleiotropic effects
along with containment of the foreign genes (Daniell et al., 2005). Hence, the availability of the
complete chloroplast genome of A. hypogaea L. will be an invaluable resource for designing and
evaluating efficient chloroplast transformation experiments.
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MATERIALS AND METHODS

Plant Material and Genome Sequencing
The seeds of A. hypogaea L. Co7 variety were obtained from
Tamilnadu Agricultural University, Coimbatore, India. The
plants were grown in the green house facility at SRM University,
Kattankulathur, India. Leaves from 1-month old plant were
used for total genomic DNA isolation using DNeasy Plant
Mini Kit (Qiagen, Germany). A paired-end library with an
average insert size of about 400 bp was constructed as per the
manufacturer’s protocol (Illumina Inc., USA). The library quality
was assessed on CaliperLabChip GX using High Sensitivity
Assay Kit (Caliber, USA). It was then hybridized on a flow
cell for generating clonal clusters on cBOT using Truseq PE
Cluster Kit v3-cBot-HS (Illumina Inc., USA). Sequencing by
synthesis was performed on Illumina Hiseq 2500 using Truseq
v3-HS kit to generate 100 bp paired end reads (Illumina Inc.,
USA).

Genome Assembly and Validation
The per base quality of the raw paired-end reads (51,650,486)
of 100 bp was assessed by FastQC v0.11.2 (Andrews, 2010).
The adapter trimming and quality filtering was done using
Cutadapt v1.7.1 (Martin, 2011) and Sickle v1.33 (Joshi and
Fass, 2011) tools respectively. A phred score of 20 was used
for quality filtering. The quality filtered paired-end reads
(49,299,308) were subjected to de novo assembly using three
different de novo assemblers such as Velvet v1.2.10 (Zerbino
and Birney, 2008), SOAPdenovo v2.04 (Luo et al., 2012) and
Edena v3.131028 (Hernandez et al., 2008). The assembled contigs
were pooled and ordered against the complete CP genome
of closest relative Acacia ligulata L. as the reference using
Mauve v2.3.1 tool (Darling et al., 2010; Williams et al., 2015).
The gaps in the genome were filled by manual alignment
of paired-end reads using overlapping method (Natarajan
and Parani, 2015) and primer walking (Sanger sequencing
method). Validation of the junctions between the single
copy regions and the inverted repeats was done by Sanger
sequencing using specific primers. The filtered reads were
mapped against the assembled CP genome of A. hypogaea L.
to calculate the genome coverage. The complete CP genome of
A. hypogaea L. was annotated using DOGMA (Wyman et al.,
2004).

RESULTS AND DISCUSSION

The size of the complete CP genome of A. hypogaea L. was
found to be 156,391 bp. The genome coverage was calculated
to be 2122x with 3,863,475 quality filtered reads mapped to the
assembled CP genome. The CP genome exhibited a quadripartite
structure consisting of LSC and SSC regions of 85,946 bp and
18,797 bp respectively, with a pair of inverted repeats (IRa
and IRb) of 25,824 bp each separating them. The overall GC
content of the complete chloroplast genome was 36.4% and the
individual GC content for LSC, SSC, and IRs was 33.8%, 30.2%,
and 42.8% respectively. A total of 110 genes were annotated
including 76 protein coding genes, 30 tRNA genes, and 4 rRNA

genes. Six of the protein coding genes and the 3’ exon of
rps12 are duplicated in the IR regions. Six of the tRNA genes
and four of the rRNA genes are also duplicated in the IR
regions. The presence of one or two introns were identified
in the 13 genes, which includes 8 protein coding genes and
5 tRNAgenes (Table 1). The complete CP genome sequence of
A. hypogaea that is reported here for the first time will be
an invaluable resource for designing and evaluating efficient
chloroplast transformation experiments and to improve the
desired traits.

DEPOSITED DATA AND INFORMATION TO
THE USER

The complete data from the current study was submitted
at NCBI under the BioProject ID PRJNA314013
and BioSample ID SAMN04527043. The assembled
complete chloroplast genome sequence was submitted
to NCBI Genbank with an accession number KX257487
(http://www.ncbi.nlm.nih.gov/nuccore/KX257487). The
raw reads in compressed FASTQ were submitted to SRA
database at NCBI under the accession number SRP076091
(http://www.ncbi.nlm.nih.gov/sra/SRP076091). Users can
download and reuse the data for research purpose only with an
acknowledgement to us and quoting this paper as reference to
the data.

TABLE 1 | List of genes found in the A. hypogaea L. chloroplast genome.

S.No Group of genes Gene names

1 ATP synthase atpA, atpB, atpE, atpF*, atpH, atpI

2 Cytochrome b/f complex petA, petB, petD, petG, petL, petN

3 NADH dehydrogenase ndhA*, ndhC, ndhD, ndhE, ndhF,

ndhG, ndhH, ndhI, ndhJ

4 Photosystem I psaA, psaB, psaC, psaI, psaJ

5 Photosystem II psbA, psbB, psbC, psbD, psbE, psbF,

psbH, psbI, psbJ, psbK, psbL, psbM,

psbN, psbT, psbZ

6 Proteins of unknown function ycf1, ycf2, ycf3**, ycf4, orf42, ycf68*

7 Ribosomal proteins (SSU) rps2, rps3, rps4, rps7, rps8, rps11,

rps12#, rps14, rps15, rps18, rps19

8 Ribosomal proteins (LSU) rpl2*, rpl14, rpl16, rpl20, rpl23, rpl32,

rpl33, rpl36

9 Ribosomal RNAs rrn4.5, rrn5, rrn16, rrn23

10 RNA polymerase rpoA, rpoB, rpoC1*, rpoC2

11 Other genes accD, ccsA, cemA, clpP**, matK, rbcL

12 Transfer RNAs trnA-UGC*, trnC-GCA, trnD-GUC,

trnE-UUC, trnF-GAA, trnfM-CAU,

trnG-UCC, trnH-GUG, trnI-CAU,

trnI-GAU*, trnK-UUU*, trnL-CAA,

trnL-UAA*, trnL-UAG, trnM-CAU,

trnN-GUU, trnP-GGG, trnP-UGG,

trnQ-UUG, trnR-ACG, trnR-UCU,

trnS-GCU, trnS-GGA, trnS-UGA,

trnT-GGU, trnT-UGU, trnV-GAC,

trnV-UAC*, trnW-CCA, trnY-GUA

*Contains one intron **Contains two introns #Exhibits trans-splicing.
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