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The urgent need for major gains in industrial crops productivity and in biofuel production

from bioenergy grasses have reinforced attention on understanding C4 photosynthesis.

Systems biology studies of C4 model plants may reveal important features of C4

metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and

developed protocols to perform systems biology studies. As part of the systems

approach, we have developed and used a genome-scale metabolic reconstruction in

combination with the use of multi-omics technologies to gain more insights into the

metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured

in mature and immature stem/leaf phytomers, and the multi-omics data were integrated

into the metabolic reconstruction framework to capture key metabolic features in different

developmental stages of the plant. RNA-Seq reads weremapped to the S. italica resulting

for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities

and differences in central metabolism of mature and immature tissues, transcriptome

analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME

and NAD-ME). Although much greater expression levels of NADP-ME genes are

observed and confirmed by the correspondent protein abundances in the samples,

the expression of multiple genes combined to the significant abundance of metabolites

that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that

S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under

different plant developmental stages. The overall analysis also indicates different levels

of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle,

amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics

analysis reveals different biological entities and their interrelation and regulation over plant

development. With this study, we demonstrated that this systems approach is powerful

enough to complement the functional metabolic annotation of bioenergy grasses.
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INTRODUCTION

Need for a C4 Model System
C4 photosynthesis drives productivity in several major food
crops and bioenergy grasses, including corn, sugarcane, sorghum,
and switchgrass (Sage and Zhu, 2011). Gains in productivity
associated with C4 photosynthesis include improved water,
carbon, and nitrogen use efficiencies. Therefore, understanding
C4 metabolism and its underling regulatory network is
fundamental for improvement of important industrial crops.

Over recent years, Setaria italica and its wild ancestor Setaria
viridis (green millet); members of the Panicoideae clade and
closely related to several of the major C4 bioenergy grasses
(Defelice, 2002), have been proposed as the potential new models
to fill this need for a C4 model plant (Doust et al., 2009; Brutnell
et al., 2010; Li and Brutnell, 2011). Setaria model plants present a
few advantages for physiological studies over bioenergy grasses
such as: (i) relatively small genome (∼450 Mb), (ii) simple
growth requirements, and (iii) rapid life cycle (Doust et al., 2009;
Brutnell et al., 2010; Li and Brutnell, 2011; Bennetzen et al., 2012;
Zhang et al., 2012; Martins et al., 2015). Therefore, both Setaria
species are likely to facilitate systems biology studies in order to
understand C4 metabolism and its underling regulatory network.

Genome-Scale Reconstruction and
Systems Biology Studies for Model
Organisms
By having an experimental platform (plant model), the generated
experimental data (wet side) can be integrated into an in silico
platform (dry side) for systems biology studies. The in silico
platform can be created through the characterization of entire
networks (so called genome-scale metabolic reconstructions).
This systems approach has enabled insights into biological
processes revealing emergent properties of the biological
networks (Resendis-Antonio et al., 2007; Oberhardt et al., 2009;
Saha et al., 2014). A metabolic reconstruction is a well-structured
description of the network topology that enables derivation of
genome-scale models (GEMs) that are used to mimic different
metabolic states of an organism (Satish Kumar et al., 2007; Thiele
and Palsson, 2010). Such technology has gained popularity for
systems biology studies as it enables the integration of omics and
overall analysis to explore the interplay of metabolic networks
(Saha et al., 2014). A few metabolic reconstructions have been
developed for different plant species, including Arabidopsis
(Poolman et al., 2009; de Oliveira Dal’Molin et al., 2010a;
Mintz-Oron et al., 2012), maize (de Oliveira Dal’Molin et al.,
2010b; Saha et al., 2011), sugarcane, and sorghum (de Oliveira
Dal’Molin et al., 2010b). Although, challenges arise due to large
genome sizes and metabolic complexity (de Oliveira Dal’Molin
and Nielsen, 2013), the derived GEMs predicted important
physiological scenarios (de Oliveira Dal’Molin et al., 2010a,b),
including cooperative C4 photosynthesis in bundle sheath and
mesophyll cells (de Oliveira Dal’Molin et al., 2010b), diurnal cycle
in C3 and crassulacean acid metabolism in leaves (Cheung et al.,
2014) nitrogen availability in maize leaf (Simons et al., 2014).
More recently a multi-tissue genome-scale model framework
was developed and used to investigate diurnal cycle and C/N

translocation efficiency across the whole plant (de Oliveira
Dal’Molin et al., 2015). In other recent study, multi-omics
integration and modeling was used to elucidate the light-specific
transcriptional signatures of rice metabolism (Lakshmanan et al.,
2015). The reconstruction-modeling approach has proven a
powerful tool to study the complexity of metabolism and is
believed to advance plant metabolic engineering studies when
used in combination with experimental design (de Oliveira
Dal’Molin and Nielsen, 2013; de Oliveira Dal’Molin et al., 2014).
Considering its potential use, a metabolic reconstruction of the
Setaria model plant is likely to facilitate multi-omics integration
and analysis in order to understand the interplay of metabolic
networks in C4 plant metabolism. In this work, we developed a
metabolic reconstruction of S. italica to perform systems biology
studies. We have also developed protocols to perform omics
analysis in mature and immature tissues. By implementing such
an approach, we have attempted to capture keymetabolic features
in different developmental stages of the C4 model plant.

MATERIALS AND METHODS

Plant Material
S. italica seeds were sown into grade 2 vermiculite (Ausperl)
supplemented with Osmocote R© (Scotts Australia) in a 6 × 5
well-plastic seedling tray. The seedling tray was placed in a 4
cm deep tray containing 3 cm of water and placed in a plant
growth cabinet (Percival E41-HO) with a 12 light (28◦C), 12
dark (24◦C) cycle, with a light intensity of ∼500 µmol/m2/s.
The seedling tray was covered with a transparent plastic cover to
retain moisture until seedlings emerged. The plants were watered
regularly to maintain water in the bottom tray. Once per week the
plants were fertilized with 100mg/L of soluble fertilizer (Flowfeed
Ex7, Grow Force). As seedlings emerged, they were thinned to
four seedlings per well and grown until 35 days old at which
point the plants contained both developing and mature stem/leaf
phytomers. A mature phytomer was chosen from near the base
of each plant, which contained a healthy, fully mature green leaf
and leaf sheath, and the associated node together with the stem
material above the node until just below the next node. As it
is difficult to successfully isolate an intact individual, immature
leaf/stem phytomer from the top of the plant, the whole top of the
plant was removed above the node associated with the first fully
unfurled leaf. Samples were pooled in groups of four to increase
biomass. A total of 5 replicates of mature and immature pooled
leaf samples were taken and snap frozen in liquid nitrogen. The
plant material was ground to a fine powder in liquid nitrogen and
stored at−80◦C until required for analysis.

Transcriptome
RNA Extraction and Sequencing
Total RNA was extracted from 100mg of tissue using the Bio-
Rad Aurum Total RNA kit for fatty and fibrous tissue as per the
manufacturer’s instructions, including the on-column DNaseI
treatment. The quality of the RNA was determined using the
Agilent Bioanalyser before proceeding (RIN = 7.6–8.7; data not
shown). RNA sequencing, including library preparation, was
performed by the genomics facility at the Kinghorn Centre for

Frontiers in Plant Science | www.frontiersin.org 2 August 2016 | Volume 7 | Article 1138

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


de Oliveira Dal’Molin et al. Systems Biology of a C4 Model Plant

Clinical Genomics (Garvan Institute of Medical Research, 384
Victoria St, Darlinghurst, NSW 2010, Australia). Briefly, RNA-
Seq libraries were prepared using the Illumina TruSeq Stranded
mRNA Library kit using the standard protocol to produce
libraries with an average size of 309 bp. These libraries were then
sequenced on an Illumina HiSeq 2500 system (HiSEQ Control
Software 2.2.38, RTA 1.18.61) following the standard rapid
sequencing workflow. Samples were loaded at a concentration of
14 pM and a total of 209 cycles of sequencing were completed
consisting of 2× 101 bp reads and a single 7 bp index sequence.

