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Microalgae are currently emerging to be very promising organisms for the production

of biofuels and high-added value compounds. Understanding the influence of

environmental alterations on their metabolism is a crucial issue. Light, carbon and

nitrogen availability have been reported to induce important metabolic adaptations. So

far, the influence of these variables has essentially been studied while varying only one

or two environmental factors at the same time. The goal of the present work was

to model the cellular proteomic adaptations of the green microalga Chlamydomonas

reinhardtii upon the simultaneous changes of light intensity, carbon concentrations

(CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium)

in the culture medium. Statistical design of experiments (DOE) enabled to define

32 culture conditions to be tested experimentally. Relative protein abundance was

quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional

assays for respiration, photosynthesis, and lipid and pigment concentrations were also

carried out. A hierarchical clustering survey enabled to partition biological variables

(proteins + assays) into eight co-regulated clusters. In most cases, the biological

variables partitioned in the same cluster had already been reported to participate

to common biological functions (acetate assimilation, bioenergetic processes, light

harvesting, Calvin cycle, and protein metabolism). The environmental regulation within

each cluster was further characterized by a series of multivariate methods including

principal component analysis and multiple linear regressions. This metadata analysis

enabled to highlight the existence of a clear regulatory pattern for every cluster and to

mathematically simulate the effects of light, carbon, and nitrogen. The influence of these

environmental variables on cellular metabolism is described in details and thoroughly
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discussed. This work provides an overview of the metabolic adaptations contributing

to maintain cellular homeostasis upon extensive environmental changes. Some of the

results presented here could be used as starting points for more specific fundamental or

applied investigations.

Keywords: 2D-DIGE, design of experiments, hierarchical clustering, multiple linear regression, bioenergetics,

metabolic network, biological system, environment

BACKGROUND

Freshwater green microalgae are known to undergo global
metabolic reorganizations to adapt to changing environmental
conditions. This enables microalgae to maintain their cellular
homeostasis despite the onset of very dynamic modifications
of physico-chemical parameters such as temperature, nutrient
availability, or gas partial pressures (Falkowski and Raven,
2013). Chlamydomonas reinhardtii is a model organism which
is commonly used to study photosynthetic processes. This green
microalga exhibits a much faster growth rate than higher plants,
is of easier maintenance and can be cultured under very diverse
experimental conditions (Harris, 2001). C. reinhardtii is able to
grow either in the light (photoautotrophy in the presence of CO2;
mixotrophy in the presence of CO2 + organic carbon) or in
the dark when an oxidizable carbon source is available in the
medium (Spalding, 2009; Perez-Garcia et al., 2011). Moreover
it can assimilate different chemical forms of nitrogen, either
inorganic (nitrate, nitrite, ammonium) or organic (urea, amino
acids, purine nucleotides; Fernandez et al., 2004). In 2007,
the sequencing of the C. reinhardtii genome opened the gate
to further characterization by a growing panel of molecular
techniques such as targeted mutagenesis, transcriptomics and
proteomics (Merchant et al., 2007).

Over the last decades, the influence of environmental
changes on biological functions has been extensively studied in
photosynthetic organisms. Light, carbon and nitrogen have been
reported to induce dramatic metabolic adaptations as a way to
maintain a proper bioenergetic balance. These adaptations can
occur at very different levels such as genetic expression, protein
abundance, enzymatic activity, or cellular structure (Tobin and
Silverthorne, 1985; Spalding et al., 2002; Fernandez et al., 2004).
To date, most studies have focused on the individual effects of
light, carbon and nitrogen (light + carbon or nitrogen + carbon
in a few cases). However, from available data, it is clear that
their signaling and assimilatory pathways are connected through
a complex metabolic network (Turpin, 1991; Huppe and Turpin,
1994; Singh et al., 2008). Understanding how photosynthetic
organisms adapt to global environmental modifications could
therefore be of prime interest. This is all the more true that

Abbreviations: 2D-DIGE, Two dimensional-differential in-gel electrophoresis;

AICc, Corrected Akaike information criterion; ANCOVA, Analysis of covariance;

CCM, Carbon concentrating mechanism; DOE, Design of experiments; FAMES,

Fatty acid methyl esters; IEF, Isoelectrofocalisation; I.S., Internal standard; LHC,

Light-harvesting complex; MLR, Multiple linear regression; mW, Molecular

weight; PCA, Principal component analysis; pI, Isoelectric point; PLSR, Partial

least squares regression; PRESS, Prediction error sum of squares; RMSEF, Fitting

root-mean-squared error; RMSECV, Cross-validation root-mean-squared error;

TCA, Tricarboxylic acid; VIP, Variable importance in projection.

green microalgae are currently emerging as very promising
sources for the production of biofuels and high-added value
compounds (Work et al., 2012). In this context, the bioenergetic
adaptations of C. reinhardtii cells upon simultaneous changes
related to light, carbon and inorganic nitrogen have recently
been modeled by our group (Gérin et al., 2014). This work
was carried out through a statistical approach coupling design
of experiments (DOE) to multiple linear regression analyses. It
enabled to build empirical models simulating mathematically
the influence of each environmental variable and highlighting
significant interactions between them in some cases.

Comparative proteomics is a suitable tool to characterize
the metabolic adaptations induced by diverse endogenous
or exogenous perturbations such as genetic modifications,
pathologies, heat shocks or nutrient changes. In this field,
proteomics is often preferred to transcriptomics since the
correlation between mRNA abundance and protein expression is
relatively weak, as reviewed in (Greenbaum et al., 2003) for yeast.
2D-DIGE (two dimensional differential in-gel electrophoresis)
is a comparative proteomic technique requiring the pre-
electrophoretic labeling of protein samples with three spectrally-
distinct fluorescent dyes. Its capacity for multiplexing enables
to introduce an internal standard in each gel electrophoresis to
normalize protein abundance. Together with the relatively wide
dynamic range of 2D-DIGE, this makes it possible to quantify
very accurate changes in protein abundance (Marouga et al.,
2005).

To date, an overview of the influence of cumulative

environmental changes on photosynthetic metabolism is lacking.
Some pathways have nevertheless been reported (mostly through
univariate studies) to be regulated by two or several factors:

see for example the well-known regulation of photosynthetic
antennae size and pigment content by light and acetate, and

the respective effects of acetate and inorganic nitrogen on the
TCA cycle (Neale andMelis, 1986; Falkowski and LaRoche, 1991;
Turpin, 1991; Huppe and Turpin, 1994; Teramoto et al., 2002;
Durnford et al., 2003; Nield et al., 2004; Boyle and Morgan, 2009;
Gérin et al., 2010, 2014). In the present work, we aimed to build

statistical models describing the global metabolic adaptations
of C. reinhardtii cells upon simultaneous changes of several
environmental variables: light intensity, carbon concentration
(acetate and CO2) and inorganic nitrogen concentration (nitrate
and ammonium). Such an empirical approach appeared to
us as a crucial pre-requisite before attempting to build
mechanistic models in subsequent studies. For this purpose, 2D-
DIGE was coupled to DOE and multivariate data analyses in
order to characterize the environmental regulation of protein
abundance at the cellular level. Additional assays for respiration,
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photosynthesis and cellular contents of some lipids and pigments
were also carried out to this end. Hierarchical clustering was first
performed to partition biological variables (proteins and assays)
into discrete co-regulated clusters. The pattern of environmental
regulation was then characterized within each cluster through
a panel of multivariate statistical methods, including principal
component analysis and multiple linear regressions. Overall,
the data reported here provide an overview of the metabolic
adaptations set up in response to global environmental changes
related to light, carbon and inorganic nitrogen in C. reinhardtii.

MATERIAL AND METHODS

Cell Cultures
A cw15 mt+ wall-less strain of C. reinhardtii (Hyams and
Davies, 1972) was used in this study (Chlamydomonas Resource
Center ID: CC-400). Algal cells were cultivated in lab-scale
tubular photobioreactors (Multi-Cultivators MC 1000, Photon
System Instruments) as described in Gérin et al. (2014), same
media, conditions and procedures. Culture media invariably
contained MgSO4 1.4mM, CaCl2 450µM, K2HPO4 5.4mM,
KH2PO4 4.6mM, Tris-HCl 20mM pH 7.2, added with oligo-
elements (composition described in Gérin et al., 2014). When
applicable according to the DOE, acetic acid (0–1 g.L−1), NaNO3

(0–20mM) and NH4Cl (0–15mM) were also added. CO2 was
bubbled in the cultures at either 0.035% (ambient air) or 1.5%
(mix of ambient air + pure CO2). Light intensity was tuned
from 0 to 200µmolphotons.m

−2.s−1 with the Multi-Cultivator
interface. Algae were harvested by centrifuging at 3000 g for
5min, washed in one volume of ice-cold saline buffer (NaCl
150mM, Tris-HCl 50mM, pH 7.2), centrifuged again in the same
conditions and stored as pellets at−80◦C for analyses.

2D-DIGE
Protein Extraction and Purification
Algal pellets were resuspended in an ice-cold extraction buffer
(NaCl 150mM, Triton X-100 0.1% (v/v), EDTA 1mM, DL-
dithiothreitol (DTT) 25mM, complete EDTA-free protease
inhibitor cocktail tablets (Roche), Tris-HCl 50mM pH 7.8)
added with polyvinylpolypyrrolidone (PVPP, insoluble in water)
2.5% (w/v) to complex polyphenols. Proteins were extracted by
sonicating at 6 Amp for 30 s on ice (Sonifier Cell Disruptor B-12,
Branson), vortexing for 30 s at 4◦C, and repeating the procedure
twice more. Protein extracts were centrifuged at 3000 g for 3min
at 4◦C to spin down PVPP. The supernatant was centrifuged
again at 10,000 g for 3min to spin down cellular debris, and was
then filtered with a 0.22µm cellulose acetate-membrane syringe
filter. Proteins were further purified according to the phenol
phase separation procedure described by Carpentier et al. (2005),
and were finally solubilized in an appropriate volume of a DIGE
labeling buffer (urea 7 M, thiourea 2 M, ASB-14 2% (w/v), EDTA
0.5mM, DTT 10mM, Tris-HCl 50mM pH 8.5) so as to reach a
concentration comprised between 5 and 10 mg.mL−1.

