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The biology of living organisms is determined by the action and interaction of a
large number of individual gene products, each with specific functions. Discovering
and annotating the function of gene products is key to our understanding of these
organisms. Controlled experiments and bioinformatic predictions both contribute to
functional gene annotation. For most species it is difficult to gain an overview of what
portion of gene annotations are based on experiments and what portion represent
predictions. Here, I survey the current state of experimental knowledge of enzymes
and metabolism in Arabidopsis thaliana as well as eleven economically important crops
and forestry trees – with a particular focus on reactions involving organic acids in
central metabolism. I illustrate the limited availability of experimental data for functional
annotation of enzymes in most of these species. Many enzymes involved in metabolism
of citrate, malate, fumarate, lactate, and glycolate in crops and forestry trees have not
been characterized. Furthermore, enzymes involved in key biosynthetic pathways which
shape important traits in crops and forestry trees have not been characterized. I argue
for the development of novel high-throughput platforms with which limited functional
characterization of gene products can be performed quickly and relatively cheaply. I refer
to this approach as systems-level experimental characterization. The data collected from
such platforms would form a layer intermediate between bioinformatic gene function
predictions and in-depth experimental studies of these functions. Such a data layer
would greatly aid in the pursuit of understanding a multiplicity of biological processes in
living organisms.

Keywords: organic acid metabolism, functional gene annotation, high-throughput platforms, bioinformatic
predictions, proteome sequence homology, crop species, forestry trees, enzyme biochemical characterization

TWO COMPLEMENTARY APPROACHES TO STUDYING LIVING
ORGANISMS

The reductionist approach toward studying living organisms involve investigating single
components in isolation. This approach has been greatly successful at explaining a multiplicity
of biological processes. A large body of experimental data such as gene sequences, gene expression
patterns and gene product properties have been collected and deposited into public databases. The
systems approach toward studying living systems focuses on modeling and studying the interplay
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between a large number of single components, as well as
properties emerging from that interplay. It therefore builds on –
and is complementary to – the reductionist approach.

Both the reductionist as well as the systems approaches have
strengths and weaknesses. The reductionist approach generates
in-depth data, but is slow and may miss the bigger picture. Due
to the large investment of time and resources required for this
approach, even for characterizing the function of a single gene
product, it cannot possibly be used to keep up with, or catch up
to, the ever-increasing flood of genomic data. On the other hand,
the systems approach is often reliant on bioinformatic annotation
pipelines to automatically generate gene function predictions
(Mueller et al., 2003; Tatusova et al., 2007; Zhang et al., 2010;
Sucaet et al., 2012; Van Bel et al., 2012; Seaver et al., 2014).
This leaves the systems-level approach vulnerable to false gene
function predictions. This problem is compounded as an ever-
increasing number of genomes are sequenced from organisms
that are evolutionarily distant to well-characterized plant, animal,
fungal and microbial model systems. With hundreds of plant
genomes being available within the near future (Reddy et al.,
2015) it is highly relevant to assess our current level of knowledge
regarding gene functions in plants. However, gaining an overview
of which functional annotations are supported by experimental
evidence, and which are not, is often not straight-forward.

THE DIVERSITY OF CHEMICAL
REACTIONS CHARACTERIZED IN
CROPS AND FORESTRY TREES IS LOW

To assess the state of experimental knowledge in plant species I
focus on enzymes and use these to infer a general trend. Enzyme
activities are classified using Enzyme Commission numbers (EC
numbers), with each number indicating a specific type of reaction
and the substrate(s), product(s) and co-factor(s) involved. This
classification system enables rapid identification of functionally
equivalent enzymes in different species. The BRENDA database1

is the main collection of enzyme functional data available
to the scientific community (Schomburg et al., 2002; Chang
et al., 2015). This resource (release from January, 6th 2016)
was used to get an overview of the total number of unique
EC numbers experimentally characterized for each of a set of
12 plant species. The EC numbers represent the diversity of
chemical reactions known in these organisms. It is important
to note that there is typically a delay from the publishing of a
primary research article until the enzyme data can be retrieved
from the BRENDA database. Data from enzymes characterized
more recently may therefore not be included in this analysis.
Arabidopsis thaliana (arabidopsis) was included in the analysis
due to its long-standing role as a plant model species. Zea mays
(maize), Oryza sativa (rice), Triticum aestivum (wheat), Solanum
tuberosum (potato), Manihot esculenta (cassava) and Glycine max
(soybean) were included as they are the six most important
crop species by annual production globally2. Picea abies (Norway

1http://www.brenda-enzymes.org/
2http://faostat.fao.org/

spruce), P. glauca (white spruce), P. sitchensis (sitka spruce),
Pinus taeda (loblolly pine), and Populus trichocarpa (poplar) were
also included, representing five economically important forestry
tree species. Data from Homo sapiens (humans), Saccharomyces
cerevisiae (baker’s yeast), and Escherichia coli are included to put
the plant data into context.