Data Processing
RNA-Seq reads were mapped to the S. italica (Sitalica_164
from Phytozome v9.0) reference genome using Tophat v2.0.12
(https://ccb.jhu.edu/software/tophat/; Kim et al., 2013), resulting
in 78% of the total 350 million reads mapping. Differential
expression was determined using Cufflinks v2.2.1 (http://cole-
trapnell-lab.github.io/cufflinks/; Trapnell et al., 2013). Each of
the six BAM files (three per condition) generated by Tophat2
were converted to abundance files using cuffquant. The two sets
of tripilicates were then compared with cuffdiff using geometric
normalization and with fragment bias correction and multi read
correction. The annotation file used was the Phytozome v9.0
Sitalica_164_gene.SETIT gff3 file.

Gene Ontology
Gene ontology analysis was performed using agriGO: A web-
based database for gene ontology analysis, that supports special
focus on agriculture species (Du et al., 2010).

Proteome
Protein Extraction
The proteome of four biological replicates of mature and
immature stem/leaf phytomers were analyzed. Proteins were
extracted by lysing 100mg of chopped mature or immature
tissues with 2% SDS, 6.4 M urea, 0.1 M Tris-HCl, and 0.1 M
dithiothreitol buffer at pH 8.5. Therefore zirconia beads (0.5 mm
diameter) were added to the samples and homogenized (Precellys
24, Bertin) using a liquid nitrogen cooler (Cryolys, Bertin). The
homogeniser operated at 11◦C with 3 cycles of 45 s at 6500 rpm,
with 30 s intervals between cycles. Samples were then centrifuged
at 13,000 rpm for 10 min at 4◦C, and the protein concentration
in the supernatant was measured using the 2D Quant Kit (GE
Healthcare).

Protein Digestion
Samples were digested using filter aided sample preparation with
some modifications (Wisniewski et al., 2009; Abdallah et al.,
2012). Briefly, 150 µg of protein was diluted to a total volume
of 200 µL with buffer A (8 M urea in 0.1 M Tris–HCl, pH
8.5), loaded into Amicon Ultra-0.5 mL centrifugal filters with
nominal cutoff of 30 kDa (Wisniewski et al., 2011; Millipore), and
centrifuged at 14,000 × g for 15 min. Proteins were washed with
200 µL of buffer A by centrifugation at 14,000 × g for 15 min.
Hundred microliters of 50 mM iodoacetamide in solution A was
added and incubated in the dark at room temperature (RT) for 30
min. Samples were centrifuged at 14,000× g for 15 min followed

by two washes with 100 µL of buffer A. An additional wash with
100 µL of triethylammonium bicarbonate (TEAB) solution was
performed. In-filter-digestion was undertaken overnight at 37◦C
with gentle agitation (50 rpm) using a trypsin to protein ratio of
1:10. Peptides were collected by centrifugation of the filter units at
14,000 × g for 15 min, followed by one additional 30 µL elution
with TEAB.

iTRAQ Labeling
Samples were labeled according to iTRAQ manufacturer’s
protocol. In summary, 50 µg of peptides from each sample was
labeled with a different 8-plex iTRAQ reagent, switching between
conditions, and incubated at room temperature for 2 h. Samples
were then combined, concentrated using a vacuum centrifuge,
and desalted using a Sep-Pak tC18 1 cc Vac Cartridge (Waters).
Acetonitrile from the elution buffer was removed with a vacuum
centrifuge prior to fractionation.

Fractionation
The iTRAQ mixture was fractionated using an Agilent OFFGEL
3100 fractionator with a 24 cm GE Healthcare Immobiline
DryStrip with a nonlinear pH range of 3–10. The strip was
rehydrated with a buffer containing 4.8% glycerol and 0.96%
IPG buffer pH 3–10 (GE Healthcare) for 15 min. Peptides were
diluted in 3.6 mL of the buffer and added in equal amounts to
each well. Fractionation was achieved using the default program
for peptides “OG24PE01” which targets 50 kVh with maximum
values of 4500 V, 200 mW, and 50 mA. The 24 resulting fractions
were combined into 18 fractions and desalted using a Sep-Pak
tC18 1 cc Vac Cartridge (Waters). Each fraction was concentrated
using a vacuum centrifuge and resuspended in 0.1% formic acid.
Four microgram of labeled peptides were injected into the LC-
MS/MS ((liquid chromatography tandem mass spectrometry).

LC-MS/MS Analysis
Samples were separated on a Shimadzu Prominence nanoLC
system as described elsewhere (Kappler and Nouwens, 2013),
with the subsequent modifications. Peptides were desalted with
an Agilent C18 trap (0.3 × 5 mm, 5 µm) at a flow rate of
30 µL/min for 3 min and separated on a Vydac Everest C18
(300 A, 5 µm, 150 mm × 150 µm) column at a flow rate
of 1 µL/min, using a gradient of 10–60% buffer B1 over 75
min (buffer A1 = 1% ACN/0.1% formic acid and buffer B1 =

80% ACN/0.1% formic acid). Eluted peptides were immediately
analyzed on a Triple-TOF 5600 instrument (ABSciex) equipped
with a Nanospray III interface. Gas 1 was set to 10 psi, curtain gas
to 30 psi, and ion spray floating voltage to 2700 V. Samples were
scanned across m/z 350–1800 for 0.5 s followed by information-
dependent acquisition on high sensitivity mode of 20 peptides
with intensity>100 counts acrossm/z 40–1800 for 0.05 s. Rolling
collision energy was used.

Data Analysis
MS/MS data was analyzed using the Paragon Algorithm from
ProteinPilot v4.5 (ABSciex, Forster City CA; Shilov et al.,
2007) The 24 fractions were analyzed simultaneously using
ProteinPilot. Protein sequences for S. Italica were downloaded
from Phytozome v9.0 database, containing 34,725 proteins.
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Search parameters included false discovery rate analysis and
“thorough” settings. Only proteins identified with at least 2
peptides with more than 95% confidence score and an unused
score higher than the 5% local false discovery rate score of all
identified proteins were included in the statistical analysis.

Statistical Analysis
The protein ratios obtained by ProteinPilot were log2-
transformed and fitted for each protein to a linear model
using the R package Limma (Smyth, 2005). A moderated t-
statistic test was calculated for the contrast using Limma’s Bayes
method, and if the adjusted p < 0.05, proteins were classified as
differentially abundant in mature and immature tissues (Smyth,
2004).