Protein Labeling
Protein samples were labeled with Refraction-2D G-Dyes from
NH DyeAgnostics (May et al., 2012) and allocated to 16

different 2D-electrophoreses as detailed in Additional file 1.
Each electrophoresis comprised two algal culture samples labeled
with G-Dye200 and G-Dye300, and an internal standard (equal
amount of all available samples) labeled with G-Dye100. In each
case, 25µg of proteins were labeled with 0.2 nmol of G-Dye for
30min at 25◦C in the dark. Labeling reactions were stopped
by adding 1µL of Stop Solution (DyeAgnostics) and incubating
samples for 10min in the same conditions. For preparative
electrophoreses, a 500µg pool of all samples in an equal amount
was constituted, out of which 25µg were labeled with G-Dye100
before being re-incorporated among the remaining 475µg.

2D-Electrophoreses and Image Acquisition
Isoelectrofocusing (IEF) was carried out as previously reported
(Mathy et al., 2010) by using a 3-11 non-linear pH range,
except that the rehydration buffer was added with CHAPS
3% (w/v). IPG strips (GE Healthcare) were then rinsed with
milliQ water before being reduced, alkylated and loaded on the
top of polyacrylamide gels for SDS-PAGE separation as also
described in this previous publication (Mathy et al., 2010), with
the difference that 10% polyacrylamide gels (37.5:1 acrylamide-
to-bisacrylamide ratio) were rather used in the present study.
Images of G-Dyes within 2D-gels were acquired with a Typhoon
9400 scanner (GEHealthcare) by using the specific excitation and
emission wavelength of each dye.

Image Analysis
Images were analyzed with the DeCyder 7.0 software from GE
Healthcare. Spot detection was performed in the Differential In-
Gel Analysis (DIA) module with an exclusion filter restricting
detection to protein spots with a volume superior or equal to
300,000 (for at least one G-Dye over three). The Biological
Variation Analysis (BVA)module was then used to perform inter-
gel matching of protein spots (Match Table) and to extract the
abundance normalized by the internal standard for each spot
and each culture condition (Appearance Table). These abundance
values are the raw data used in the present statistical analyses.

Spot Picking and Protein Identification by Mass

Spectrometry
Protein spots were picked off preparative gels with an Ettan
DALT Spot Picker device (GE Healthcare) and in-gel digested
according to Shevchenko and co-workers (Shevchenko et al.,
1996). Peptides were then extracted from gel pieces and prepared
for mass spectrometry as previously described (Mathy et al.,
2010).

Acquisition of mass spectra was carried out with a MALDI-
TOF/TOF mass spectrometer (Ultraflex II, Bruker Daltonics)
in PMF mode. The device was piloted by FlexControl 3.0,
with real-time analysis of mass spectra by FlexAnalysis 3.0 and
database search by BioTools 3.1 in the Mascot server, version
2.2.04. Database search was performed in NCBInr restricted
to Viridiplantae (1,930,642 sequences) with the Mascot PMF
algorithm as search engine and 100 ppm of mass error tolerance.
Cysteine carbamidomethylation and methionine oxidation were
assessed as fixed and variable peptide modifications, respectively.
Protein identification was considered as successful for Mascot
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scores equal or superior to 75. Protein function(s) and cellular
location(s) were searched in the ChlamyCyc database, version 1.0
(May et al., 2009).

Pigment Extraction and Analysis
For the determination of chlorophyll a, chlorophyll b and total
carotenoid (TC) contents, the absorbance of pigment extracts
in methanol was measured at 470, 652, and 665 nm, and
the Lichtenthaler and Wellburn’s formulas (Lichtenthaler and
Wellburn, 1983) were applied.

Neoxanthin, lutein, violaxanthin, and β-carotene
concentrations were determined by high pressure liquid
chromatography (HPLC) by using pigment extracts in methanol.
Pigments were separated in a Nova-Pak silica-based, reverse-
phase, 4µm particle C18 column (Waters, product WAT036975,
length: 150mm, inner diameter: 3.9mm). HPLC experiments
were run with a 1mL.min−1 flow rate at 25◦C with three
working solutions: solution A (methanol 90%, ammonium
acetate 100mM), solution B (acetonitrile 90%), and solution
C (ethyl acetate 100%). The following protocol was applied
as gradient: 0min–100% A; 0.5min–100% B; 1.1min–90%
B + 10% C; 6.1min–65% B + 35% C; 11.5min–40% B + 60%
C; 15.0min–100% C; 17.0min–100% A; 23.0min–100% A.
Pigment elution times were determined by using the Mixed
phytoplankton pigment standard (PPS-MIX-1) from DHI Lab
Products. Chromatograms were analyzed at 430 nm and relative
pigment concentrations were assessed in terms of peak areas at
this wavelength.

Fatty Acid Extraction and Analysis
Fatty acids were extracted with chloroform-methanol and
transesterified as previously described (Bligh and Dyer,
1959; Browse et al., 1986). Fatty acid concentrations were
determined by gas chromatography (GC) with a BPX70 70%
cyanopropylpolysilphenylene-siloxane column (SGE Analytical
Science, product 054622, length: 2 m, inner diameter: 0.25mm)
with helium as carrier gas at 250◦C. FAMES elution times and
calibration curve were determined by running the Supelco 37
Component FAMES mix standard from Sigma-Aldrich (product
CRM47885).

Triglyceride Extraction and Analysis
Algal pellets were resuspended in an extraction buffer [NaCl
150mM, Triton X-100 0.1% (v/v), Tris-HCl 50mM pH 7.5],
sonicated at 3 Amp for 15 s (Sonifier Cell Disruptor B-12,
Branson) and thoroughly vortexed for 20min. Triglyceride
concentration was determined by using the enzymatic assay kit
of BioVision (product K622-100).

Protein Assay for 2D-DIGE and
Pigment/Lipid Normalization
Protein concentrations were determined by using the Reagent
Compatible/Detergent Compatible assay kit from BioRad
(product 500–0121) which is based on the Lowry-Ciocalteu
colorimetric method (Lowry et al., 1951).

Respiratory and Photosynthetic
Parameters
Bioenergetic data were extracted from our previous modeling
publication (Gérin et al., 2014). As described there, these
data were obtained by oxymetric measurements and pulse-
amplitude-modulated (PAM) fluorimetry. Photosynthetic
parameters (ϕPSII800, P800, and NPQ800) were measured under
a saturating light irradiance of 800µmolphotons.m

−2.s−1.

Statistical Analyses
Design of Experiments
Design of experiments (DOE) was carried out with the Custom
design platform of the JMP 11 software (SAS) with the
following parameters: one dependent variable (goal: none); five
environmental variables (changes: easy); single effects, 2nd-
degree polynomial effects (for continuous factors), and 2nd-
order interactions (estimability: necessary); 7 center points, zero
replicate runs, default number of assays; randomize output
order. Light intensity, nitrogen concentrations, and acetate
concentration were considered as continuous variables, whereas
CO2 concentration was considered as an ordinal variable with
two modalities. For each continuous environmental variable, the
minimal value was set to zero. The maximal values (described
earlier) were chosen as follow:

- for nitrogen and acetate concentrations: twice higher than
the optimal level—this generates values that enable biomass
accumulation but remain below toxicity (Sager and Granick,
1953; Chen and Johns, 1994, 1996; Collos and Harrison, 2014;
Gérin et al., 2014).

- for light intensity: insufficient to saturate the photosynthetic
apparatus in order to limit photo-oxidative damages during
algal cultivation (Sueltemeyer et al., 1986; White and
Critchley, 1999).

As described above, the two modalities of CO2 concentration
were set at its atmospheric level (0.035%) and at a saturating
concentration (1.5%) sufficient to ensure no CO2 limitation
for RubisCO whatever the light intensity (Vance and Spalding,
2005).

Initial Screening for Biological Variables
An initial screening of the biological variables relevantly
influenced by one or several environmental variable(s) was
carried out with the JMP 11 software (SAS) by a methodology
coupling PLSR and MLR as detailed in Table 1. PLSRs
were run in the Mulivariate methods platform through the
NIPALS algorithm with selection of the Centering and Scaling
options. Leave-one-out validation method was chosen, and
the default factor search range displayed by the software
was not modified. The optimal number of latent factors was
determined by using minimal PRESS (prediction error sum
of squares) coupled to van der Voet T2 tests as selection
criteria. MLRs were run in the Fit model platform. Screening
was performed independently for protein spots and additional
assays.
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TABLE 1 | Input parameters and selection criteria used for the initial screening of the biological variables.

PLSR MLR

One model per continuous environmental Variable

Strategy 1 Strategy 2

JMP input (launch panel parameters) Responses = all biological variables (proteins or assays) Responses = all biological variables (proteins or

assays)

Factors = Acetate, Light, NH4, or NO3 Factors = Acetate, Light, NH4, or NO3

By: CO2 Continuous environmental variable2

Factor search range = 1 Continuous environmental variable × CO2

Number of models 8 models (optimal number of latent factors = 1) 4 models

Selection criterion for the biological

variables

≥ 30% of variability explained by the latent factor for at least 1

model over 8 (≥ 19% in the NO3 models for protein spots)

Statistical significance with p ≤ 0.075 for at least 1

model over 4 for protein spots/p ≤ 0.05 for

additional assays

Unique model with all continuous environmental variables

Strategy 3 Strategy 4

JMP input (launch panel parameters) Responses = all biological variables (proteins or assays) Responses = all biological variables (proteins or

assays)

Factors = Acetate, Light, NH4, and NO3 Factors = Acetate, Light, NH4, and NO3

By: CO2 Acetate2, Light2, NH2
4, and NO2

3

Factor search range = 4 Acetate × CO2, Light × CO2, NH4 × CO2, and

NO3 × CO2

Number of models 2 models (optimal number of latent factors = 2 for protein

spots; 4 for additional assays)

1 model

Selection criterion for the biological

variables

≥30% of variability explained by the latent factors in at least 1

model over 2 for protein spots/= 65% for additional assays

Statistical significance of the model with p ≤ 0.1 for

protein spots/p ≤ 0.05 for additional assays

Selection of the biological variables encountering the selection criterion for at least 3 strategies over 4

Hierarchical Clustering
Hierarchical clustering was performed in the Multivariate
methods platform of the JMP 11 software (SAS) by the Ward’s
minimum variance method (Ward, 1963; SAS, 2013). The
options “Standardize data” and “Missing value imputation” were
selected. The imputation of missing values was performed as
follow: a single covariance matrix was built by the pairwise
method on the basis of the whole data set; the non-
missing variables were then used as predictors to impute
missing values by a method equivalent to regression prediction
(SAS, 2013).