Unsurprisingly, the model species arabidopsis has the highest
total of characterized EC numbers of all analyzed plants, with 931
(Figure 1A). This is similar in magnitude to the 915 EC numbers
known from baker’s yeast, but much less than the 1,326 EC
numbers known from E. coli and the 1,611 known from humans.
It is striking that from this well-studied plant there are 395 (30%)
fewer characterized EC numbers than from the bacterium E. coli.
Maize, rice, wheat, potato and soybean range from 186 to 350
characterized EC numbers. Maize and rice have 350 characterized
EC numbers, the highest total EC numbers of the crop species.
This is 976 (73%) fewer characterized EC numbers than E. coli. Of
the six analyzed crop species cassava has the fewest characterized
EC numbers, with a grand total of 15 (Figure 1A). For all five
tree species, similarly few EC numbers have been characterized
as in cassava, ranging from 9 to 28 (Figure 1A). The diversity
of chemical reactions which are experimentally characterized in
the five tree species and cassava each represent less than 2.1%
of those from E. coli and 1.7% from humans. When combining
all unique, non-overlapping, EC numbers characterized in the 12
plant species the grand total is 1,240 – which is still less than the
1,326 EC numbers known from E. coli alone.

The small number of experimentally characterized enzymes in
these economically important species means that the genes are
instead either annotated based on bioinformatic predictions or
remain functionally un-annotated. For some of these enzymes
there may be other types of experimental data supporting their
function, for example studies involving loss-of-function mutants
or chemical genomics approaches, but that number is expected
to be low. Un-annotated or miss-annotated genes diminish our
capability to accurately model biological processes and studying
emergent properties. This is especially true for systems biology
approaches such as Gene Ontology (GO-term) enrichment
analysis and genome-scale metabolic modeling approaches.

SEQUENCE HOMOLOGY IS LOW
BETWEEN THE ARABIDOPSIS
PROTEOME AND THOSE FROM CROPS
AND FORESTRY TREES

Since enzyme functional annotations in plants are largely
based on bioinformatic predictions it is relevant to ask how
homologous the sequences used for these annotations are.
Arabidopsis has the largest number of characterized EC numbers
and enzyme annotation in crop species and forestry trees are thus
likely based on arabidopsis homologs. I compared the sequence
homology of the arabidopsis proteome with those of the six crop
species and five tree species. Each arabidopsis protein longer than
120 amino acids was used in a protein-protein BLAST (Altschul
et al., 1990) to identify the most homologous proteins in each of
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FIGURE 1 | Species comparison of available biochemical data and
proteome homology. (A) A Cleveland dot plot showing how many unique
EC numbers exist for each species in the BRENDA database. Each EC
number classifies a specific catalyzed reaction, the numbers thus indicate the
diversity of chemical reactions known from the different species. (B) A violin
plot of amino acid identity of the arabidopsis proteome compared to the
proteomes of eleven plant species. Each “violin” in the plot represents
∼28,000 pairwise comparisons with amino acid identities calculated based on
global sequence alignments. The white dot represents the median. The broad
black bar represents the upper and lower quartile, which contain 50% of the
data points. The thin black lines represent the upper and lower adjacent
values. The outer plot shape is a kernel density plot that visualizes the
probability distribution of the data. The gray area ranges from 0 to 30%
identity and indicates the “twilight zone” of protein–protein comparisons where
proteins similar in sequence no longer perform the same function. Scientific to
common name translations: A. thaliana – arabidopsis, Z. mays – maize,
O. sativa – rice, T. aestivum – wheat, S. tuberosum – potato, M. esculenta –
cassava, G. max – soybean, P. abies – Norway spruce, P. glauca – white
spruce, P. sitchensis – sitka spruce, P. taeda – loblolly pine, and
P. trichocarpa – poplar.

the proteomes. The results were filtered to retain only query-hit
pairs where the alignable region was more than 70% of the length
of the query. A global sequence alignment was generated for
each query-hit pair using MUSCLE (Edgar, 2004). The percentage
amino acid identity for each pair was then calculated on the basis
of the alignments.