Targeted Metabolome
Metabolite Extraction
Metabolites were extracted for subsequent liquid
chromatography using a modification from Glassop et al.
(2007). Briefly, 100mg frozen leaf powder was added to 700 µL
extraction solution. The extraction solution consisted of 70mL
methanol, 200 µL of 10 mM 13C5

15N-valine (aq), 200 µL of
1 mM 13C6-sorbitol (in MeOH), 200 µL of 5 mM 1,2-13C2-
myristic acid (in CHCl3), 4mL of 0.2 mg/mL adonitol + 0.2
mg/mL norleucine (aq) and 6mL of 2mg/mL nonadecanoate
methyl ester (in CHCl3). Samples were immediately incubated
at 70◦C for 10 min with frequent inversion. Five hundred and
eighty microliters of deionized water and 500 µL of CHCl3 were
then added, and the sample was vortexed for 1 min. Polar and
nonpolar phases were separated by centrifugation at 15,000 g for
10 min at 4◦C. The polar phase was re-extracted with CHCl3.

Central Carbon Metabolites (LC-MSMS)
Reference standards and tributylamine (puriss plus grade) were
purchased from Sigma Aldrich (Sigma Aldrich, NSW, Australia).
HPLC Grade acetonitrile and acetic acid (AR Grade) was
purchased from RCI Labscan (Bangkok, Thailand) and Labscan
(Gliwice, Poland), respectively. Deionised water was generated
via an Elga Purelab Classic water purification unit (Veolia Water
Solutions and Technologies, Saint Maurice Cedex, France).

Liquid chromatography tandem mass spectrometry (LC-
MS/MS) data were acquired on a Dionex UltiMate 3000 liquid
chromatography system (Dionex, California, USA) coupled to
an ABSciex 4000 QTRAPmass spectrometer (ABSciex, Concord,
Canada). The liquid chromatography system was controlled by
Chromeleon software (Dionex), and chromatographic separation
was achieved by injecting 10 µL onto a Gemini-NX C18
150 × 2 mm I.D., 3 µm 110 Å particle column (Phenomenex,
Aschaffenburg, Germany) equipped with a pre-column Security
Guard Gemini-NX C18 4 × 2 mm I.D. cartridge. The column
oven temperature was controlled and maintained at 55◦C
throughout the acquisition and the mobile phases (adapted from
Luo et al., 2007) were as follows: 7.5 mM aqueous tributylamine
adjusted to pH 4.95 (±0.05) with glacial acetic acid (eluent A)
and acetonitrile (eluent B). The mobile phase flow rate was
maintained at 300 µL/min throughout the gradient profile (see

Table S1) and was introduced directly into the mass spectrometer
with no split.

The mass spectrometer was controlled by Analyst 1.5.2
software (ABSciex) and was equipped with a TurboV
electrospray source operated in negative ionmode. The following
optimized parameters were used to acquire scheduled Multiple
Reaction Monitoring (MRM) data: Ionspray voltage −4500 V,
nebulizer (GS1), auxiliary (GS2), curtain (CUR), and collision
(CAD) gases were 60, 60, 20, and medium (arbitrary units),
respectively, generated via a N300DR nitrogen generator (Peak
Scientific, Massachusetts, USA). The auxiliary gas temperature
was maintained at 350◦C. The analyte-dependent parameters for
the detection of central carbon metabolites are shown in Table
S2. For all analytes the entrance potential (EP) was−10 volts.

The samples were run with sample- and analyte-relevant
calibration standards and pooled QC samples (Sangster et al.,
2006; Hodson et al., 2009) to control for reproducibility of data
acquisition and to ensure data integrity. Analyte stock solutions
were prepared in purified water (Veolia) and aliquots of each
solution were mixed to achieve a final calibrant solution at 200
µM. This calibrant solution was serially diluted and the dilutions
used as calibration standards from 200 to 0.006 µM, constituting
7≤ x≤ 20 calibration points to account for differential responses
in the mass spectrometer. As an internal standard, 1 µl of a 1
mM aqueous solution of azidothymidine was added to 99 µl of
sample. Data were processed using MultiQuant 2.1 software (AB
Sciex).

Amino Acid Analysis
Amino acids were quantified using a high-throughput method
developed from our previous work (Dietmair et al., 2010; Chacko
et al., 2014). In brief, samples were diluted 1:1 with internal
standards and derivatised amino acids were analyzed by RP-
HPLC. Derivatisation was performed in a high-performance
autosampler (Agilent HiP-ALS SL, G1367C). 0.5 µL of sample
containing 250 µM of internal standards, sarcosine and 2-
aminobutanoic acid, was added into 2.5 µL of borate buffer
(0.4 N, pH 10.2, Agilent PN: 5061-3339), mixed and incubated
for 20 s at 4◦C. One microliter of OPA reagent (10mg o-
pthalaldehyde/mL in 3-mercaptopropionic acid, Agilent PN:
5061-3335) was then added to initially derivatise primary amino
acids. The reaction was mixed and incubated for 20 s at 4◦C.
Then 0.4 µL of FMOC reagent (2.5mg 9-fluorenylmethyl
chloroformate/mL in acetonitrile, Agilent PN:5061-3337) was
added, mixed, and incubated for 20 s at 4◦C, to derivatised other
amino acids. 45.6µL of Buffer A (40mMNa2HPO4, 0.02%NaN3,
pH 7.8) was added to lower the pH of the reaction prior to
injecting the 50 uL reaction onto an Agilent Zorbax Extend C-
18 column (3.5 µm, 4.6 × 150 mm, Agilent PN: 763953-902)
with a guard column (SecurityGuard Gemini C18, Phenomenex
PN: AJO-7597). Column temperature was maintained at 37◦C in
a thermostatted column compartment (Agilent TCC, G1316B).
Chromatography was performed using an Agilent 1200-SLHPLC
system, equipped with an active seal wash and a degasser (Agilent
Degasser, G1379B). The HPLC gradient was 2–45% B2 from
0 to 18 min, 50–60% B2 from 18.1 to 20 min, 100% B from
20.1 to 24 min, and 2% B2 from 24.1 to 27 min—using a
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binary pump (Agilent Bin Pump SL, G1312B). Buffer B was
45% acetonitrile, 45% methanol, and 10% water. Flow rate was
2 mL/min. Derivatised amino acids were monitored using a
fluorescence detector (Agilent FLD, G1321A). OPA-derivatised
amino acids were detected at 340ex and 450em nm from 1 to
18 min, and FMOC-derivatised amino acids at 266ex and 305em
nm from 18 to 27 min. Chromatograms were integrated using
ChemStation (Rev B.03.02[341]).

Sugars, Alcohol, and Organic Acid Analysis
Organic acids, sugars, and alcohol were quantified by ion-
exclusion chromatography using an Agilent 1200 HPLC system
and an Agilent Hiplex H column (300 × 7.7 mm, PL1170-
6830) with guard column (SecurityGuard Carbo-H, Phenomenex
PN: AJO-4490; McQualter et al., 2016). Sugars and alcohols
were monitored using a refractive index detector (Agilent RID,
G1362A) set on positive polarity and optical unit temperature
of 40◦C, while organic acids were monitored at 210 nm (Agilent
MWD, G1365B). Thirty microliters of sample was injected onto
the column using an autosampler (Agilent HiP-ALS, G1367B)
and column temperature kept at 65◦C using a thermostatted
column compartment (Agilent TCC, G1316A). Analytes were
eluted isocratically with 4 mM H2SO4 at 0.6 mL/min for 26
min. (Add the following sentence if applicable). To avoid high
temperature acid hydrolysis, sucrose was analyzed separately at
a column temperature of 15◦C and by using high purity water
(18.2 M� cm) as the mobile phase, and eluted isocratically at
0.4 mL/min for 21 min. Chromatograms were integrated using
ChemStation (Rev B.03.02[341]).