Gene Set Enrichment Analyses
Gene set enrichment analyses were performed in the PANTHER
(Protein ANalysis THrough Evolutionary Relationships)
database. The GI numbers in NCBI were used as protein
IDs. Chlamydomonas reinhardtii was selected as organism.
The “PANTHER Overrepresentation test (release 20160321)”
was used as analysis type. The annotation data set was either
“PANTHER Pathways” (PANTHER version 10.0 Released
2015-05-15) or “GO cellular component complete” (GO
Ontology database Released 2016-05-20). The p-values were
extracted with and without Bonferroni correction for multiple
testing.

Principal Component Analysis (PCA) and In-Cluster

PLSRs
These procedures were both performed in the Multivariate
methods platform of the JMP 12 software (SAS) with
standardized data (i.e., data scaled to a mean of 0 and centered to
a variance of 1 for each biological and environmental variable).
PCA was carried out by the pairwise method on the basis of
the correlation matrix with all biological variables in the same
PCA. In-cluster PLSRs were performed through the NIPALS
algorithm with all five environmental variables as factors. For
CO2 concentration, data were first transformed according to a
binary code: 0 for the lowest modality (0.035% CO2) and 1 for
the highest one (1.5% CO2). Leave-one-out validation method
was chosen, and the default factor search range displayed by the
software was set to five. The optimal number of latent factors was
determined by using minimal PRESS (prediction error sum of
squares) coupled to van der Voet T2 tests as selection criteria. All
biological variables (proteins + assays) belonging to each cluster
were included in the same PLSR analysis.

Multiple Correlations
Multiple correlations were assessed in the Multivariate methods
platform of the JMP 11 software (SAS). The Pearson’s
correlation coefficients (R) between biological variables and the
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corresponding p-values were calculated by the pairwise method
without missing value imputation. Data were previously centered
to a mean of 0 and scaled to a variance of 1 for every biological
variable before being analyzed.

Modeling the Dependence of Biological Variables

upon Environmental Variables
Modeling was performed in the Fit model platform of the JMP 11
software (SAS) on the basis of raw data listed in Additional file
2, following the same procedure as previously described (Gérin
et al., 2014). Linear effects, quadratic effects and second-order
interactions of the environmental variables were assumed.

Stepwise regression
Stepwise regression was carried out in forward direction with
minimum AICc (corrected Akaike information criterion) as
stopping rule (Burnham and Anderson, 2004).

Multiple linear regression (MLR)
MLR modeling was performed with the stepwise-selected effects
by adjusting the coefficients of the following type of equation:

ŷ = b0 +
∑

bi xi +
∑

bii x
2
i +

∑

bij xi xj + bCO2

+
∑

biCO2 xi + e

where ŷ is the predicted value of the biological variable, b0
the intercept and e the residual. Continuous environmental
variables are designated by xi or xj, and their linear, quadratic
and interaction coefficients are pointed out as bi, bii, and
bij, respectively. The coefficients related to CO2 concentration
(ordinal variable) enable to characterize the modification of ŷ
while switching from the lowest modality (0.035% CO2) to the
highest one (1.5% CO2). bCO2 is for the single effect of CO2

concentration, whereas biCO2 designates the interactions of CO2

with continuous environmental variables.
The goodness of fit of the models was assessed by calculating

the coefficients of multiple determination (R2 and R2 adjusted)
and the fitting root-mean-squared error (RMSEF) as follow:

R2 =

∑

(ŷi − y)2
∑

(yi − y)2

R2 adjusted = 1−

∑

(yi − ŷi)
2/ (n− k− 1)

∑
(

yi − y
)2

/ (n− 1)

RMSEF =

√

∑

(yi − ŷi)2

n− k− 1

where n and k are the number of observations and coefficients
(apart from b0) within the model, respectively, yi and ŷi are
the observed and predicted values of the biological variable,
respectively, and ȳ is the experimental mean value of the
biological variable. The average scale of each biological variable
was calculated as follow and exhibited in parallel to RMSEF as a
reference to assess the extent of the deviations:

Response average scale = y− yMIN

where ȳ and yMIN are the mean and minimal experimental values
of the biological variable, respectively.

The statistical significance of the models was assessed by
calculating whole-model ANOVA tests with the following
expression for the F-ratio:

Fwhole−model =

∑

(ŷi − y)2/ k
∑

(yi − ŷi)2/ (n− k− 1)

where the terms are the same than those described for R2, R2

adjusted, andRMSEF (cutoff for statistical significance: p ≤ 0.05).
The importance and statistical significance of each individual

effect of the environmental variables were assessed by calculating
the related β-weights (= standardized regression coefficients) and
ANOVA tests, respectively. For the latter tests, the F-ratio was
calculated as follow:

Feffect =

∑

(yi − ŷi (k−1))
2
−

∑

(yi − ŷi)
2

∑

(yi − ŷi)
2
/ (n− k− 1)

where the terms with an “i” subscript, n and k have the same
significance than described above whereas ŷi (k−1) points out the
predicted values of the biological variable in a hypothetical model
deprived of the effect (cutoff for statistical significance: p ≤ 0.05).

Lack-of-fit ANOVA tests were carried out to assess whether
the models were lacking one or several major explanatory
effect(s) (cutoff for statistical significance: p ≤ 0.05). The F-ratio
was calculated as the quotient between the mean square for lack-
of-fit error and the mean square for pure error (for details see
SAS, 2012).

Model Cross-Validation
Models were cross-validated by the k-fold method (k = 4) with
the Statistical 10 software (StatSoft) by using the data subsets
defined in Additional file 2. The goodness of fit of the training
models was assessed by calculating R2, R2 adjusted, and RMSEF
(read above for details about calculations). The deviation of each
validation data set from its corresponding training model was
assessed in terms of cross-validation root-mean-squared error
(RMSECV ), which was calculated as follow:

RMSECV =

√

∑
(

yv − ŷv
)2

v

where yv are the observed values for the validation data set, ŷv the
values predicted by the training model for the validation data set
and v is the number of observations in the validation data set.

Analysis of Covariance (ANCOVA)
Analysis of covariance (ANCOVA) was performed through MLR
on the basis of standardized data (i.e., data scaled to a mean of
0 and a variance of 1) independently within each cluster. The
following general equation was used:

ŷ = b0 +
∑

bi xi +
∑

bii x
2
i +

∑

bij xi xj + bCO2

+
∑

biCO2 xi + e+
∑

bm +
∑

bmi xi +
∑

bmCO2
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in which the identity of the biological variables is a categorical
predictor with n modalities (m1, m2,..., mn), b0 is the intercept
and e the residual. The terms which are not highlighted in
bold concern environmental factors alone (read above the
section on MLR). The terms in bold refer to the single
effects of the biological variables (bm) and to the second-order
interactions between biological and environmental variables (bmi

xi for acetate, light, nitrate, and ammonium; bmCO2 for CO2).
ANCOVA models were characterized by the same goodness of
fit and statistical parameters than described above for MLR.

RESULTS

A step-by-step overview of the methodology and results is
presented in Figure 1.

Characterization of the Environmental
Regulation of Proteins and Other Biological
Variables through Multivariate Statistics
Environmental Variables and Design of Experiments
Environmental variables are light intensity and acetate, CO2,
nitrate, and ammonium concentrations in the culture medium
(five variables in total). Their characteristics are summarized
in Table 2 as the type of each variable, its working range (or
modalities for CO2 concentration) and its unit (similar features
as described in Gérin et al., 2014).

A statistical design of experiments (DOE) was built to
define discrete combinations of the environmental variables to
be tested experimentally. Linear effects, quadratic effects, and
second-order interactions of the environmental variables were
considered. The features of this DOE are similar to the design
of our previous modeling study (Gérin et al., 2014): the DOE
consists of a two level fractional factorial design added with
center points and supplementary points found in the Box-
Behnken and central composite types of designs. It contains 32
culture conditions, that were already found in the previous DOE
(see Gérin et al., 2014 for more information). Table 3 displays a
complete list of DOE items, and a 3D representative example of
space covering by environmental variables for light, acetate and
nitrate can be found in Additional file 2.

The environmental variables were tested for collinearity by
calculating the Pearson’s correlation coefficients (R) between
them. No statistically significant correlation could be detected
(R ≤ 0.16 with p ≥ 0.3908), indicating that the design space
was uniformly covered.

Biological Variables

2D-DIGE
The fluorescence image of the internal standard in the Master
2D-gel is presented in Figure 2. In order to minimize the
experimental error of protein abundance estimation, the volume
exclusion filter for the detection of protein spots was fixed at
a tenfold-higher value than recommended by the manufacturer
(GE Healthcare). This procedure led to detect 254 spots that
could be matched among all 2D-gels (these spots are encircled
in Figure 2). Among them, 135 could be identified by mass

FIGURE 1 | Overview of the methodology and results of the present

study. PLSR, partial least squares regression; MLR, multiple linear regression;

PCA, principal component analysis; ANCOVA, analysis of covariance.
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TABLE 2 | Description of the environmental and biological variables considered in the present work.

Environmental variables—Design of experiments

Variables Type Unit Range/Modalities

Acetate concentration Continuous g.L−1 0–1

Light intensity Continuous µmolphotons.m
−2.s−1 0–200

Ammonium concentration Continuous mM 0–15

Nitrate concentration Continuous mM 0–20

CO2 concentration Ordinal % 0.035 and 1.5

Biological variables—Experimental determination

Source Variables Unit

2D-DIGE

C
e
llu
la
r
a
b
u
n
d
a
n
c
e
o
f.

.
.

All 135 identified protein spots

(see Table 4)

Spot volume normalized by the I.S.

GC Palmitic acid µg.mg−1
proteins

Stearic acid

Oleic acid

γ-linolenic acid

Linolenic acid

Enzymatic assay Triglycerides µg.mg−1
proteins

Lichtenthaler’s

spectroscopic equations

Chlorophyll a µg.mg−1
proteins

Chlorophyll b

Total carotenoids

HPLC Neoxanthin Peak area.mg−1
proteins

Violaxanthin

Lutein

β-carotene

Clark’s electrode oxymetry

D
a
ta

fr
o
m

G
é
rin

e
t
a
l.,

2
0
1
4

fo
r.