The amino acid identity scores for the entire proteomes were
visualized as a violin plots using custom R3 scripts (Figure 1B).
The portion of sequences below 30% identity – indicated with a
gray background in the figure – is important since this represents
the “twilight zone” of amino acid identity, where proteins
similar in sequence no longer have the same overall fold or no
longer perform the same function (Sander and Schneider, 1991;
Rost, 1999; Konstantinidis and Tiedje, 2005). The proteomes
of the monocotyledonous species maize, rice and wheat have
median protein–protein identities of 43–45% compared with
arabidopsis. 22–24% of the arabidopsis proteins have less than
30% amino acid identity to the proteins in these species and
are thus in the “twilight zone” (Figure 1B). The proteomes of
the dicotyledonous species potato, cassava, soybean and poplar
have median identities of 49–56% compared with arabidopsis.
13–20% of the arabidopsis proteins have less than 30% amino
acid identity to the proteins in these species (Figure 1B). The
four gymnosperms Norway spruce, white spruce, sitka spruce
and loblolly pine have by far the least homologous proteomes
compared with arabidopsis, with median identities of 33–35%.
A full 38–44% of the arabidopsis proteins have less than 30%
amino acid identity to the proteins in these species and cannot
be said to be functionally equivalent (Figure 1B).

The fact that large proportions of the proteomes share less
than 30% identity with arabidopsis (Figure 1B), while at the same
time little experimental data being available to support enzyme
annotations (Figure 1A), indicates that there is an over-reliance
on bioinformatic predictions in all of the analyzed species. This
may lead to propagation of inconsistent or incorrect annotations
among genomes. Furthermore, the reliance on bioinformatics
also represent missed opportunities to discover unique properties
of plant enzymes – and how those unique properties shape
metabolism. Pathways and reactions which are unique to certain
species also remain undiscovered.

To further highlight this problem I scoped the total number
unique EC numbers annotated in the genomes – irrespective
of whether the source of that annotation was experimental
data or bioinformatic predictions. I downloaded the GO-term
annotations for E. coli, baker’s yeast, and humans from the
website of the Gene Ontology Consortium (Ashburner et al.,
2000; Consortium, 2015)4 and annotations for arabidopsis, maize,
rice (Indica variety), potato, cassava, soy and poplar from the
Plaza 3.0 website (Proost et al., 2015)5. A source for GO-term
annotations for wheat and the four gymnosperms could not be
identified. The total number of unique GO-terms representing
enzyme activities were: E. coli (1,201), baker’s yeast (1,029),
humans (1,549), arabidopsis (1,354), maize (956), rice (1,058),

3http://www.r-project.org/
4http://geneontology.org/
5http://bioinformatics.psb.ugent.be/plaza/
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potato (1,203), cassava (1,202), soy (1,222) and poplar (1,232).
These numbers underscore the problems with the reliance on
bioinformatic predictions. The dicotyledonous plants have a
similar number of predicted EC numbers as arabidopsis, probably
because their proteomes are similar. The proteomes of maize
and rice are less similar to arabidopsis and also has fewer genes
annotated with EC numbers. The fact that maize and rice have
many fewer annotated EC numbers than E. coli and arabidopsis
is likely explained by limitations in our ability to predict more,
and not a true reflection of the actual EC number count in these
plants. Once GO-term annotations for the four gymnosperms
become available I expect those to contain far fewer predicted EC
numbers than maize and rice, due to their low sequence similarity
to the arabidopsis proteome.

MANY ENZYMES INVOLVED IN
METABOLISM OF CITRATE, MALATE,
FUMARATE, LACTATE, AND GLYCOLATE
IN CROPS AND FORESTRY TREES HAVE
NOT BEEN CHARACTERIZED

The sum of EC numbers characterized for each species
(Figure 1A) does not indicate which specific reactions, from
which pathways, have been characterized. To look at a few
pathways in detail I selected 20 reactions involved in glycolysis
and the TCA cycle (Figure 2A). These reactions were chosen due
to their central role in the metabolism of important organic acids
such as citrate, malate, and fumarate. I also chose six reactions
involved in metabolism of the 2-hydroxy acids glycolate, lactate,
and hydroxyglutarate (Figure 2B), which are closely connected
with central metabolism (Maurino and Engqvist, 2015). For each
of the twelve plant species, and for each of the selected reactions,
the presence or absence of data in the BRENDA database was
visualized (Figures 2A,B).