GC-MS FAME Analysis
Fatty acids were converted to their methyl esters and measured
using a method based on published methods developed for
GC-MS by Metabolomics Australia. Briefly, lipid extracts were
saponified for 2 h at 80◦C with 200 µL of 2 M NaOH and
400 µL of methanol. Upon acidification with 40 µL of 37.5%
concentrated HCl, 400 µL of chloroform were added and the
mixture vortexed thoroughly. Phase separation was accelerated
by centrifugation for 3min at 3000× g. The chloroform layer was
collected and evaporated in a vacuum centrifuge. Two hundred
microliters of 2% H2SO4 in methanol were then added to the
extracts and incubated for 2 h at 80◦C. Once they reached RT, 200
µL of 0.9% NaCl were added and vortexed thoroughly. For the
recovery of the fatty acid methyl esters (FAME) 300 µL of hexane
were used. A volume of 2 µL of the hexane layer was injected
directly in the GC-MS in splitless mode, at 350◦C using helium as
a carrier gas under a constant flow of 1mL/min. Metabolites were
separated on a Varian capillary column (Factor FOUR VF-5 ms:
0.25 mm i.d., 0.25 µm film, 30m length with a 10m fused guard
column; Varian, Mulgrave, Australia) installed on an Agilent
7890A gas chromatograph coupled to an Agilent 5975C MSD
mass spectrometer (Agilent Technologies, Santa Clara, USA).
The initial temperature of the separation program (70◦C) was
held for 5 min, then increased to 320◦C at a rate of 9◦C/min and
finally increased to 325◦C at a 30◦C/min rate and held for 6.3
min. The ion source, quadrupole, and transfer line temperatures
were set at 300, 150, and 280◦C respectively. The methyl esters of

the fatty acids were identified by direct comparison with standard
solutions and were processed in total ion count mode (TIC).

GC-MS metabolite peak identification was based on (a) an in-
house library of standards and (b) on the commercially available
NIST MS library (2012) with a match threshold of 70%.

Pre-processing of GC-MS data was performed using AMDIS
(Automated Mass Spectral Deconvolution and Identification
System version 2.65) software for peak de-convolution
and peak integration. The deconvolution parameters were
selected as follows: Component width = 6; adjacent peak
subtraction = 2; resolution = medium; sensitivity = medium;
shape requirement = medium. The data extracted from
AMDIS were further processed using MassHunter Quantitative
Analysis software for peak curation (version B.06.00, Agilent
Technologies) and Mass Profiler Professional software (version
12.1, Agilent Technologies). All data were normalized to the
internal standard (IS) intensity and were aligned with a retention
time tolerance of 0.1 min. Once processed the data matrix was
exported in.csv format for external data analysis.

Metabolic Reconstruction
The metabolic reconstruction of S. italica was developed based
on its mRNA transcripts homologous mapping, using C4GEM
(de Oliveira Dal’Molin et al., 2010b): a genome-scale model
framework developed for the in silico analysis of C4 plant
species. The plant metabolic reconstruction process is described
in detailed in our previous works (de Oliveira Dal’Molin et al.,
2010a,b). Briefly, the S. italica reconstruction consisted of a few
steps:

(i) Firstly, we used C4GEM (framework developed in house) as
a C4 metabolic core model, which holds primary metabolic
functions shared among C4 plants. This framework adopts
a gene-centric organization of metabolic information, in
which each known metabolic gene is mapped to one or
several reactions.

(ii) Secondly, the S. italica genes were mapped to C4GEM
by using BLAST to identify Zea mays genes in C4GEM.
The set of unique reactions ID were extracted and stored
as a stoichiometric matrix (Java application). In this step,
multiple entries for a reaction in a particular compartment
appearing in the Excel gene-enzyme-reaction table are
collapsed to a single reaction entry.

(iii) Finally, omics datasets of mature and immature tissues of
S. italica were mapped to the metabolic reconstruction for
functional pathway analysis.

RESULTS AND DISCUSSION

GO Term Analysis
The goal of functional profiling is to determine which processes
might be different in particular sets of genes, a process that
is often conducted by determining which Gene Ontology
(GO) terms are differentially represented. The GO terms
are organized in three general categories: Biological process,
molecular function, and cellular component and the terms within
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each category are linked in defined parent-child relationships that
reflect current biological knowledge (Gene Ontology, 2001).

The result of our high-throughput experiment is a set of
genes that are differentially expressed between mature and
immature leaf/stem phytomers of S.italica (Figure 1). When
performing such an analysis, two types of questions may be
addressed: A hypothesis-generating query (such as which GO
terms are significant in a particular set of genes) and a hypothesis-
driven query (such as whether the response to external stimulus
or photosynthesis is significantly enriched or depleted in a
particular set of genes). Considering the most differentially
expressed genes between mature and immature tissues, 40
major functional categories were identified. Approximately 70%
of the presented categories represent transcripts with greater
expression in immature tissues, whereas the remaining categories
represent transcripts with greater expression in mature tissues.
Overall, the GO term analysis indicates that the transcripts
assigned to protein synthesis and cellular metabolic processes
across different organelles to build biomolecules are up-
regulated in young tissues, while genes assigned to catabolic and
degradation pathways, homeostasis, abiotic stress, and cell death
regulatory response are up regulated in mature tissues. A more
comprehensive analysis toward the metabolic pathways context
was adopted using omics data integrated to a genome scale
metabolic reconstruction for further biological interpretation.

Setaria italica Metabolic Reconstruction
and Multiple Omics Mapping
Interpretation of multi-omics results is a non-trivial task.
Statistical inference methods have been widely applied to gain
insight into which genes may influence the activities of others in
a given omics data set, however, they do not provide information
on the underlying mechanisms or whether the interactions are
direct or distal. Therefore, interpretation of such a multitude
of data requires an intuitive pathway context for biological
interpretation, with efforts undertaken in integrated analysis
of omics data within genome-scale metabolic reconstructions
(Greenbaum et al., 2003; Arakawa and Tomita, 2013; Hyduke
et al., 2013). We attempted to access the key differences in
metabolic function between mature and immature tissues by
developing a metabolic reconstruction based on the S. italica
genome to integrate our omics data.

The reconstruction characteristics of S. italica and the
published C4 model plant reconstructions (based on C4GEM) are
presented in Table 1.

S. italica reconstruction holds the main features of a C4

model plant. Primary metabolic functions were tested by gap
filing and by manual curation by homology mapping to C4GEM.
Although the C4 model plants have similar metabolic network
topology, with the C4 traits and metabolic function of the typical
C4 subtypes, the S. italica reconstruction has less gene-reaction
associations andmetabolites, compared to Sorghum, Z. mays, and
sugarcane reconstructions because of its smaller genome.

In this study, the S. italica reconstruction platform was
used to map multi-omics data so as to access to the overall
metabolic contrast in young and mature tissues (complete

mapping is presented in the supplementary file; Table S5).
The same reconstruction can be refined and used to derive
metabolic models. During modeling implementation, omics
data, tissue biomass composition, and plant growth can be
integrated as model-constraints to perform flux analysis. Here,
the reconstruction was used for annotation and omics mapping
and not used for modeling purpose.

mRNA Expression
RNA-Seq reads were mapped to the S. italica genome. Based on
RNA-Seq analysis, 29,423 genes are estimated to be expressed
in mature and immature tissues, which correspond to ∼83%
coverage of the protein coding genes of S. italica genome
(Table 2). To complement this analysis, we used the S.italica
metabolic reconstruction as a platform to assign genes to
enzymatic function and to integrate omics datasets (complete
mapping is presented in the supplementary file; Table S5). As
indicated in Table 2, 15,788 genes (∼54% the protein coding
genes of S. italica genome) were differentially expressed inmature
and immature tissues. Of these, 8361 genes (∼31%) were mapped
to the metabolic reconstruction and 5242 genes (∼20%) were
assigned to enzymatic reactions that were differentially expressed,
indicating differences in metabolic regulation between mature
and immature tissues.