.
.

CR (Cellular respiration) nmolO2.min−1.mg−1
proteins

MACYT (Apparent maximal activity of the cytochrome

pathway)

MAALT (Apparent maximal activity of the alternative

pathway)

P800 (Gross photosynthetic O2 evolution)

PAM fluorimetry ϕPSII800 (Quantum yield of photosystem II) Arbitrary

NPQ800 (Non-photochemical quenching of chlorophyll

fluorescence)

Design of experiments (DOE) was carried out to determine the combinations of environmental variables for which the corresponding biological variables should be measured (see

Additional file 2). For CR, MACYT , MAALT , P800, ϕPSII800, and NPQ800, data were collected from a recent publication from our group (Gérin et al., 2014) performed with the same algal

strain and experimental conditions, and with a similar DOE.

spectrometry. These spots of interest were defined as continuous
biological variables for subsequent statistical analyses (Table 2).
They are highlighted in yellow in Figure 2 and complete
descriptions about them are provided in Table 4. For each of
these spots and each DOE culture condition, the abundance
value normalized by the internal standard value was extracted
from the Appearance Table of the DeCyder 7.0 BVA module
and considered as raw data for subsequent statistical analyses
(Additional file 2). To facilitate data treatment and result
description, we decided to designate protein spots by their
Master number (i.e., their identifier in the Master 2D-gel)
followed by their standard name in databases (as found in
Table 4).

Additional assays
The cellular contents of triglycerides and of some fatty acids
and pigments were also considered as continuous biological
variables, as well as the respiratory and photosynthetic activities
previously reported through DOE approach (Gérin et al., 2014).
The respective units of these variables and the analytical methods
employed to quantify them are summarized in Table 2 (for more
details, read the Material and Methods Section). A complete list
of the experimental values is provided in Additional file 2.

General Features of the Data Sets
As shown in Additional file 2, one value of protein abundance
is available for each protein spot and each culture condition of
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the DOE (no missing value in the protein data set). Concerning
additional assays, there is one missing value for palmitic, stearic,
and linolenic acids (item 42 of the DOE), two missing values for
γ-linolenic acid (items 9 and 42 of the DOE) and three missing
values for oleic acid (items 9, 31, and 42 of the DOE). The
other additional assays have no missing values. DOE item 42,
which is the most frequent missing value among the additional
assays, is a center point of the DOE for which two identical
measurements exist (items 4 and 41). As explained in theMaterial
and Methods Section, all statistical analyses were performed
without imputation of the missing values except hierarchical
clustering.

Screening of the Biological Variables Influenced by

One or Several Environmental Variables
An initial screening was carried out to highlight the protein spots
and additional assays relevantly influenced by the environmental
variables. This first selection was performed to point out the
biological variables for which no further analysis of regulation
was necessary (i.e., those for which there was no significant
influence of light, carbon, or nitrogen). This screening was
performed through a methodology coupling partial least squares
regression (PLSR) and multiple linear regression (MLR; the
reader is invited to refer to the Material and Methods Section for
an extensive description of the procedure).

The screening led to the selection of 83 protein spots over 135
(61%) and 15 additional assays over 19 (79%). The results of the
screening are described in Additional file 3 for protein spots and
in Additional file 4 for additional assays (protein spots of interest
are pointed out by orange arrows surrounded byMaster numbers
in Figure 2 and are presented in the upper part of Table 4 in bold
characters).

In numerous cases, two or more spots in 2D-gels were
identified as the same protein (91 spots corresponding to 31
different proteins, see Table 4). These observations are due to
post-translational modifications generating slight modifications
of the isoelectric point (e.g., phosphorylations, deamidations,
oxidations) and molecular weight (e.g., complex glycosylations,
differences in N- and C-terminal processing; Nield et al.,
2004; Mathy and Sluse, 2008). Only two proteins with multi-
identification, FBA3 (three spots) and MDH1 (two spots), did
not pass the initial screening for any spot. Less than half of the
spots were selected for ATPA (two over six), BLD10 (one over
four), and PRK1 (one over three). For the remaining 26 proteins,
there were at least 50% of the spots which passed the screening
(Additional file 3).

Interestingly, the proteins that are not passing the selection
procedure seem to exhibit specificities with regard to their
sub-cellular localization or biological function (Table 4 and
Additional file 3). The results obtained for the subunits of ATP
synthase indicate that the importance of their regulation by light,
carbon and nitrogen could mostly depend on their respective
cellular compartments: most of themitochondrial subunits (three
over four spots including ASA1, ASA2, and ATP2) passed the
screening whereas the chloroplastic and vacuolar subunits were
globally rejected (this rejection concerns five spots over eight
including ATPA and ATPvA1). A gene set enrichment analysis

TABLE 3 | Design of experiments.

Identification [Acetate] Light [NH+

4
] [NO−

3
] [CO2]

number

1 0 200 0 20 1.5

2 0 200 0 10 1.5

3 0.5 200 0 0 1.5

4 0.5 100 7.5 10 1.5

5 1 200 0 20 0.035

6 1 0 15 0 1.5

8 1 0 0 0 0.035

9 0 0 15 20 1.5

13 0 100 0 0 1.5

15 0 0 0 0 0.035

16 1 200 15 0 1.5

19 1 0 0 20 1.5

20 1 200 15 20 0.035

21 0.5 100 7.5 10 0.035

22 1 0 15 0 0.035

23 0 200 15 20 0.035

24 1 0 0 0 1.5

25 0 200 15 0 0.035

27 1 200 15 0 0.035

29 0 0 7.5 0 1.5

30 0 0 15 20 0.035

31 0 0 15 0 0.035

32 0 200 0 20 0.035

33 0.5 200 15 10 1.5

34 1 0 15 20 0.035

35 1 200 15 20 1.5

36 0 0 0 20 0.035

37 1 200 0 0 0.035

39 0.5 100 7.5 10 0.035

40 0 200 0 0 0.035

41 0.5 100 7.5 10 1.5

42 0.5 100 7.5 10 1.5

The identification number of each item refers to the DOE described in Gérin et al. (2014),

which served as basis to build the present one. The unit of each environmental variable

can be found in Table 2.

was carried out in order to verify this qualitative observation
(Additional file 5). The “GO cellular component complete”
annotation data set of the PANTHER database, in which
genes and proteins are classified according to their sub-cellular
location, was used. The analysis was carried out by comparing
the ATP synthase items found in the unselected protein data set
against a reference list consisting of all identified ATP synthase
subunits (see Table 4). As shown in Additional file 5, cellular
component groups referring to chloroplastic locations exhibited
the highest fold enrichment (two folds, positive) with the lowest
p-value (0.25 without Bonferroni correction for multiple testing).
Most of the vacuolar and cell periphery classes were also
characterized by a two folds positive enrichment (p = 0.437;
both locations are known to specifically contain V-type ATPases,
as opposed to the F-type ATP synthases found in chloroplasts
and mitochondria). The lowest fold enrichment (more than five
folds, negative) was observed for cellular component groups
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FIGURE 2 | Image of the G-Dye100-labeled internal standard in the Master gel (n◦11 in Additional file 1). The spots which were detected by DeCyder 7.0

and which passed the volume restriction filter are encircled. Among them, those that could be identified by mass spectrometry are highlighted in yellow (see also

Table 4). The spots that passed the initial PLSR- and MLR-based screening are pointed out by orange arrows with surrounding Master numbers (see also Additional

file 3). pI, isoelectric point; MW, molecular weight.

referring to mitochondrial locations (p = 0.562). These features
tend to support the observations mentioned earlier, but should
nevertheless be considered cautiously with regards to the lack of
statistical robustness since none of the p-values was significant
(p > 0.05). This is probably due to the very low number of
distinct proteins used to perform the enrichment analysis (only
four mapped protein IDs in the reference list and two within
the list of unselected ATP synthase subunits; Additional file 5).
Moreover, a feature of the technique is to treat each protein as a
unique entry (i.e., a unique protein ID) without consideration of
the number of spots that are found in each list.

For glycolytic enzymes and cytoskeleton and flagellar
constituents, the weakness of the environmental regulation
rather seems to be related to the metabolic role of the proteins,
without apparent influence of their sub-cellular localization.
Among the eight protein spots identified as cytoskeleton and
flagellar constituents (basal body protein BLD10, tubulins α and
β, actin IDA5), most appear not to be relevantly influenced by the

environmental variables (only one BLD10 spot over four passed
the screening). None of the glycolytic enzymes (five protein spots
including FBA3, PGM1b, and PYK1) were selected through the
applied procedure. These results suggest that the capacities of
glycolysis as well as chloroplastic and vacuolar ATP synthesis
were possibly not much influenced by the overall changes of light,
carbon and inorganic nitrogen applied in the present study. This
is the same for the composition of the cytoskeleton.

Detection and Characterization of Discrete Groups of

Co-regulated Biological Variables

Partitioning of protein spots through hierarchical clustering
Hierarchical clustering was performed to partition protein spots
according to the similarities of their abundance pattern among
the culture conditions defined in the DOE.

Results are presented in Figure 3 as a dendrogram with a
color range (from green to red) illustrating protein abundance
in the different DOE conditions. A two-dimensional distance
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TABLE 4 | Results of mass spectrometry identifications.