In glycolysis and the TCA cycle, enzymes from arabidopsis,
maize, and potato have been characterized for the majority – but
not all – of the reactions (Figure 2A). Characterized enzymes
from rice and wheat mainly participate in glycolysis whereas most
of the characterized soybean enzymes participate in the TCA
cycle. In the set of reactions studied here there is not a single
enzyme characterized from cassava or any of the five tree species
(Figure 2A). None of the 12 plant species analyzed had had all
reactions from glycolysis and the TCA cycle characterized. For
the six reactions involved in 2-hydroxy acid metabolism most of
the twelve analyzed plant species had no characterized enzymes
(Figure 2B). Arabidopsis represents an exception with enzymes
characterized for four of the six EC numbers (Figure 2B). From
maize, rice and wheat S-2-hydroxy acid oxidase (EC 1.1.3.15)
has been characterized. Additionally, there is data for glyoxylate
reductase (EC 1.1.1.26) in maize and for L-lactate dehydrogenase
(EC 1.1.1.27) in potato (Figure 2B). It is important to note that
some of these enzymes may have been characterized, but the
information has yet to be included in the BRENDA database.

This analysis shows that for key metabolic reactions involved
in organic acid metabolism there is little biochemical data

available for most of the analyzed plant species. We therefore
have a limited insight into species-specific features of important
biological processes involving these organic acids, such as
central metabolism, C4 metabolism, transient carbon storage,
reductive energy cycling between subcellular compartments,
and stomatal function. Furthermore, there are likely enzymes
important for these processes which are currently miss-annotated
or un-annotated, in particular in plant species which are
evolutionarily distant to arabidopsis. Our ability to accurately
model and understand these processes is thus diminished, with
negative consequences for our capability to generate high-
yielding, robust crops and forestry trees to meet a changing
climate.

MOST ENZYMES INVOLVED IN
METABOLIC PATHWAYS WHICH SHAPE
KEY TRAITS IN CROPS AND FORESTRY
TREES HAVE NOT BEEN
CHARACTERIZED

To gain a broader view of which parts of metabolism have been
characterized, and which have not, custom Python6 scripts were
used to map the EC numbers characterized from arabidopsis and
the six crop species to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) global metabolism overview map (Kanehisa
and Goto, 2000; Kanehisa et al., 2016). The resulting maps
cannot be faithfully reproduced in the body of this text due
to their large size and high detail, they are instead included in
the Supplementary Figures S1–S7. Enzymes characterized from
arabidopsis cover many parts of the metabolic pathways in the
KEGG overview map (Supplementary Figure S1). Extensive gaps,
where no enzymes have been characterized, exist in nucleotide
metabolism, amino acid metabolism, carotenoid biosynthesis,
glycan biosynthesis, as well as in metabolism of cofactors and
vitamins (Supplementary Figure S1). For maize, rice, wheat,
potato and soybean, enzymes in central metabolism, starch
biosynthesis, amino acid biosynthesis, nucleotide metabolism
and glycerosphingolipid metabolism are more numerous than in
other parts of metabolism (Supplementary Figures S2–S5 and S7).
Even so, there are significant gaps in many of these pathways.
In cassava, the handful of characterized enzymes participate
mostly in cyanoamino acid metabolism and starch metabolism
(Supplementary Figure S6). Critically, pathways for biosynthesis
of fatty acids, lipids, starch, amino acids as well as co-factors
and vitamins in crop plants – all of which are critical for
biosynthesizing edible biomass and determining its nutritional
value – are not complete for any of the analyzed species. Our
understanding of the molecular underpinnings of important
traits such as yield, nutritional value, biomass composition,
abiotic stress tolerance as well as disease and herbivore resistance
in crop species and economically important forestry trees is
severely limited by not having experimental data for many of the
enzymes participating in these pathways.

6http://www.python.org/
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FIGURE 2 | Visualization of available biochemical data on pathways in plant core metabolism. (A) A cartoon representation of the reactions comprising
glycolysis and the TCA cycle. Metabolite names are encircled and shown in black. Enzyme names are shown in gray and their corresponding EC number shown in
black. The array of squares below each EC number indicates whether data is available for that enzyme in the BRENDA database. For each species where data is
present the square is shown in color according to the species key shown on the top left. If no data is present the square is colored gray. (B) A cartoon representation
of six reactions involved in metabolism of 2-hydroxy acids. Coloring is identical to that in (A). Scientific to common name translations: A. thaliana – arabidopsis,
Z. mays – maize, O. sativa – rice, T. aestivum – wheat, S. tuberosum – potato, M. esculenta – cassava, G. max – soybean, P. abies – Norway spruce, P. glauca –
white spruce, P. sitchensis – sitka spruce, P. taeda – loblolly pine, and P. trichocarpa – poplar.

