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The productivity of temperate grassland is limited by the response of plants to low
temperature, affecting winter persistence and seasonal growth rates. During the winter,
the growth of perennial grasses is restricted by a combination of low temperature
and the lack of available light, but during early spring low ground temperature is the
main limiting factor. Once temperature increases, growth is stimulated, resulting in
a peak in growth in spring before growth rates decline later in the season. Growth
is not primarily limited by the ability to photosynthesize, but controlled by active
regulatory processes that, e.g., enable plants to restrict growth and conserve resources
for cold acclimation and winter survival. An insufficient ability to cold acclimate can
affect winter persistence, thereby also reducing grassland productivity. While some
mechanistic knowledge is available that explains how low temperature limits plant
growth, the seasonal mechanisms that promote growth in response to increasing spring
temperatures but restrict growth later in the season are only partially understood. Here,
we assess the available knowledge of the physiological and signaling processes that
determine growth, including hormonal effects, on cellular growth and on carbohydrate
metabolism. Using data for grass growth in Ireland, we identify environmental factors
that limit growth at different times of the year. Ideas are proposed how developmental
factors, e.g., epigenetic changes, can lead to seasonality of the growth response to
temperature. We also discuss perspectives for modeling grass growth and breeding to
improve grassland productivity in a changing climate.

Keywords: brassinosteroids, gibberellins, grass breeding, growth modeling, perennial ryegrass (Lolium perenne
L.), phytohormones, seasonality, winter persistence

INTRODUCTION

The growth response of forage grass species to temperature has been studied extensively since the
1970s. More recently, improved understanding of the growth physiology of grass has been gained,
but knowledge is still lacking how the temperature response of grassland species can be improved
to allow sustained growth throughout the year. Work with model species and recent progress
in grass genetics can improve our understanding of the processes that determine growth and
identify targets for breeding. Knowledge gained will also be important for grassland management,
e.g., for deciding how long and extensively pastures should be grazed for maximum productivity.
Developing models for grass growth in response to temperature may enable forecasting of growth
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dependent on season and temperature, and also how grassland
productivity may be affected by climate change.

SEASONAL PATTERNS OF GRASS
GROWTH

Temperature has a major impact on the growth of temperate
forage grasses, such as perennial ryegrass (Lolium perenne).
For example, soil temperature was identified as the main
determinant of growth in the South of Ireland (Hurtado-Uria
et al., 2013a; see Monitoring Grassland Productivity). While
low rates of growth can occur at temperatures down to 0◦C,
leaf elongation of perennial ryegrass was shown to increase
strongly at temperatures above 5◦C (Peacock, 1975). More recent
work (Nagelmüller et al., 2016) also demonstrates low rates of
leaf elongation in winter wheat, summer barley and perennial
ryegrass at temperatures down to 0◦C, with an abrupt increase
above 5◦C. Minor, but significant genotype-specific differences
were found for growth at low temperatures, which could be
exploited in breeding.

In addition to environmental conditions, developmental
factors determine the growth of grass: productivity is highest
in late spring and early summer and declines later in the
summer (Hurtado-Uria et al., 2013a). Although, productivity
is determined not only by the growth of individual leaves, but
also by leaf production/tillering, measurement of leaf elongation
can provide useful physiological information about the processes
that determine biomass production. Often, there is a distinct
peak of leaf extension in spring (Peacock, 1975; Parsons and
Robson, 1980; Davies et al., 1989). These seasonal effects are
demonstrated by transfer from cold into warm conditions. For
example, a growth spurt was found after transfer of Italian
and perennial ryegrass to warm conditions in February, but
growth was lower after transfer in mid-April (Davies et al.,
1989). This shows that ryegrass has the highest potential for
growth early in the year, whereas developmental factors limit
the temperature response later in the season. Furthermore, mild
frost in winter and early spring can stimulate compensatory dry
matter (DM) production in perennial grasses (Østrem et al.,
2010).