Master

number

Gene name GI number in NCBI Protein description pI MW I.S. spot volume in

Master gel

1 ACH1 gi|159462944 Aconitate hydratase 8.9 86754 140111

190 ACH1 gi|159462944 Aconitate hydratase 8.9 86754 855573

192 ACH1 gi|159462944 Aconitate hydratase 8.9 86754 459786

10 ACS3 gi|159488061 Acetyl CoA synthetase 7.3 74089 179390

11 ACS3 gi|159488061 Acetyl CoA synthetase 7.3 74089 352380

13 ACS3 gi|159488061 Acetyl CoA synthetase 7.3 74089 439169

66 AGS1 gi|159477301 Argininosuccinate synthase 8.4 49218 780829

67 AGS1 gi|159477301 Argininosuccinate synthase 8.4 49218 224729

220 ASA1 gi|159468466 Mitochondrial F1F0 ATP synthase associated 60.6 kDa protein 5.8 63123 173474

86 AST1 gi|159473837 Aspartate aminotransferase 9.7 46902 149498

18 ATP2 gi|159466892 Beta subunit of mitochondrial ATP synthase 5.0 61954 231602

186 ATP2 gi|159466892 Beta subunit of mitochondrial ATP synthase 5.0 61954 863821

38 ATPA gi|41179050 ATP synthase CF1 alpha subunit 5.4 54832 495031

42 ATPA gi|41179050 ATP synthase CF1 alpha subunit 5.4 54832 1711421

181 ATPvE gi|159469570 Vacuolar ATP synthase subunit E 7.5 26399 230593

68 BCR1 gi|159488652 Biotin carboxylase, acetyl-CoA carboxylase component 9.0 52308 494766

199 BCR1 gi|159488652 Biotin carboxylase, acetyl-CoA carboxylase component 9.0 52308 493171

63 BLD10 gi|159489304 Basal body protein 5.0 174819 3481530

56 CAT1 gi|159477329 Catalase/peroxidase 6.9 56407 397278

57 CAT1 gi|159477329 Catalase/peroxidase 6.9 56407 107595

232 CIS1 gi|159490012 Citrate synthase 9.1 51376 74708

28 CPN60A gi|159491478 Chaperonin 60A 5.5 61911 146530

29 CPN60A gi|159491478 Chaperonin 60A 5.5 61911 309631

30 CPN60A gi|159491478 Chaperonin 60A 5.5 61911 113632

31 CPN60A gi|159491478 Chaperonin 60A 5.5 61911 269507

126 CPX1 gi|159487437 Coproporphyrinogen III oxidase 9.0 41743 288842

108 CYN38 gi|159467709 Peptidyl-prolyl cis-trans isomerase, cyclophilin-type 5.4 44781 138802

248 CYP55B1 gi|159484456 Cytochrome P450, nitric oxide reductase 6.5 44185 210579

70 EEF1A1 gi|159476938 Eukaryotic translation elongation factor 1 alpha 1 8.7 51191 2335176

71 EEF1A1 gi|159476938 Eukaryotic translation elongation factor 1 alpha 1 8.7 51191 2072864

72 EEF1A1 gi|159476938 Eukaryotic translation elongation factor 1 alpha 1 8.7 51191 1071287

195 EEF1A1 gi|159476938 Eukaryotic translation elongation factor 1 alpha 1 8.7 51191 587077

253 EFTU_III gi|41179007 Elongation factor Tu 5.9 45772 237513

116 FNR1 gi|159478523 Ferredoxin-nadp reductase 8.5 38698 1802268

182 FNR1 gi|159478523 Ferredoxin-nadp reductase 8.5 38698 538494

240 FNR1 gi|159478523 Ferredoxin-nadp reductase 8.5 38698 452769

246 FNR1 gi|159478523 Ferredoxin-nadp reductase 8.5 38698 204137

17 FTSH1 gi|159465357 Membrane AAA-metalloprotease 5.6 77727 282826

147 FTT2 gi|159477028 14-3-3 protein 4.9 28099 389454

193 GAP3 gi|159463282 Glyceraldehyde-3-phosphate dehydrogenase 9.2 40507 570521

227 GAP3 gi|159463282 Glyceraldehyde-3-phosphate dehydrogenase 9.2 40507 557330

105 GLN2 gi|159469782 Glutamine synthetase 7.1 41715 310080

106 GLN2 gi|159469782 Glutamine synthetase 7.1 41715 155830

243 GLN2 gi|159469782 Glutamine synthetase 7.1 41715 335820

163 GSTS2 gi|159482414 Glutathione S-transferase 5.5 23922 285290

15 HSP70A gi|159486599 Heat shock protein 70A 5.3 71513 468194

16 HSP70A gi|159486599 Heat shock protein 70A 5.3 71513 611102

4 HSP70B gi|159476666 Heat shock protein 70B 5.2 72081 502751

6 HSP70B gi|159476666 Heat shock protein 70B 5.2 72081 872383

(Continued)

Frontiers in Plant Science | www.frontiersin.org 11 August 2016 | Volume 7 | Article 1158

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Gérin et al. Environmental Regulation of Chlamydomonas Metabolism

TABLE 4 | Continued

Master

number

Gene name GI number in NCBI Protein description pI MW I.S. spot volume in

Master gel

82 ICL1 gi|159474436 Isocitrate lyase 5.9 45948 643018

104 IDH2 gi|159473471 Isocitrate dehydrogenase–NAD-dependent 8.8 38796 388985

118 LHCB5 gi|159475641 Minor chlorophyll a-b binding protein of photosystem II 5.4 30695 608401

157 LHCBM1 gi|20269804 Major light-harvesting complex II protein m1 6.0 27605 396217

135 LHCBM3 gi|159491492 Light-harvesting complex II chlorophyll a-b binding protein M3 5.7 27420 1168663

184 LHCBM3 gi|159491492 Light-harvesting complex II chlorophyll a-b binding protein M3 5.7 27420 3613827

137 LHCBM6 gi|159474480 Chloropyll a-b binding protein of LHCII type I, chloroplast

precursor

5.9 27058 3345291

34 MAS1 gi|159475042 Malate synthase 8.7 61011 126787

35 MAS1 gi|159475042 Malate synthase 8.7 61011 149623

75 METM gi|159477124 S-Adenosylmethionine synthetase 6.0 43070 647025

77 MPPA2 gi|159465665 Mitochondrial processing peptidase alpha subunit 9.7 49559 122510

25 PCK1a gi|159473685 Phosphoenolpyruvate carboxykinase - splice variant a 6.2 62388 342592

27 PCK1a gi|159473685 Phosphoenolpyruvate carboxykinase - splice variant a 6.2 62388 568919

87 PGK1 gi|159482940 Phosphoglycerate kinase 8.9 49172 913779

153 POA1 gi|159467074 20S proteasome alpha subunit A 7.6 27487 199430

101 PRK1 gi|159471788 Phosphoribulokinase 9.0 42151 704307

172 PSBP1 gi|159471964 Oxygen-evolving enhancer protein 2 of photosystem II 9.8 29971 6598334

176 PSBP1 gi|159471964 Oxygen-evolving enhancer protein 2 of photosystem II 9.8 29971 1332361

46 RBCL gi|41179049 Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit 6.1 53193 768686

47 RBCL gi|41179049 Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit 6.1 53193 1962505

50 RBCL gi|41179049 Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit 6.1 53193 573314

51 RBCL gi|41179049 Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit 6.1 53193 2761041

52 RBCL gi|41179049 Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit 6.1 53193 953428

188 RBCL gi|41179049 Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit 6.1 53193 11015508

185 RPSA gi|159489000 Ribosomal protein Sa, component of cytosolic 80S ribosome and

40S small subunit

5.1 30971 447905

210 SEBP1 gi|159467635 Sedoheptulose-1,7-bisphosphatase 9.6 42393 1334623

249 SHMT2 gi|159487140 Serine hydroxymethyltransferase 2 6.3 52228 219816

97 SNE5 gi|159487407 NAD-dependent epimerase/dehydratase 7.8 36568 211419

3 TRK1 gi|159487741 Transketolase 7.1 78352 1478739

5 TRK1 gi|159487741 Transketolase 7.1 78352 216394

8 TRK1 gi|159487741 Transketolase 7.1 78352 470044

112 UPTG1 gi|159471081 UDP-Glucose:protein transglucosylase 5.9 39846 91980

113 UPTG1 gi|159471081 UDP-Glucose:protein transglucosylase 5.9 39846 348353

215 UPTG1 gi|159471081 UDP-Glucose:protein transglucosylase 5.9 39846 68875

191 ACH1 gi|159462944 Aconitate hydratase 8.9 86754 783724

231 ACH1 gi|159462944 Aconitate hydratase 8.9 86754 164370

12 ACS3 gi|159488061 Acetyl CoA synthetase 7.3 74089 106938

80 ASA2 gi|159477287 Mitochondrial F1F0 ATP synthase associated 45.5 kDa protein 9.6 48383 131696

103 ASSD1 gi|159473875 Aspartate semialdehyde dehydrogenase 9.2 40138 411619

39 ATPA gi|41179050 ATP synthase CF1 alpha subunit 5.4 54832 743857

40 ATPA gi|41179050 ATP synthase CF1 alpha subunit 5.4 54832 283203

41 ATPA gi|41179050 ATP synthase CF1 alpha subunit 5.4 54832 1223927

43 ATPA gi|41179050 ATP synthase CF1 alpha subunit 5.4 54832 3810462

14 ATPvA1 gi|159480680 Vacuolar ATP synthase, subunit A 5.7 68921 132891

59 BCR1 gi|159488652 Biotin carboxylase, acetyl-CoA carboxylase component 9.0 52308 354966

60 BLD10 gi|159489304 Basal body protein 5.0 174819 1106041

61 BLD10 gi|159489304 Basal body protein 5.0 174819 315177

62 BLD10 gi|159489304 Basal body protein 5.0 174819 560223

111 CYN38 gi|159467709 Peptidyl-prolyl cis-trans isomerase, cyclophilin-type 5.4 44781 528179

(Continued)
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TABLE 4 | Continued