Protein and Metabolite Abundances
To obtain a better understanding of changes in metabolic
function with plant development, we assessed more than one
“layer” of biological information to seek insights into the
metabolic network. Proteins are the major components for
building the cellular structure and they serve as catalytic enzymes
in metabolic pathways. We were able to measure 570 proteins in
immature and mature tissue samples, of which 125 (∼22%) were
significantly differentially abundant in mature and immature
tissues (Table 2). The absolute quantitative measurement of low
abundant proteins especially with complex samples is often
hampered by technical constraints. Although protein coverage is
low compared to the coverage of mRNA transcripts, many of the
enzymes measured indicated different levels of abundances were
found to that participate in central metabolic processes in mature
and immature tissues.

The rate of enzymatic reactions is also regulated by
concentrations of substrates and products (metabolites).
Metabolites are the result of the interaction of the system’s
genome with its environment and reflect the response to
physiological stimuli or genetic modification. We have used
targeted metabolome analysis to measure metabolites of central
carbon metabolism in order to capture their response in young
and mature tissues of S. italica. One hundred metabolites were
measured and mapped to the metabolic reconstruction, of which
67% were differentially abundant in both tissues.

Overall Analysis of Central Carbon
Metabolic Pathways
The developed metabolic reconstruction was used to integrate
our omics data, to capture the metabolic differences and
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FIGURE 1 | Gene ontology of the most differentially expressed transcripts in mature and immature tissues of Setaria italica.
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TABLE 1 | General characteristics of the C4 plant metabolic reconstructions.

Elements C4 model plants (C4GEM)

Setaria italica Sorghum bicolor Zea mays Saccharum officinarum

ORF-reaction association entries 9363 13,114 38,892 13,593

Unique genes (ORFs) 1860 3557 11,623 3881

Metabolites 1690 1755 1755 1755

Extracellular transporters 18 18 18 18

Transporters (intercellular-plasmodesmata) 11 11 11 11

Transporters (interorganelle) 83 83 83 83

Genome size ∼423 Mb (2n = 18) ∼730 Mb (2n = 20) ∼2.4 Gb (2n = 20) ∼10 Gb (2n = 115)

TABLE 2 | Omics mapping of Setaria italic.

Omics mapping

TRANSCRIPTOME

Protein coding genes in S. italica genome* 35,424

S. italica mapped reads 29,423 (83%)

Genes differentially expressed in old and young tissues 15,788 (54%)

Genes expressed and mapped to the metabolic reconstruction 8361 (31%)

Genes differentially expressed and mapped to the reconstruction 5242 (20%)

PROTEOME

Identified proteins 570

Protein differentially accumulated in mature and immature tissues 125

Protein mapped to the metabolic reconstruction 128

METABOLOME (TARGET)

Identified metabolites 100

Metabolites differentially accumulated in mature and immature

tissues

67

Metabolites mapped to the metabolic reconstruction 100

*Phytozome v9 DB (Goodstein et al., 2012).

similarities in young and mature tissues of S. italica,
complementing the GO term analysis.

The most direct way to analyse omics data using a metabolic
reconstruction and modeling platform is to compare omics
measurements with the network topology or model predictions
(Hyduke et al., 2013). The transcriptome and proteome data
were processed and mapped into metabolic network topology
for overall analysis and are presented in Table S5. Here, we
have attempted to abridge our analysis by integrating the data
in pathways of the central carbon metabolism, as depicted in
Figure 2. Significant differences and similarities between mature
and immature tissues of S. italica revealed by omics analysis
are presented with particular attention to: fatty acids synthesis,
biosynthesis of structural components like lignin, and cellulose,
nitrogen fixation, amino acid synthesis, carbon fixation, and C4

metabolism.

Fatty Acids Synthesis
Considering three levels of biological information revealed by
transcriptome, proteome and metabolome data, an example of
positive correlation is observed for the cellular components

that participate in fatty acid synthesis (step 26, Figure 2). The
metabolome analysis shows that the metabolites in glycolysis,
which are the main metabolic building blocks for fatty acids (e.g.,
Acetyl- CoA, malony-CoA), and the saturated fatty acid products
are significantly more abundant in young tissues (highlighted
in red, Figure 2), in comparison to the correspondent levels in
mature tissues. Interestingly, increased levels of unsaturated acids
like omega 3, omega 7, and omega 9 are observed in mature
tissues (Table S4). These mono and poly unsaturated fatty acids
are produced from palmitic acid. According to our data, the
saturated fatty acids are produced in young tissues, serving as the
building blocks to produce the unsaturated fatty acids during the
cell maturation.

In other plants, early studies have shown that the composition
of fatty acids is under genetic control (Poneleit and Alexande,
1965), and their accumulation is influenced by environment,
such as light, temperature (Dybing and Zimmerman, 1966), and
also degree of maturity (Narayan and Joshi, 1971; Dasgupta and
Friend, 1973). Other studies have performed comparative fatty
acids analyses indicating higher levels of fatty acids in mature
leaf tissues, when compared to young leaf tissues of other plant
species (Chu and Tso, 1968; Sayanova et al., 1999).

Structural Components: Cellulose and Lignin
In addition to generating gene expression profiles for mature
and immature tissues, we mapped the differentially expressed
transcripts to cellulose and lignin metabolic pathways in order to
capture gene regulation over the structural biomass components
in the two different developmental stages.

Figure 3 presents the expression level of transcriptsmapped to
the synthesis and degradation of structural biomass components
(cellulose and lignin) that are the most differentially regulated
between mature and immature tissues.

Differentially expressed transcripts assigned to the
degradation and synthesis of cellulose are presented in
Figure 3A. This group is represented by two subsets of
transcripts: One set with greater expression in immature,
and another set preferentially expressed in mature tissues.
This analysis indicates a coordinated regulatory function
that may affect the flux through the cellulose synthesis and
degradation pathways in an orchestrated manner throughout
plant development. The transcripts mapped to cellulose
synthesis (Si021050m and Si028762m) show the greatest
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FIGURE 2 | Gene expression, proteome, and metabolome contrasts in young and immature tissues, assigned to the central carbon metabolism. Gene

expression and proteomics data are provided as log2FC (fold change) but for clarity of the figure only provided if either proteome or transcriptome changed by more

than logFC of 0.5. Metabolite data is provided as concentration fold change. Omics data are highlighted in green, red, and yellow. Green: Increase in gene expression,

protein accumulation, or in metabolite concentration in mature tissues compared to immature tissues. Red: Decrease in gene expression, in protein accumulation, or

in metabolite concentration in mature tissues compared to immature tissues. Yellow: Up and down regulation of genes/enzymes that characterize isoforms in different

tissues and organelles. Gray: No statistically significant difference between tissues. Numbers refer to enzymatic step reactions. Numbers (1–34) refers to enzymatic

step reactions. 1, hexokinase; 2, glucose-6-phosphate isomerase; 3, glyceraldehyde 3-phosphate dehydrogenase (cytosolic and plastidial isoforms); 4, enolase