COLD ACCLIMATION AND WINTER
PERSISTENCE

An important factor for grassland productivity is winter
persistence. Even in mild climates loss of biomass can occur
during the winter (e.g., Hennessy et al., 2006), and lack of
persistence can also affect the relative abundance of species and
cultivars after the winter, e.g., resulting in a loss of the biomass
of clover, which is often grown with grass in mixed swards
(Wachendorf et al., 2001) and loss of perennial ryegrass tillers
(Hennessy et al., 2008).

The process of cold acclimation that results in winter
hardiness has been well characterized in temperate forage grasses.
Fructans, which accumulate during summer and autumn and

peak in December (Pollock and Jones, 1979), can protect the
plants against stress (Sandve et al., 2011) and serve as a carbon
source for regrowth in spring (Pollock and Jones, 1979; Tamura
et al., 2014). The C-repeat binding factor (CBF) dependent cold
acclimation pathway that was originally identified in Arabidopsis
thaliana is also active during cold acclimation in perennial
ryegrass (Xiong and Fei, 2006). More recently, analysis of changes
in the transcriptome of perennial ryegrass showed disruption
of the circadian rhythm network during cold acclimation in a
variety adapted to warmer climates (Abeynayake et al., 2015).
Candidate gene association mapping identified alleles of genes
associated with winter survival and spring regrowth, including a
CBF gene (Yu et al., 2015).

Compared to forage grasses, the information about processes
underlying cold acclimation is limited for white clover (Trifolium
repens), which can show lack of persistence during the winter.
White clover requires slightly higher temperatures for growth
than perennial ryegrass, thus limiting its persistence in mixed
swards at temperatures below 10◦C (Collins and Rhodes, 1995).
In addition to low temperature alone, shading by grass tillers has
a negative impact on the clover content of mixed swards, but
only in combination with low spring and winter temperatures
(Wachendorf et al., 2001). In white clover carbon accumulates
in the form of pinitol and sucrose in the stolons during winter
(Turner and Pollock, 1998), and cold exposure results in the
accumulation of vegetative storage proteins in the roots and
stolons. These vegetative storage proteins have a role as nitrogen
store, but they may also be involved in the cold acclimation
process (Goulas et al., 2003).

There are trade-offs between cold acclimation and growth
during the winter – the synthesis of compounds required for cold
hardiness limits carbon availability for growth. As discussed by
Parsons et al. (2013) growth of perennial grasses may be limited
not by resource availability but by maximizing long-term fitness.
Breeding for increased frost hardiness can therefore result in
low growth rates, whereas cultivars with increased growth at low
temperature may be more susceptible to damage by frost. Growth
and frost hardiness therefore both need to be optimized together
for future climatic conditions.

PHYSIOLOGICAL MECHANISMS
UNDERLYING GRASSLAND
PRODUCTIVITY DURING THE GROWING
SEASON

In humid temperate climates, uptake of CO2 by grassland
can continue throughout the year (Peichl et al., 2011),
even at below-zero temperatures (Skinner, 2007), although
solar radiation and daylength may be limiting photosynthesis
during the winter months. Once light conditions become
more favorable, growth can be actively restricted by processes
that inhibit cell division and expansion at low temperature.
Thus, instead of being source-limited, growth becomes sink-
limited (Wingler, 2015). Hormone signaling pathways play
an important role in this regulation, in particular gibberellic
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acid (GA) signaling. For Arabidopsis it has been shown
that GA stimulates growth by targeting growth-inhibiting
DELLA proteins for degradation. At low temperature, CBF-
dependent cold acclimation reduces GA content, resulting in
DELLA accumulation and growth inhibition (Achard et al.,
2008).