Master

number

Gene name GI number in NCBI Protein description pI MW I.S. spot volume in

Master gel

79 EFTU_III gi|41179007 Elongation factor Tu 5.9 45772 751191

100 FBA3 gi|159485250 Fructose-1,6-bisphosphate aldolase 8.9 41301 2007141

194 FBA3 gi|159485250 Fructose-1,6-bisphosphate aldolase 8.9 41301 1881225

200 FBA3 gi|159485250 Fructose-1,6-bisphosphate aldolase 8.9 41301 357707

219 FBP1 gi|159465323 Fructose-1,6-bisphosphatase 5.6 44929 203216

202 FTSH1 gi|159465357 Membrane AAA-metalloprotease 5.6 77727 119047

23 FTSH2 gi|159478022 Membrane AAA-metalloprotease 6.2 74509 376353

170 GAD1 gi|159491066 UDP-D-glucuronic acid decarboxylase 8.7 37274 259532

152 GBP1 gi|159463672 G-strand telomere binding protein 1 7.6 24160 702757

58 GCSL gi|159474092 Dihydrolipoyl dehydrogenase 9.3 52905 175803

93 IDA5 gi|159482014 Actin 5.3 42094 251251

78 IF4A gi|159466510 Eukaryotic initiation factor 4A-like protein 5.5 47309 136610

129 IPY1 gi|159489184 Inorganic pyrophosphatase 6.4 31342 1113052

122 LHCB5 gi|159475641 Minor chlorophyll a-b binding protein of photosystem II 5.4 30695 1712493

205 LHCBM1 gi|20269804 Major light-harvesting complex II protein m1 6.0 27605 2194002

119 MDH1 gi|159469941 Malate dehydrogenase 8.5 36864 1282008

120 MDH1 gi|159469941 Malate dehydrogenase 8.5 36864 262435

37 MMSDH gi|159475673 Methylmalonate semi-aldehyde dehydrogenase 8.1 58580 182674

146 PDI2 gi|159462776 Protein disulfide isomerase 8.8 27447 176123

88 PGK1 gi|159482940 Phosphoglycerate kinase 8.9 49172 1979826

221 PGM1b gi|159476226 Phosphoglycerate mutase 5.6 60921 161753

102 PRK1 gi|159471788 Phosphoribulokinase 9.0 42151 323308

216 PRK1 gi|159471788 Phosphoribulokinase 9.0 42151 173323

183 PSBO gi|159473144 Oxygen-evolving enhancer protein 1 of photosystem II 8.3 30732 5260813

33 PYK1 gi|159469714 Pyruvate kinase 6.7 55233 216722

64 QCR1 gi|159477849 Ubiquinol:cytochrome c oxidoreductase 50 kDa core 1 subunit 5.9 55248 115110

48 RBCL gi|41179049 Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit 6.1 53193 163996

187 RBCL gi|41179049 Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit 6.1 53193 3590194

73 THS1 gi|159480894 Threonine synthase 9.4 54835 126623

7 TRK1 gi|159487741 Transketolase 7.1 78352 460717

55 TUA1 gi|159467393 Alpha tubulin 1 5.0 50182 283438

45 TUB2 gi|159471706 Beta tubulin 2 4.7 50157 341849

53 TUB2 gi|159471706 Beta tubulin 2 4.7 50157 514491

54 TUB2 gi|159471706 Beta tubulin 2 4.8 50157 478728

74 nd gi|159468534 Predicted protein 6.3 42690 575642

107 nd gi|159478405 Hypothetical protein CHLREDRAFT_185022 5.5 36849 115745

224 nd gi|159491024 Hypothetical protein 10.3 33272 94742

All identified proteins were found to belong to C. reinhardtii. Identified spots are sorted by alphabetic order of corresponding Gene Name for visual convenience. The spot volume of

the G-Dye100-labeled internal standard (I.S.) in the Master gel is also provided as a reference to assess protein abundance in 2D-gels. The spots which passed the initial PLSR and

MLR-based screening are presented in the upper part of the table and highlighted in bold (see also Additional file 3). pI, isoelectric point; MW, molecular weight.

plot is also displayed to facilitate cluster visualization. Eight
protein spot clusters can be defined according to the general
abundance pattern among the tested conditions (Figure 3).
For 28 proteins over 31 with multi-identifications, the
different spots were clustered together (partitioning among
two distinct clusters only for BCR1, ATPA, and FNR1).
The protein function(s) and cellular location(s) within each
cluster were searched in the Pathway Tools section of the
ChlamyCyc database (May et al., 2009) and summarized in
Table 5.

Most proteins found in cluster 4 are involved in pathways
related to acetate assimilation (e.g., acetyl-CoA synthesis,
glyoxylate cycle, TCA cycle, and gluconeogenesis; Figure 3,
Table 5). Acetyl-CoA is generated from acetate by acetyl-
CoA synthetase and is then metabolized through the
glyoxylate and TCA cycles. The reducing equivalents and C4

intermediates produced by these pathways can then be directed
to gluconeogenesis, as previously shown in C. reinhardtii
(Johnson and Alric, 2012). Aspartate aminotransferase
(involved in anaplerosis and reductant transport) and catalase
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FIGURE 3 | Hierarchical clustering analysis of protein spot abundance pattern upon DOE conditions. Only the spots which passed the initial PLSR- and

MLR-based screening were included. Protein abundance is illustrated as a dendrogram with a green-to-red color scale, and the numbering of culture conditions

corresponds to that in Additional file 2. A plot illustrating the 2D-distance among the spots is also provided (upper left) to facilitate cluster visualization. The allocation of

the additional assays within the different protein clusters was assessed by a separate hierarchical clustering analysis integrating all biological variables. Clust., cluster.
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TABLE 5 | Protein function(s) and sub-cellular localization(s) as found in

the ChlamyCyc database.

Gene name Function(s) Location(s)

CLUSTER 1

RBCL, TRK1 Calvin cycle Chloroplast

CLUSTER 2

BCR1 Fatty acid biosynthesis Chloroplast

CYP55B1 Nitric oxide detoxification nd

EFTU_III Protein elongation Chloroplast

FTSH1 Photosystem maintenance Chloroplast

ICL1 Glyoxylate cycle Mitochondrion,

peroxisome

LHCB5 Light-harvesting antennae Chloroplast

POA1 Proteasome Cytosol

PSBP1 Photosynthetic O2 evolution Chloroplast

CLUSTER 3

CPN60A Protein folding and stability Chloroplast

CLUSTER 4

ACH1 TCA cycle, glyoxylate cycle Mitochondrion

ACS3 Acetate conversion to

acetyl-CoA

Cytosol, mitochondrion

AST1 Amino-acid interconversion,

anaplerosis, malate-oxaloacetate

shuttle

Chloroplast,

mitochondrion

CAT1 H2O2 detoxification Mitochondrion,

peroxisome

MAS1 Glyoxylate cycle Peroxisome

PCK1a Gluconeogenesis Cytosol

PGK1 Glycolysis, gluconeogenesis,

Calvin cycle

Chloroplast

CLUSTER 5

ATPA ATP synthase, F1 subunit

component

chloroplast, thylakoid

membrane

BLD10 Flagellum assembly and

structure

Cytosol

GLN2 GS/GOGAT cycle Chloroplast

HSP70A Protein folding and stabilization Cytosol

HSP70B Photosystem assembly and

maintenance

Chloroplast

METM S-adenosylmethionine

biosynthesis

Cytosol, mitochondrion

MPPA2 Protein import to mitochondria Mitochondrion

SNE5 Cell-wall and secondary

metabolite biosynthesis

nd

UPTG1 Protein glycosylation Cytosol, mitochondrion

CLUSTER 6

BCR1 Fatty acid biosynthesis Chloroplast

EEF1A1, RPSA Protein elongation Cytosol

GAP3, PRK1, SEBP1 Calvin cycle Chloroplast

SHMT2 Photorespiration Mitochondrion, cytosol

CLUSTER 7

AGS1 Arginine biosynthesis Chloroplast

ASA1 ATP synthase, F1 subunit

component

Mitochondrion

ATP2 ATP synthase, F1 subunit

component

Mitochondrion, inner

membrane

(Continued)

TABLE 5 | Continued

Gene name Function(s) Location(s)

ATPA ATP synthase, F1 subunit

component

Chloroplast, thylakoid

membrane

ATPvE ATP-dependent proton pump for

active transport processes

Vacuolar membrane

CIS1, IDH2 TCA cycle, glyoxylate cycle Mitochondrion

CPX1 Chlorophyll and heme

biosynthesis

Chloroplast

FNR1 Photosynthetic electron transport Chloroplast

FTT2 Enzymatic activity regulation Mitochondrion

GSTS2 Peroxidized lipids and proteins

detoxification

nd

CLUSTER 8

CYN38 Photosystem assembly and

stabilization

Chloroplast stroma,

thylakoid lumen

FNR1 Photosynthetic electron transport Chloroplast

LHCBM1, LHCBM3,

LHCBM6

Light-harvesting antennae Chloroplast, thylakoid

membrane

Proteins are denominated by their corresponding Gene Name (see Table 4 for a complete

description) and classified by cluster for visual convenience.

(participating to ROS detoxification) were also partitioned
in the same cluster. This observation might be related
to the higher electron input possibly induced by acetate
assimilation. Such a feature could heighten the intracellular
redox state and the ROS production rate, and make necessary
to develop higher capacities of reductant transport and ROS
detoxification.

In cluster 7, most proteins are related to bioenergetic
processes: enzymes of the TCA cycle, components of the
mitochondrial ATP synthase, coproporphyrinogen III oxidase
(precursor of heme and chlorophyll), and proteins involved
in cell redox signaling (glutathione-S-transferase and 14-3-3
protein FTT2; Foyer and Noctor, 2003; Roberts, 2003).
Argininosuccinate synthase (which catalyzes the last, irreversible
reaction of arginine biosynthesis) can also be found in this
cluster. The carbon skeletons, reducing equivalents and ATP
molecules generated by mitochondrial catabolism are important
substrates for amino acid biosynthesis, as extensively reported
(Turpin, 1991; Huppe and Turpin, 1994; Foyer et al., 2011).
With this regard, the partitioning of biological variables related to
mitochondrial catabolism and amino acid biosynthesis into the
same cluster might reflect the need to coordinately regulate the
capacity of both groups of pathways.

Most members of cluster 8 are chloroplastic proteins involved
in the assembly, the architecture and/or the stabilization of core
photosystems and light-harvesting antennae. Ferredoxin-NADP
reductase, an enzyme participating to the photosynthetic electron
transport, can also be found there (two spots in cluster 7 and
two spots in cluster 8). In cluster 5, most proteins are related to
protein biosynthesis, maturation, stabilization, targeting and/or
assembly into complex structures. In clusters 1 and 6, proteins
are all involved in anabolic processes (especially the Calvin cycle).
Finally, cluster 2 can be described as a tote-bag in which there is
no clear tendency with regard to the general function of proteins.
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Gene set enrichment analyses of pathways were carried
out to verify the co-segregation of proteins participating to
common metabolic functions. The analyses were performed
in the “GO Pathways” annotation data set of the PANTHER
database. The proteins within each cluster were compared to a
reference list made of all proteins used to perform hierarchical
clustering (47 different proteins). The pathways exhibiting a
positive enrichment comparatively to the reference list are
displayed in Additional file 6 for each cluster. Among the
47 proteins in the reference list, 45 could be mapped to at
least one pathway entry in the database. Unfortunately, for 28
of these proteins, this entry was the unclassified category. In
clusters 1, 2, 3, 6, and 8, the unclassified category contained
nearly all proteins and showed a positive enrichment of about
1.5-fold (except in cluster 6 for which the enrichment was
only worth 1.15). In cluster 4 (three unclassified proteins over
seven), acetate utilization and asparagine/aspartate biosynthesis
exhibited the highest fold enrichment (6.43; Additional file
6). In cluster 5 (four unclassified proteins over seven), a
five-folds enrichment was observed for two pathways related
to amino acid biosynthesis: glutamine/glutamate conversion
and S-adenosylmethionine biosynthesis. In cluster 7 (five
unclassified proteins over ten), pathways related to bioenergetics
(heme biosynthesis and pyruvate metabolism) and amino acid
biosynthesis (leucine and arginine) showed the highest fold
enrichment (4.50). The same result was also obtained for two
redox signaling pathways as well as for the degradation of
ascorbate (which is a powerful antioxidant; Hüttemann et al.,
2007; Smirnoff, 2011; Lamb et al., 2015). These results collected
for clusters 4, 5, and 7 are in agreement with the considerations
mentioned earlier with regard to the metabolic function of
proteins. It should be noticed that nearly all p-values of the
enrichment analysis are unsignificant (p > 0.05; see Additional
file 6); results should therefore be considered cautiously due
to the lack of statistical robustness. The reasons for that could
be the same as those described in Section Screening of the
Biological Variables Influenced by One or Several Environmental
Variables.