CONCLUSION

In this perspective article I focus on enzymes, but the state
of knowledge is expected to be similarly weak, or even worse,
for other types of gene products, such as transcription factors,

non-coding RNA molecules (miRNA, siRNA, snRNA, etc.),
and structural proteins in these species. Our understanding
of the molecular underpinnings of important traits such as
yield, nutritional value, biomass composition, abiotic stress
tolerance as well as disease and herbivore resistance in crop
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species is thus severely limited. This limitation is two-fold.
First, when using omics approaches in crop plants to compile
lists of genes which may be important for specific crop traits,
one is often left guessing which functions the gene products
perform. This is true for enzymes as well as other types of
gene products. Second, if one wishes to up- or down-regulate
specific metabolic pathways to improve crop traits, one rarely
knows with certainty which enzymes or regulatory proteins
to target. Having experimental data available for the majority
of gene products in economically important plant species is
pivotal for a deep molecular understanding of plants, for our
ability to model plant systems, and for improving plants through
biotechnology. A powerful reminder of how much we have
left to learn about living organisms comes from the synthetic
minimal bacterial cell JCV-syn3.0, described earlier this year
(Hutchison et al., 2016). From the microbe’s 473 genes, all of
which are essential for robust growth, 149 (32%) are of unknown
function.

PERSPECTIVES

The path forward to generating the quantities of data needed
for accurate annotation of the stream of incoming genomes
does not lie in intensified efforts for in-depth functional
characterization of gene products. Such studies are incredibly
valuable, and must certainly be continued, but are slow
and cannot be sufficiently scaled up to meet the flood
of new plant genomic data. Instead we need to develop
novel high-throughput platforms for performing “systems-level
experimental characterization” – rapid and limited functional
characterization of most genes in a genome. Combining these
types of platforms with in vivo experiments, such as flux
balance analysis, should serve to rapidly expand our knowledge
of living organisms. Different types of platforms need to be
established for the characterization of transcription factors,
enzymes and non-coding RNAs. The data collected by each
platform would be limited in scope. For example, one platform
might perform high-throughput determination of the substrate
scope and specificity of enzymes, but none of the other
enzyme properties. Another platform might determine the
subcellular localization of proteins in high throughput, but
no +other properties relating to these proteins. The resulting
data would form an intermediate layer between bioinformatic
predictions and in-depth functional characterization of gene
products. This data layer would strengthen the foundation of
systems-biology approaches, provide a starting point for in-
depth gene-function studies, and pave the way for more accurate
bioinformatic predictions for genes in newly sequenced plant
genomes.

A few platforms and technologies that fulfill this purpose do
exist. One example is the transcriptome revolution brought on
by RNAseq, with which one can relatively cheaply determine

the expression levels of the majority of genes in a genome
(Edwards et al., 2013; McCormack et al., 2013; Mutz et al., 2013).
Another example is chemical genomics, which, in combination
with genetics, also hold great promise of generating much needed
functional data for a large number of genes (Barglow and
Cravatt, 2007; Robert et al., 2009; McCourt and Desveaux, 2010).
Yet another example is a platform leveraging CRISPR/Cas9
and serine integrases for creating protein fusions in vivo and
using these to investigate protein–protein interactions and
subcellular localization of gene products (Mulholland et al.,
2015).

A platform for systems-level characterization plant enzymes
can be achieved with existing technologies through combining
three types of optimization: (i) using efficient high-throughput
experimental methods, (ii) seeking to obtain only information
on the kinetic constants and substrate scope for each enzyme
under standardized conditions and (iii) testing homologous
enzymes from numerous species in the same assay at the same
time. The combination of these approaches would allow a
single researcher to generate data on several hundred, or with
automation, thousand enzymes per year. The required high-
throughput methods are well-established and used routinely in
the field of directed evolution. These methods enable efficient
cloning, expression, quantification, and measurement of a large
number of enzyme variants in a single assay. In directed evolution
enzyme libraries are generated by the researcher in a laboratory –
were each enzyme in the library typically differ by no more than
a handful of mutations. The key insight is to realize that nature
has generated the equivalent of enzyme libraries through the
process of speciation. For example, all citrate synthases from
a set of 20–30 plant species is analogous to a small enzyme
library and can be tested in a single assay to determine their
kinetic constants. It will be important to test each set of enzymes
with a panel of substrates as to not only test the bioinformatic
prediction, but also possible side activities or alternate main
activities. It should be possible to further expand this approach
to testing entire protein families with a small set of carefully
chosen enzyme assays in a single experiment. Access to high-
quality gene sequence information from plant genomes, as
well as low gene synthesis costs, are key requisites for this
approach.
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