Gibberellic acid also determines the growth of grass species;
for example, it can promote leaf extension of perennial ryegrass
(Stapleton and Jones, 1987). It was proposed that GA plays a
role in the induction of the fructan-degrading enzyme fructan
exohydrolase to promote growth after defoliation (Morvan et al.,
1997). As carbohydrate content declines, expression of the gene
for the GA activating GA3 oxidase increases and that of the gene
for the inactivating GA2 oxidase decreases (Liu et al., 2015).
It was therefore proposed that an interaction between sugar
and GA metabolism is responsible for the growth response to
defoliation. In an association mapping study it was demonstrated
that polymorphism of a gene for the DELLA protein GAI (GA
insensitive) can explain differences in leaf elongation in perennial
ryegrass (Auzanneau et al., 2011), demonstrating that not just the
synthesis of active GA, but also GA signaling is involved in the
growth response.

Similar to GA, brassinosteroids stimulate cell division
and expansion (Fridman and Savaldi-Goldstein, 2013), and
brassinosteroid insensitivity results in increased cold tolerance
in Arabidopsis (Kim et al., 2010). Recently, brassinosteroids
have been shown to regulate GA production, thus integrating
both hormone signaling pathways in Arabidopsis (Unterholzner
et al., 2015). Work with the model Brachypodium distachyon
demonstrated that brassinosteroid signaling also determines
growth in a grass species (Thole et al., 2012) and that down-
regulation of brassinosteroid signaling results in increased
drought tolerance (Feng et al., 2015). However, the importance of
brassinosteroids in temperature-dependent growth and possible
interactions with GA have not been reported in grass species.
Jasmonic acid inhibits growth in response to low temperature in
dicot species, such as Arabidopsis (Wingler, 2015), and also seems
to have a growth inhibitory effect in grasses, although its role is
less well-explored than in dicots (Shyu and Brutnell, 2015).

WHAT DETERMINES THE SEASONALITY
OF GRASS GROWTH?

In spring, grass has a higher capacity to respond to warm
temperature than later in the season. Peacock (1975) proposed
that developmental instead of environmental factors are
responsible for these seasonal differences in grass growth. Later
work provided some insight into the nature of these factors.
Reproductive tillers were found to have higher rates of leaf
extension than those that remain vegetative (Davies et al., 1989).
This is in agreement with the finding that vernalization stimulates
leaf extension (Stapleton and Jones, 1987). Seasonal differences
in the growth response to GA that may explain the seasonality
of growth were identified (Ball et al., 2012; Parsons et al.,
2013): perennial ryegrass plants taken from the field in winter
showed a stronger increase in DM production in response to

treatment with GA than plants taken from the field in summer.
Similar to the growth promotion by vernalization (Stapleton
and Jones, 1987), these differences are independent of daylength
(Parsons et al., 2013). It is thus likely that epigenetic changes
that occur during vernalization determine GA response, but
the mechanisms that underlie this interaction have not been
explored.

APPROACHES FOR ANALYZING THE
GENETIC BASIS OF THE GROWTH
RESPONSE OF GRASS SPECIES

Molecular tools enabling identification of genes and their
variants that are responsible for plant growth in response to
environmental and developmental factors are now available for
model grass species. B. distachyon has emerged as a useful
model for molecular studies to identify gene function in grasses.
B. distachyon can easily be genetically modified, and T-DNA
mutant collections are available (Thole et al., 2012). However,
B. distachyon is annual and not adapted to cold climates (Li et al.,
2012), which limits its use as model for perennial cool season
forage grasses. In contrast, the relative B. sylvaticum, combines
many of the advantages of B. distachyon with perenniality and
growth at higher latitudes. It would therefore be an ideal model
system to investigate aspects of temperature-dependent growth
and seasonality. The ease with which transgenic lines can be
created and self-fertility of Brachypodium species make them
easier to use in functional studies than out-breeding forage
grasses.