Integration of the additional assays within specific protein

clusters
Hierarchical clustering was reiterated by also including
additional assays in the analysis, together with protein spots.
The purpose of that was to partition the assays in the different
protein clusters according to pattern similarities among the DOE
conditions. Results are summarized in Figure 3.

All respiratory parameters (CR, MACYT, and MAALT) and
fatty acids (palmitic, oleic, and linolenic acids) are associated with
protein cluster 7. Palmitic, oleic, and linolenic acids constitute
highly-energetic substrates for β-oxidation in themitochondrion,
and are known to mediate the activity of the mitochondrial
uncoupling proteins (Jezek et al., 1998). Moreover, linolenic
acid is the most abundant fatty acid found in plant thylakoid
membranes (Murphy, 1986). β-carotene and violaxanthin also
exhibit pattern similarities with protein cluster 7. They are the
only carotenoids for which the biological function cannot be
substituted by other pigments in case of mutational deletion, and

are thought to protect the photosynthetic apparatus from photo-
oxidative damages (Trebst, 2003). The remaining pigments
(chlorophylls a and b, total carotenoids, neoxanthin, lutein)
were rather partitioned with protein cluster 8. For ϕPSII800 and
P800, the dependence upon DOE conditions is related to protein
cluster 5.

The term “cluster” will be used thereafter to designate each
group of biological variables (proteins and assays) exhibiting
a similar pattern among the DOE conditions, as shown by
hierarchical clustering.

Characterization of the cluster-specific attributes by

multivariate analysis
A principal component analysis (PCA) was performed with
all biological variables in order to characterize cluster-specific
regulatory tendencies with regard to the particularities of the
DOE conditions. Figure 4A shows the results of the PCA as the
corresponding score plot and loading plot, based on the two
first principal components. The first and the second components
account for 29.7 and 24.1% of the variability, respectively, with
only 9.6% for the third component (see Additional file 7).

In the loading plot (bottom-right of Figure 4A), the vectors of
the biological variables are colored according to their respective
cluster. As expected, biological variables within each cluster
appear to be grouped together as vector bundles pointing toward
a specific direction. As illustrated in Figure 4A, the correlation
among biological variables is the highest within clusters 3, 6,
and 8, as evidenced by the narrow angle covered by their vector
bundles. In the other clusters however, the observation of a much
more important angle (close to 90◦, with amaximal amplitude for
cluster 5) indicates that the correlation between some biological
variables can be very weak despite the high correlation between
neighboring vectors (the correlation matrix of each cluster is
displayed in Additional file 8). For example, in cluster 5, a
correlation of 0.93 (highest value within the cluster) is observed
between two isoforms of UPTG1 (spots 112 and 215) but the
correlation is of only –0.18 between 4-HSP70B and 3-BLD10.

In order to assign the cluster-specific grouping of biological
variables to specificities of the DOE culture conditions, the
score plot was reproduced in five identical copies (one per
environmental variable) and each observation was marked with
its respective DOE value using a specific color scale (Figure 4A).
A shown there, the observations can be divided into five
groups according to their relative position to the first and the
second principal components. The distinction between the two
groups of the inferior quadrants is essentially due to the third
principal component (data not shown). Interestingly, each group
of observations exhibits specific tendencies regarding the value of
one or several environmental variable(s). Figure 4B summarizes
the tendencies observed within each quadrant and also displays
angular covering by the vectors of each cluster under the form of
a biplot-like scheme.

In addition, in-cluster PLSRs were carried out as a
supplementary way to assess regulatory specificities. Variable
importance in projection (VIP) of each environmental variable is
displayed in Figure 4C for the different clusters (see Additional
file 7 for details about PLSR results). For VIPs exceeding the
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FIGURE 4 | PCA and PLSR analyses of in-cluster regulatory specificities regarding the DOE conditions. PCA was performed with all biological variables in

the same analysis whereas one PLSR was performed for each cluster. (A) Results of PCA. The score plot was replicated in five copies so as to enable to mark the

observations according to the values taken by each environmental variable in DOE. In the loading plot (at the bottom right), vectors of the biological variables are

colored according to their respective cluster. (B) Biplot-like scheme summarizing (i) the regulatory tendencies observed within each quadrant of the score plot

regarding the DOE conditions and (ii) the angular covering by the vectors of each cluster within the loading plot. (C) Results of PLSRs as the variable importance in

projection (VIP) of the environmental factors for each cluster. The sign of the coefficients within PLSR models is provided for VIP values exceeding 1.

Frontiers in Plant Science | www.frontiersin.org 17 August 2016 | Volume 7 | Article 1158

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Gérin et al. Environmental Regulation of Chlamydomonas Metabolism

cutoff value of 1, the sign of the coefficient in the PLSR models
is also provided.

As highlighted in Figures 4B,C, negatively correlated clusters
(cluster 6 vs. 8; cluster 4 vs. 5; clusters 1-2-3 vs. 7) exhibit
an opposite regulation by specific environmental variables.
Biological variables found in clusters 6 and 8 are both controlled
by acetate concentration and light intensity with a positive
influence of these factors in cluster 6 and a negative one in cluster
8. For the members of clusters 4 and 5, there is a substantial
effect of light intensity which appears to be negative in cluster
4 and positive in cluster 5. Finally, nitrate and/or ammonium
concentrations seem to be the most important factors regulating
biological variables in clusters 1, 2, 3, and 7, with a positive
influence in clusters 1-2-3 and a negative one in cluster 7.
It is worth noticing that neither PCA nor PLSR enable the
visualization of more complex effects than linear ones. Results
presented in Figures 4B,C are therefore likely to provide an
incomplete overview of in-cluster regulatory tendencies.

Altogether, PCA and PLSR results indicate that regulatory
tendencies exist within each cluster with some in-cluster subtle
regulatory divergences, as suggested by the observation of
a quite weak correlation among some biological variables.
These divergences were further characterized by an analysis of
covariance (ANCOVA) throughMLR (one model per cluster), by
introducing the identity of the biological variables as a categorical
model predictor (for details, read the Material and Methods
Section). ANCOVA results are presented in Additional file 9.
All models are significant (p < 0.0001) with relatively high
values of R2 adjusted (0.62 on average) and low fitting root
mean squared errors (RMSEF ≤ 33% of the response average
scale). For each individual biological variable, the effects of the
different environmental factors were statistically compared to
the overall regulation within the cluster, and the significant
differences (p ≤ 0.05) were further characterized by their
respective β-weights (standardized regression coefficients). This
approach enabled on the one hand to identify the biological
variables exhibiting an outlying regulation within each cluster,
and on the other hand to determine which environmental
variables were responsible for this divergence (see the summary
scheme in Additional file 9). Consistently with PCA results,
ANCOVA demonstrates that the environmental regulation is
quite homogenous in clusters 3, 6, and 8 but shows a more
important proportion of discrete divergences in the other
clusters.

Independent Modeling of the Dependence of Each

Biological Variable upon Light, Carbon, and Nitrogen
The influence of the environmental factors (Table 2) was
modeled independently for each biological variable through
MLR. Single effects and second-order interactions between
environmental variables were considered, as well as linear and
quadratic effects for the continuous ones (for details, read the
Material andMethods Section). Prior toMLRmodeling, stepwise
regression was carried out with minimum AICc (corrected
Akaike information criterion) as stopping rule in order to reduce
the number of coefficients and limit the probability of overfitting
(Gérin et al., 2014).

Model parameters and cross-validation
The model parameters and the regression equation of each
biological variable are provided in Additional file 10. The
values predicted by this equation for the different DOE culture
conditions are listed in Additional file 11. On average for
all biological variables, RMSEF is worth 40% of the response
average scale with a standard deviation of 11%, and the
mean R2 adjusted is equal to 0.61 with a standard deviation
of 15%. The whole-model ANOVA p-values are statistically
significant for every biological variable, and the lack-of-fit is
significant for 101-PRK1 only (p = 0.0047). These results
indicate that the effects included in the models are likely to
be sufficient to explain most of the variability of the biological
variables.

Models were cross-validated by the k-fold method with
k = 4 in order to spot potential overfitting. Data subsets
are described in Additional file 11. Cross-validation results are
displayed in Additional file 12 as superimposed bar charts
enabling comparison between the cross-validation root-mean-
squared error (RMSECV ) and both the training RMSEF and
the response average scale (references to assess the extent of
RMSECV ). On average, RMSECV is worth 51% of the response
average scale with a standard deviation of 15%. RMSECV
exceeds the training RMSEF by 32% on average (=12% of
the response average scale) with a standard deviation of 19%
(=7% of the response average scale). Since RMSECV is not
harshly above RMSEF , models are likely not to overfit for
most biological variables. As shown in bar charts (Additional
file 12), exceptions to this assumption could be 193-GAP,
108-CYN38, 182-FNR1, 29-CPN60A, and 71-EEF1A (RMSECV
exceeds RMSEF by more than two-thirds, suggesting that the less
significant factors—with 0.01 < p < 0.05—should be considered
cautiously).

Relative importance and mathematical profile of the

environmental variables
Figure 5 illustrates the β-weights associated to the statistically
significant coefficients (p ≤ 0.05) as a green-to-red heat map.
Protein spots and additional assays are sorted by cluster, and
the empty cells are either for insignificant or stepwise-unselected
effects. A complete list of β-weights and p-values is provided in
Additional file 10.