(cytosolic and plastidial isoforms); 5, pyruvate kinase (cytosolic and plastidial isoforms); 6, pyruvate dehydrogenase complex; 7, citrate synthase (microchondrial and

glyoxomal isoforms); 8, isocitrate dehydrogenase (mitochondrial); 9, malate dehydrohenase (mitochondrial, plastidic, glyoxysomal and cytosolic isoforms); 10, nitrate

reductase; 11, glutamine synthetase; 12, glutamate synthase; 13, ribose 5-phosphate isomerase; 14, histidyl-tRNA synthetase; 15, 2-oxoglutarate aminotransferase;

16, glycine hydroxymethyltransferase; 17, tryptophan synthase; 18,transaminase; 19, aromatic amino acid aminotransferases; 20, peroxidase; 21, branched-chain

amino acid aminotransferase; 22, valyl-tRNA synthetase; 23, aminoacyl-tRNA synthetase family protein; 23, alanine aminotransferase; 24, aldehyde dehydrogenase;

25, acetyl-CoA synthetase (acetate-CoA ligase); 26, fatty acid synthase (acyl-ACP synthases); 27, aspartate aminotransferase; 28, asparagine synthetase; 29,

threonine synthase, threonyl-tRNA synthetase; 30, branched-chain amino acid aminotransferase; 31, isoleucyl-tRNA synthetase; 32, diaminopimelate decarboxylase;

33, glycosyl hydrolase family; 34, cellulose synthase; 35, Rubisco (carboxylation). Some steps were omitted for the sake of simplicity.

expression level; two to five-folds increase in immature tissues,
compared to their expression levels in mature tissues. One of
the requirements for robust cellulose synthesis is the supply
of its substrate UDP-glucose. Plasma membrane- associated
sucrose synthase fulfills this function by catalyzing the formation

of UDP-glucose from sucrose (Haigler et al., 2001). According
to our metabolome analysis, UDP-glucose and sucrose pools
are unchanged in mature and immature tissues of S. italica
under the study conditions, suggesting that the cellulose
changes over the plant development are not controlled by its
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FIGURE 3 | Gene expression mapped to cellulose and lignin pathways. (A) Gene expression in mature and immature tissues mapped to cellulose degradation

(hydrolase family protein; EC 3.2.1.21) and synthesis (cellulose synthase; EC 2.4.1.12) as gene products. (B) Gene expression in mature and immature tissues

mapped to lignin biosynthesis with peroxidases (EC 1.11.1.7) as gene products: Transcripts highlighted in yellow indicate that a corresponding protein product was

detected by proteome analysis. FPKM, Fragments per kilobase of exon per million reads mapped.

substrates, but are most probably controlled at the transcriptional
level.

Figure 3B presents the set of transcripts with significant
differential expression in mature and immature tissues that
were functionally assigned to lignin biosynthesis. For a few
number of transcripts (highlighted in yellow, Figure 3B) we
identified the correspondent protein abundance, which were

higher in mature tissues (Figure 2, step 20). Overall, the data
indicate higher expression in young tissues, suggesting up
regulation of metabolic activity toward the cell wall lignification
process, compared to the down-regulation in the mature stage of
development, where the tissues may reach a metabolic plateau for
the synthesis of cell structural components (like cellulose, lignin
and hemi-cellulose).
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Lignin is a significant structural biomass component,
formed by a large group of aromatic polymers that are
deposited predominantly in the walls of secondarily thickened
cells, making them rigid and impermeable during tissue
maturation (Vanholme et al., 2010). Cell wall lignification
successively involves (i) the biosynthesis of monolignols in
the cytosol, (ii) translocation of the monolignols to the
cell wall and its preformed polysaccharide matrix, and (iii)
oxidative polymerization of the monolignols to form the
lignin polymer (Tobimatsu et al., 2013). Although it is still
not clear how this process occurs, regardless of cell type
undergoing lignification, carbon allocation to the different
monolignol pools is apparently determined by a combination
of phenylalanine availability and cinnamate-4-hydroxylase/“p-
coumarate-3-hydroxylase” (C4H/C3H) activities, as revealed by
transcriptional and metabolic profiling (Anterola and Lewis,
2002).

Based on our multi-omics analysis, phenylalanine; which is
one of the precursors for lignin synthesis, is more abundant
in mature tissues of S. italica. Moreover, the mRNA transcripts
and the protein abundance (assigned to aromatic amino acid
aminotransferases) are positively correlated to phenylalanine
abundance (Figure 2, step 19). These data indicate that the
synthesis of phenylalanine is controlled at the transcriptional and
protein level and that the pool of this amino acid is increased
over the tissue maturation process. Although the mRNA
transcripts assigned to lignin synthesis are up-regulated in young
tissues (Figure 3B), the lignification process throughout plant
development is most probably controlled by the pool of available
phenylalanine, which increases during tissue maturation.

It is known that the relative abundance of structural
biomass components varies depending on tissue type, age, and
environmental/biological condition of plant tissue (Campbell
and Sederoff, 1996). Recently, the cell wall carbohydrates
composition of Setaria was compared with other crop species
(sorghum, switchgrass, and maize) at two developmental stages;
(a) metabolically active young tissues and (b) metabolically
plateaued; mature tissues (Petti et al., 2013). In this work, a
consistent proportional decrease of cellulose in aerial tissues over
the tissue maturation is reported. Consistently, this study shows
that insoluble lignin content increased significantly between the
immature and mature aerial tissue samples of the analyzed
Panicoidae grasses. Our comparative omics analyses complement
these findings. Altogether, these evidences indicate that the
metabolic activity toward synthesis of the structural biomass
components are most probably controlled at the transcriptional
and protein level for cellulose synthesis and the lignification
process is most probably limited by the pool of phenylalanine in
the tissues.

Nitrogen Fixation and Amino Acids Synthesis
Overall, our data show that there is an increased in the amino
acids pool in mature tissues (Figure 2) with a positive correlation
for the mRNA transcripts assigned to nitrogen fixation (Figure 2,
step10). Interestingly, out of the nine essential amino-acids,
six are more abundant in mature tissues of the Setaria model
plant (i.e., phenylalanine, valine, tryptophan, histidine, leucine,

and isoleucine). Because of the interest in increasing the levels
of essential amino acids in C4 crop plants (Ufaz and Galili,
2008), genetic strategies should be developed considering carbon
partitioning, tissue-specificity and the ideal developmental stage,
in order to achieve the best metabolic capacity to synthesize these
essential amino acids in crop plants for the human/animal diet.

Isoforms
Many of the mRNA transcripts and the corresponding protein
abundances were mapped to isoforms, indicating up or down
regulation of the genes and enzyme products in the tissue samples
(highlighted in yellow, Figure 2). Our data show no significant
changes in the level of proteins over the plant development
for the following group of isoforms: glutamine synthetase, 2-
oxoglutarate aminotransferase, alanine aminotransferase, and
aldehyde dehydrogenase (as shown in steps 11, 15, 23, 24;
Figure 2). These data suggest that these step reactions are not
regulated by the level of enzyme, but are most probably regulated
at the transcriptional or post-transcriptional level during plant
development.