Association genetics now allows the identification of genetic
polymorphisms that determine important traits. In forage
grasses, association mapping has so far mainly been limited
to candidate genes, e.g., establishing associations between
polymorphisms in the GAI gene and leaf elongation (Auzanneau
et al., 2011) and in a C-repeat binding factor (CBF) gene
with winter survival (Yu et al., 2015). Further development
of the genetic tools and approaches (Kopecký and Studer,
2014) should make genome-wide association studies (GWAS)
in forage grasses possible in the near future. The knowledge
gained can then be directly used in breeding by marker-assisted
selection or genomic selection (Hayes et al., 2013; Grinberg et al.,
2016).

MONITORING GRASSLAND
PRODUCTIVITY

Monitoring grassland productivity provides valuable information
for scientists, advisors and researchers. There is a long history
of recording grassland production through cutting and weighing
grass samples in the field (e.g., Davies and Simons, 1979;
Binnie et al., 2001; O’Connor et al., 2012). For physiological
research that requires recording of subtle differences in grass
growth under controlled conditions or in the field, the Leaf
Length Tracker (Nagelmüller et al., 2016) provides accurate
information for leaf elongation which could, e.g., be used to
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determine the genetic basis of physiological responses. However,
this technology was not developed with the aim of determining
biomass production under management regimes such as cutting
and grazing.

The small-plot cutting method is the most widely used
research technique (Hopkins, 2000) which attempts to simulate
grazing or forage conservation management with different
intervals, typically of 3 or 4 weeks. There are a range of
methods available for measurement. The method developed by
Corral and Fenlon (1978) involves recording the yield from
four series of plots harvested in rotation, 1 week apart. Grass
growth is estimated using a simple quadratic function which
accelerates grass growth steadily from zero immediately after
harvest.

Hurtado-Uria et al. (2013a) used multiple regression analysis
to examine the relationship between grass growth measured using
the Corral and Fenlon (1978) methodology and meteorological
data at Teagasc, Animal and Grassland Research and Innovation
Centre (AGRIC), Moorepark, Fermoy, County Cork in the south
of Ireland from 1982 to 2010. Those authors found that the effects
of a number of meteorological factors on grass growth varied
depending on season (Table 1). Temperature has a significant
effect in all seasons, as does evapotranspiration.

Plot based estimates of grassland production are useful but
somewhat artificial in the context of grass-based ruminant
production systems in which grazing comprises the predominant
method of feeding. Techniques such as the rising platemeter,
cut and weigh, and visual estimation can be used on farm
(O’Donovan, 2000). Monitoring grassland production using
these techniques provides farmers with reliable information with
which to make decisions around managing grass supply, selection
of paddocks for grazing or silage, feeding, supplementation, and
fertilizer.

Collecting herbage production data from commercial dairy,
beef and sheep farms in a database will allow the evaluation of
the effects of various management, soil and meteorological factors
on grass production. Recently, Teagasc, AGRIC, Moorepark,
Fermoy, County Cork, Ireland developed PastureBase Ireland1

1https://www.pasturebase.teagasc.ie/

TABLE 1 | Meteorological factors influencing grass growth based on an
analysis of grass growth and meteorological conditions recorded at
Teagasc, AGRIC, Moorepark, Fermoy, County Cork, Ireland by
Hurtado-Uria et al. (2013a).

Season Variable

(1) January to March Evapotranspiration

Soil temperature at 100 mm

(2) April to mid-June Soil temperature at 50 mm

(3) Mid-June to August Maximum temperature

Evapotranspiration

Minimum temperature

Sunshine hours

(4) September to December Evapotranspiration

Minimum temperature

for this purpose. O’Donovan et al. (2016) used the database to
examine the effects of spring nitrogen fertilizer application and
autumn closing date on spring herbage production.