In our study, the Setaria plants were growth under identical
conditions and the differences highlighted here are related to the
plant development (mature and immature tissues). Other studies
show the regulation of isoforms in response to different plant
treatments. For example, it has been reported that the regulation
of glutamine synthetase isoforms is organ specific and occurred
at transcriptional level in rice cultivars under drought tolerance
treatments (Singh and Ghosh, 2013). In other work, evidence has
been provided that the gene expression and the activity of alanine
aminotransferase in soybean roots under hypoxic conditions
varies depending on the nitrogen source that is supplied to
the plants with NH+

4 inducing alanine aminotransferase activity
more than NO3 (Rocha et al., 2010).

mRNA and Protein Abundances Assigned
to C4 Metabolic Pathways
By performing multi-omics analysis, we have assessed the level
of mRNA expression and the corresponding protein abundance
in mature and immature tissues of enzymes and isoforms
assigned to C4 metabolic pathways (Figure 4). In this group, a
positive correlation of gene expression and protein abundance is
observed, except for some of the isoforms (e.g., glyceraldehyde
3-phosphate dehydrogenase, malate dehydrogenase, and malic
enzyme isoforms). The data indicate that most of the genes and
the correspondingt proteins are up-regulated in mature tissues.
Interestingly, higher expression of mRNA transcripts assigned
to Rubisco carboxylase is observed in young tissues, but its
corresponding levels of protein are unchanged in the tissue
samples. Regulatory effects on Rubisco and PEPC are discussed
in the carbon fixation session.

Transcripts Assigned to Malic Enzyme Isoforms are

Up-Regulated during Plant Development
Our transcriptome analysis reveals significant expression of
transcripts assigned to malic enzyme isoforms (NADP-ME and
NAD-ME; Figure 5A, Table S6). The transcripts assigned to
NADP-ME show significant expression in both tissues, of which
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FIGURE 4 | Significant differential gene expression and corresponding protein abundance in young and immature tissues assigned to C4 metabolic

pathways. Isoforms are grouped in dashed rectangles. EC 4.1.1.39, Ribulose bisphosphate carboxylase small chain 1A/Rubisco small subunit 1A (RBCS-1A)

(ATS1A); EC 2.6.1.1, aspartate aminotransferase; EC 1.2.1.13/EC 1.2.1.12, glyceraldehyde 3-phosphate dehydrogenase; EC 1.2.1.59, glyceraldehyde 3-phosphate

dehydrogenase; EC 2.2.1.1, transketolase; EC 2.7.1.19, phosphoribulokinase; EC 5.1.3.1, ribulose-phosphate 3-epimerase; EC 2.7.1.40, pyruvate kinase; EC

2.6.1.2, alanine aminotransferase; EC 1.1.1.37, malate dehydrogenase; EC 4.1.1.31, phosphoenolpyruvate carboxylase; EC 2.7.2.3, phosphoglycerate kinase; EC

4.1.2.13, fructose-bisphosphate aldolase.

Si000645 shows the highest expression level; about 30-fold
higher compare to the two NAD-ME isoforms (Si034747m
and Si029215m). Overall, the two highly expressed NADP-ME
isoforms (Si000645m and Si000774m) show higher expression
levels in mature tissues (1.6 and 8.6-fold).

Carbon Fixation
All C4 species operate on the same basic theme of pumping
CO2 via C4 acids from M tissue, where phosphoenolpyruvate
carboxylase (PEPC) activity is enhanced, to the BS layer, where
Rubisco is localized and C4 acids are decarboxylated (Hatch,
1971, 2002; Hatch and Kagawa, 1976). The transcriptome analysis
reveals the differential expression of transcripts mapped to
enzymes that participate in carbon fixation (Figure 5B). The
data indicates that Rubisco (carboxylase) and phosphoenol
pyruvate carboxylase (PEPC) show the most significant levels
of gene expression among the transcripts mapped to carbon
fixation pathways. The analysis suggests that at the transcription
level, PEPC and NADP-ME are up-regulated during plant
development, but Rubisco is down regulated suggesting a
possible switch from C3 to C4 type pattern with development
(Figure 5). Other studies indicate that Rubisco transcription
is suppressed in mesophyll due to poor mRNA stability in
mature cells, but not in bundle sheath (Patel and Berry, 2008).
The decrease in Rubisco transcript during development does
not necessarily demonstrate a shift from C3 to C4 by itself,
particularly as protein levels do not change. Nevertheless, it

may reflect a shift from more general expression of Rubisco
transcript in immature cells (a C3 type pattern) to specific
expression of Rubisco in mature bundle sheath cells (a C4

pattern of expression). Therefore, in early development Rubisco
transcription in mesophyll and bundle sheath may be similar.

Protein levels of PEPC and Rubisco did not change
significantly between immature and mature phytomers
(Figure 6, step 1 and 5). Previous studies show that Rubisco
is strongly regulated at the protein level, which allows a lot
of flexibility with respect to its enzyme activity. Majeran et al.
(2010) observed that the Calvin-Benson cycle and the C4 shuttle
increased substantially along the developmental gradient of
a maize leaf, predominantly after cell elongation, cell wall
deposition and plastid maturation were complete (Majeran
et al., 2010). Wang L. et al. also saw this same increase in
Calvin Benson cycle enzymes and C4 enzymes with respect to
development (Wang L. et al., 2014). Additionally, Pick et al.
(2011) observed that carbon assimilation rates steadily increase
along the maturation gradient of the maize leaf, however, oxygen
sensitivity of photosynthesis did not change along the leaf
gradient suggesting a gradual sink-to-source transition without a
distinct intermediary C3 stage (Pick et al., 2011).

Rubisco genes are known to be highly regulated; in many
plants their expression is modulated by light (Lai et al., 2002),
development (Hensel et al., 1993), and cell type (Sheen, 1999).
Evidences show that C4 PEPC is regulated in response to diurnal
fluctuations by a regulatory phosphorylation cycle (Bakrim
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FIGURE 5 | Differential expression of transcripts assigned to enzymes that participate in carbon fixation. (A) Transcripts assigned to malic enzymes. (B)

Transcripts assigned to Rubisco and PEPC. NADP-ME, NADP malic enzyme; NAD-ME, NAD malic enzyme; Rubisco, Ribulose-1,5-bisphosphate

carboxylase/oxygenase, PEPC, Phosphoenolpyruvate carboxylase.

et al., 1993). Although the multi-omcs data highlighted overall
differences and similarities inmature and immature tissues, more
studies in Setaria model plants are necessary to understand the
mechanisms underlying these observations.

C4 Photosynthesis and Subtypes Prints
C4 photosynthesis calls for metabolic compartmentation, which
is in turn linked to specialized anatomy. Unlike C3 plants,
where photosynthetic CO2 fixation proceeds in a single tissue,
the mesophyll (M), in C4 plants, this process is distributed
between mesophyll (M), and bundle sheath (BS) cells (Jensen,

1983; Hatch, 2002). C4 plants exhibit substantial variation in
how they accomplish CO2 concentration. Traditionally, most of
the C4 plants are classified into three subtypes (NADP-malic
enzyme (ME), NAD-ME, or phosphoenolpyruvate carboxykinase
(PEPCK) subtypes), according to their major decarboxylation
enzyme (Hatch and Kagawa, 1976).

Although an overall analysis reveals that transcripts assigned
to NADP-ME presented the highest level of expression
(Figure 6A) in S. italica tissue samples, the transcripts mapped
to NAD-ME also showed significant expression (see Table S5),
suggesting some level of NAD-ME metabolic activity during
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FIGURE 6 | Omics and C4 pathway analysis of two subtypes distinguished according to the decarboxylating enzyme in mature and immature tissues.

(A) NADP-ME, NADP requiring malic enzyme. (B) NAD-ME, NAD requiring malic enzyme. Gene expression and proteomics data are provided as log2FC but for clarity

of the figure only provided if either proteome or transcriptome changed by more than logFC of 0.5. Metabolite data is provided as concentration fold change. Omics

data are highlighted in green, red, and yellow. Green: Increase in gene expression, protein accumulation, or in metabolite concentration in mature tissues compared to

immature tissues. Red: Decrease in gene expression, in protein accumulation, or in metabolite concentration in mature tissues compared to immature tissues. Yellow:

Up and down regulation of genes/enzymes that characterize isoforms in different tissues and organelles. Gray: no statistically significant difference between tissues.

Numbers refer to enzymes. (1) PEP carboxylase, (2) NADP-malate dehydrogenase, (3) NADP-malic enzyme, (4) Pyruvate-Pi dikinase, (5) Rubisco (carboxylation), (6)

glucose-1-phosphate adenylyltransferase, (7) alpha /beta amylase, (8) pyruvate dehydrogenase complex (dihydrolipoamide S-acetyltransferase), (9) fatty acid

synthases (saturated fatty acids), (10) aspartate aminotrasferase, (11) NAD-malate dehydrogenase, (12) NAD-malic enzyme, (13) alanine amino transferase. Some

steps were omitted for the sake of simplicity.

Frontiers in Plant Science | www.frontiersin.org 14 August 2016 | Volume 7 | Article 1138

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


de Oliveira Dal’Molin et al. Systems Biology of a C4 Model Plant

carbon fixation. We have combined our transcriptome with
proteome and metabolome analyses to investigate the pool of the
C4 metabolic traits in young and mature tissues of the Setaria
model plant (Table S4).

Figure 5 presents the multi-omics data mapped to C4

metabolism of two C4 subtypes (NADP-ME and NAD-ME).
Green, red, and yellow colors represent significant differences in
the total pool of the cellular components (mRNA, proteins, or
metabolites) in mature and young tissues. Gray colors represent
cellular components that show no significant differences in both
tissues.

Carbon fixation in a NADP-ME subtype, the decarboxylation
of malate (Figure 6A, step 3) takes place in the plastid of BS
cells by NADP-ME enzyme. In a NAD-ME subtype, malate is
decarboxylated in the mitochondria of BS cells (Figure 6B, step
12). Protein abundance and the expression level of transcripts
mapped to NADP-ME (Figure 6A, step 3) are higher in mature
tissues, but the concentration of metabolites that participate in C4

photosynthesis and carbon fixation is higher in immature tissues.
The total pool of malate (the C4 metabolite that is decarboxilated
by the NADP-ME in BS cells) is similarly high in mature and
immature tissues but the pyruvate pool (the C3 metabolite that
is translocated back to M cells via plasmodesmata) is higher in
immature tissues. Aspartate is a compound normally considered
as not present in the classical NADP-ME-type model, which is
translocated from M to BS during C4 photosynthesis in NAD-
ME subtypes. Interestingly, our data show that the pool of
aspartate is also similarly high in mature and immature tissues
(as the malate pool), and the alanine pool (the C4 metabolite
that is translocated back to M cells in NAD-ME subtypes) is
higher in mature tissues (see metabolome analysis in Table S3).
These significant differences observed in the levels of mRNA
transcripts, metabolites and proteins that participate in the
NADP-ME and NAD-ME subtypes suggest that S. italica may
use mixed decarboxilation modes of C4 photosynthetic pathways
under different plant developmental stages. Omics analysis do
not show significant gene expression or protein accumulation of
PEPCK in young or mature tissues of S. italic.

Our measurements only capture the total pool of the C4

metabolic traits at transcriptional, metabolic and protein level.
Although more biochemical studies at the organelles level are
needed to confirm these findings, multiple evidences suggest that
some flexibility in C4 photosynthetic pathways exists (Hatch,
1971; Chapman and Hatch, 1981; Jensen, 1983; Wang Y. et al.,
2014). C4 photosynthesis has long been classified into three
distinct subtypes, but early studies have shown coexistence of
different C4 subtypes. Hatch (1971) demonstrated through 14C-
labeling experiments in maize that radioactively labeled carbon
provided as CO2 is mostly incorporated into malate, but also
to a substantial degree into aspartate, a compound normally
considered as not present in the classical NADP-ME-type model.
A decade later, two other studies showed that isolated BS cells
from maize can use aspartate and 2-oxoglutarate to produce
CO2 (Chapman and Hatch, 1981) and that maize leaves contain
sufficient activities of the aminotransferases to carry the required
flux (Pick et al., 2011). Furthermore, a similar phenomenon
has also been found in Flaveria bidentis, an NADP-ME dicot

species (Meister et al., 1996). Considering these facts, it is highly
likely that the so-called C4 subtypes actually coexist in C4 plants
and such flexibility may be controlled by developmental and
environmental cues. This is in keeping with the current view
of C4 photosynthesis where a dynamic switching between all
three subtypes of C4 photosynthesis occurs dependent on the
relative energy and/or redox states of M and BS cells (Bellasio
and Griffiths, 2014).

Correlation across Multi-Omics Data
Overall, our analyses show little correlation between mRNA
transcripts, the correspondent enzyme abundances and the
metabolic product (when significant levels of protein and
metabolite were detected) but a positive correlation is observed
for biological components that participate in some pathways,
such as in fatty acid synthesis and C4 metabolism.

Although one would hypothesize that the correlation between
mRNA expression levels and protein abundance will be strong
based on the central dogma of molecular genetics, support for
this hypothesis from early experimental data is not immediately
apparent. Most studies on microbes have either failed to find a
significant correlation between protein and mRNA abundances
(Gygi et al., 1999) or have observed only a weak correlation
(Washburn et al., 2003; Nie et al., 2007; Zhang et al., 2010).
It has been suggested that the discrepancy arises from several
factors, including (i) protein regulation by post-translational
modification, (ii) post transcriptional regulation of protein
synthesis, (iii) differences in the half-lives of mRNA and proteins,
(iv) possible functional requirement for protein binding, and
(v) significant levels of experimental error. It has been generally
accepted to think that for a group of genes showing a significant
correlation between the reference mRNA and protein levels
(Greenbaum et al., 2003), it is usually assumed that the cell has
already put significant energy into dictating the final level of
protein through tightly controlling the mRNA expression, and
that there would then be minimal control at the protein level
(steps 19 and 27 in Figure 2 may be an example of this case). In
contrast, those genes that showminimal variation in their mRNA
expression throughout the cell cycle are more likely to have little
or no correlation with the final protein level (possible examples
are shown in steps 6, 15, and 34; Figure 2). In this case, the plant
cell would be controlling these genes at the translational and/or
post-translational level, with the mRNA levels being somewhat
independent of the final protein concentration (Greenbaum
et al., 2003). These observations point toward the necessity for
further target biochemical studies to investigate the underlying
mechanisms that regulate the metabolic phenotype in C4 plants.

CONCLUDING REMARKS

By developing multi-omics protocols for systems analysis of
the Setaria model plant we have demonstrated that integrated
approaches can be combined with metabolic reconstruction
platform to analyse the complexity of processes at different
levels, and can provide insights into C4 metabolic traits. A
metabolic reconstruction specific to Setaria along with an
efficient transformation system might establish a more facile
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and higher throughput model for exploring metabolic traits for
crop improvement and the potential of bioenergy grasses as
biofactories. This is a critical first step in demonstrating the
validity of using Setaria as a model C4 plant and is essential
to realize any long-term benefits from the use of the platform
to rapidly develop robust synthetic biology strategies, new plant
biofactories and to explore the fundamentals of C4 metabolism.
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