Other methods for measuring grassland productivity include
remote sensing and eddy covariance analysis. Remote sensing is
potentially useful for comparing the current state of grass growth
to the average, to the same time the previous year, or between
regions. Different methods can be used to analyze satellite images
with different levels of accuracy (Ali et al., 2016). The main
limitations of remote sensing include the image resolution and
noise associated with the satellite observations. Eddy covariance
(eddy flux) analysis can be used to monitor grassland CO2
exchange. While this method does not provide a direct measure
of grass growth, measurement of net ecosystem CO2 exchange
in intensively managed grassland in Ireland indicated highest
productivity in April and May (Peichl et al., 2011), which is in
agreement with grass biomass production (Hurtado-Uria et al.,
2013a). However, in contrast to foliage production (Table 1),
net ecosystem CO2 exchange was not correlated with spring
temperature (Peichl et al., 2011), which indicates differences
in the response of leaf growth and below-ground processes to
temperature.

MODELING GRASS GROWTH IN A
CHANGING CLIMATE

In the last number of decades many models that describe grass
growth have been developed, varying from simple empirical
(e.g., Brereton et al., 1996) to more complex mechanistic
models (e.g., Thornley, 1998; Jouven et al., 2006; Johnson et al.,
2008). Such models provide increased understanding of the
processes involved in grass growth and its interaction with farm
management, as well as examining the environmental impact
on grassland. Grass growth models are often a sub-model or
component of larger farm system models, e.g., in APSIM (Keating
et al., 2003), PaSim (Soussana et al., 2004; Graux et al., 2011),
EcoMod, DairyMod and the SGS Pasture Model (Johnson et al.,
2008), and as such are fully integrated with animal intake,
grazing behavior and production, as well as N and C balances
and other environmental impacts. Integrated models can be
used to examine the effects of a changing climate on grass
production and the impacts on animal production systems; e.g.,
Graux et al. (2011) used the PaSim model to assess climate
change effects on pasture and herbivore production. Evaluation
of models is important to ensure that a model selected for use
in a particular region or scenario is useful (Hurtado-Uria et al.,
2013b).

User-friendly grass growth prediction models that provide real
time information using forecasted meteorological data and farm
management data to predict grass growth and hence herbage
supply can allow farmers to manage a key resource on their farms.
Incorporating machine learning techniques into a grass growth
predictor would increase the accuracy of the prediction for
individual farms. Combining mechanistic grass growth models
with remote sensing analysis of grass production is likely to
improve the accuracy of grass growth prediction.
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CONSEQUENCES FOR BREEDING TO
IMPROVE GRASSLAND PRODUCTIVITY

While grass breeders have traditionally focused on total
annual DM production when breeding grasses, there is an
increasing realization that seasonal DM production is important.
O’Donovan et al. (2011) highlighted the importance of early
spring grass in pasture-based ruminant production systems.
McEvoy et al. (2010) reported that winter DM yield is worth up
to five times the value of spring and summer DM yield in Irish
pasture-based dairy production systems. As highlighted here, a
key trait that should be focused on in breeding is overwinter and
early spring growth. This will require a focus on the response
to environmental and internal (metabolic and hormone) signals
in breeding to overcome the conservative utilization of resources
that limits growth (Parsons et al., 2011, 2013). However, breeding
grasses with increased overwinter growth must be undertaken
with care, especially when the grasses are used in areas that
experience even occasional cold winters (Stewart and Hayes,
2011). Stewart and Hayes (2011) suggest that it may be possible to
combine strong early spring growth with a suitable level of winter
hardiness even for colder winter regions (see Cold Acclimation
and Winter Persistence).

Advances in plant breeding to meet the requirements for
various traits depends on the type and quality of the germplasm/

genetic resources available, and while selecting for a particular
trait, breeders have to be aware of the other key plant traits
required for the environment and system they are breeding
for. Using traditional methods, the timescale for delivering
a new grass cultivar to the market is up to 18 years.
Adoption of new technologies, such as GWAS and genomic
selection (Hayes et al., 2013; Kopecký and Studer, 2014;
Grinberg et al., 2016) may increase this rate of delivery,
which is vital in view of the current rapid change in
climate.
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