As illustrated in Figure 5, biological variables are mostly
regulated through single, linear effects of the environmental
factors (over 50% of significant linear coefficients for the
continuous variables and 26% for CO2 concentration). Only
16% of the quadratic coefficients are globally significant but this
proportion reaches 29% for nitrate concentration. The second-
order interaction between nitrate and ammonium is statistically
significant for 48% of the biological variables, with only 2–16%
for the other interactions. This observation suggests that the
nature of the inorganic nitrogen source and the balance between
its different molecular species are likely to be key regulators of
cellular metabolism.

Nearly all biological variables are nonetheless regulated
through complex superimpositions of linear effects, quadratic
effects and/or second-order interactions of the environmental
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FIGURE 5 | β-weights associated with the statistically significant effects (p ≤ 0.05) of MLR models for individual biological variables. β-weights are

illustrated as a green-to-red color scale; empty cases are for insignificant effects or effects which were not selected by stepwise regression (see Additional File 10 for

raw data). Biological variables are classified by cluster (Figure 3); within each cluster, they were sorted such as to facilitate the visual comparison of their respective

regulation patterns. Clust., cluster.

variables (Figure 5). That renders the visualization of regulation
quite difficult and makes necessary to perform a case-by-case
mathematical simulation for every biological variable and
environmental factor. For technical reasons, it is not possible to
present such numerous simulations here. Consequently we rather
chose to build generalized simulation plots considering every

possible situation (Figure 6) as a key to read the results presented
in Figure 5.

In good agreement with PCA and ANCOVA, the identity,
sign and relative importance of the significant coefficients are
especially homogenous among biological variables in clusters 3
and 8 (Figure 5). As expected, the regulatory differences among
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FIGURE 6 | Generalized simulation plots for MLR individual modeling of the biological variables. This figure is the key for reading the regulation results

summarized in Figure 5. (A) Influence profile of the environmental variables according to the type of effect (ordinal, continuous linear or continuous quadratic) in

relationship with the sign and magnitude of the associated β-weight(s). (B) Second-order interactions between environmental variables (X1 and X2) and simulates the

incidence of X1 variation on the influence profile of X2 in relationship with the value of the β-weight of the interaction. Possible variations of X2 graph intercept as a

function of X1 are not represented on the schemes.

the clusters appear to be far more remarkable than within each
individual one (existence of a clear regulatory pattern unique
to every cluster). The results obtained by PCA and PLSR with
regard to the in-cluster regulatory specificities (Figures 4B,C) are
consistent with MLR results (Figure 5).

Description of the Environmental
Regulation of the Biological Variables
According to Their Metabolic Function
Biological Variables Related to Photosynthesis and

Protein Metabolism
Most components of light-harvesting antennae (LHC proteins
and pigments, cluster 8) are controlled by light intensity and
acetate concentration through negative linear effects (Figure 5,
Table 5). Consistently, acclimation to increasing irradiance has
long been known to involve a substantial down-regulation of
LHC proteins and to lower the cellular pigment amount (Neale
and Melis, 1986; Falkowski and LaRoche, 1991; Teramoto et al.,
2002; Durnford et al., 2003; Nield et al., 2004). Moreover,
the contents of chlorophyll a and b have been reported to
be decreased in C. reinhardtii cells grown in the presence of

acetate (Boyle and Morgan, 2009). On the contrary, most of
the actors of the enzymatic machinery involved in protein
synthesis and maturation (clusters 5 and 6) are regulated by
light intensity and acetate concentration through positive linear
effects (with the exception of EEF1A for which there is no
influence of light, see Figure 5). Accordingly, the cytosolic heat-
shock protein HSP70A has already been reported to be induced
by light at the mRNA abundance level (Von Gromoff et al.,
1989).

In addition, most components of the light-harvesting
antennae (cluster 8) tend to be regulated by nitrate concentration
through a quadratic convex profile (minimum estimated
around 12.5mM; Figures 5, 6, Additional file 10). Interestingly,
a reciprocal concave control is exerted by this factor on
a series of other photosynthesis-related biological variables:
P800 (the maximal gross O2 evolution) and two enzymes
catalyzing regulatory steps of the Calvin cycle (sedoheptulose-
1,7-bisphosphatase and phosphoribulokinase; Hahn et al., 1998;
Raines, 2003). In some circumstances, P800 can be regarded as an
indicator of the capacity of the metabolic pathways consuming
the photo-generated NADPH and ATP, such as the Calvin cycle
(Badger et al., 2000).

Frontiers in Plant Science | www.frontiersin.org 20 August 2016 | Volume 7 | Article 1158

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Gérin et al. Environmental Regulation of Chlamydomonas Metabolism

Remarkably, the enzymes involved in protein synthesis and
maturation (cluster 5) are the only group of biological variables
exhibiting a clear regulatory tendency upon CO2 concentration
(positive effect; Figure 5, Table 5).

Biological Variables Related to the Calvin Cycle
The regulation of the Calvin cycle enzymes (clusters 1 and 6)
by light, carbon and nitrogen appears to be quite heterogeneous
(Figure 5, Table 5). Transketolase is mostly regulated through
linear effects of nitrate concentration. Rubisco large subunit,
sedoheptulose-1,7-bisphosphatase and phosphoribulokinase are
controlled by quadratic effects of nitrate concentration with
an additional quadratic influence of acetate concentration for
RubisCO large subunit and phosphoribulokinase. A linear
effect of light intensity is also observed for the latter enzyme.
The abundance of glyceraldehyde-3-phosphate dehydrogenase
mostly depends on linear effects of acetate concentration,
nitrate concentration and light intensity. No significant effect
of CO2 concentration could be detected for any of these
enzymes, except a second-order interaction between acetate and
CO2 concentrations for some spots of RubisCO large subunit
(Figure 5). Accordingly, CO2 concentration has already been
reported to exert no relevant influence on the cellular abundance
of the latter protein (Borkhsenious et al., 1998; Mitchell et al.,
2014).

Biological Variables Related to Acetate Assimilation
Nearly all proteins involved in acetate assimilation (cluster 3)
are controlled by light intensity through negative linear effects.
This concerns acetyl-CoA synthetase as well as enzymes of
the glyoxylate cycle, TCA cycle and gluconeogenesis (Figure 5,
Table 5). In line with these observations, light has been shown
to act as a negative regulator of the glyoxylate cycle in plants
(Allen et al., 1988), and lower mRNA levels have been reported
for isocitrate lyase consequently to light exposure inC. reinhardtii
(Petridou et al., 1997).

Interestingly, acetate concentration alone does not appear to
significantly influence the machinery responsible for its own
assimilation at the protein abundance level (Figure 5). This
is consistent with the observation that the genetic expression
of malate synthase and isocitrate lyase occurs in both the
presence and the absence of acetate in plants (Graham et al.,
1994). A negative interaction between acetate concentration and
light intensity could nonetheless be detected for most proteins
involved in acetate assimilation. Therefore, increasing acetate
availability is expected to strengthen the negative influence
exerted by light intensity on the acetate assimilatory machinery,
so that the most important effect of light will be observed in case
of high acetate availability (Figures 5, 6). A positive second-order
interaction between acetate and CO2 concentrations was also
detected for a few proteins participating to acetate assimilation
(phosphoenolpyruvate carboxykinase and aconitase; Figure 5).
This possibly indicates that the total carbon availability could
contribute to control acetate assimilation to some extent.

Acetate assimilatory enzymes also tend to be regulated
by nitrate and ammonium concentrations through positive
linear effects (less well-defined tendency in comparison to

light; Figure 5). This suggests that the abundance of these
proteins could be controlled by the total availability of inorganic
nitrogen. Accordingly, the mRNA levels of aconitase and
phosphoenolpyruvate carboxykinase have been reported to be
very sensitive to nitrogen deprivation in C. reinhardtii (Miller
et al., 2010).

Biological Variables Related to Bioenergetic

Processes
Nearly all the biological variables involved in bioenergetic
processes found in cluster 7 are regulated by nitrate and
ammonium concentrations through negative linear effects
(Figure 5, Table 5). Such as for acetate assimilatory enzymes,
this could indicate that the mitochondrial and chloroplastic
bioenergetic pathways are very sensitive to the total availability
of inorganic nitrogen at the protein abundance level. This
assumption is strengthened by the observation of a positive
second-order interaction between nitrate and ammonium
concentrations (Figure 5). Such an interaction could contribute
to improve the tightness of the metabolic response, by
attenuating the negative influence of each factor when the
availability of the other nitrogen source increases in the
medium.

GroEL-Homolog Chaperonin CPN60A
The abundance of this protein (the only one in cluster 3) is
strongly regulated by ammonium concentration through positive
linear effects (Figure 5). This observation might be related a
possible role of CPN60A in the enhancement of the stability
of the enzymatic machinery for photosynthesis and nitrate
reduction, as reported in cyanobacteria in case of thermal stress
(Rajaram and Apte, 2008). The observation of a negative second-
order interaction with CO2 concentration also indicates that
the influence of ammonium might be attenuated in high CO2-
grown cells. This effect of CO2 could be related to the well-
known participation of CPN60A to the assembly of RubisCO
holoenzyme in plants (see Hauser et al., 2015 for review).

DISCUSSION

The present work is focused on studying the influence of
simultaneous variations of light, carbon and inorganic nitrogen
on the cellular proteome of C. reinhardtii. For this purpose,
design of experiments (DOE) and sequential multivariate
analyses were used to model protein regulation upon overall
environmental changes. Proteomic results were completed by
additional assays for respiration, photosynthesis, and cellular
contents of some lipids and pigments, and the data of these assays
were integrated into proteomic results through multivariate
statistics. To date, most reported efforts have been focused
on studying the effects of one or two environmental variables
on photosynthetic metabolism (keeping the other variables
constant). Moreover, little information was available in literature
concerning the mathematical influence profile of each variable
and its relative weight.

Over the last decade, a very wide panel of omics-based
approaches has been developed to gain deeper understanding
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of many aspects of cellular biology. With regard to the
huge amount of data generated by these techniques, efficient
bioinformatics methods of meta-analyses have been developed
to reconstitute biological systems. In this context, dealing with
data heterogeneity is the key problem (Fukushima et al., 2009;
Mochida and Shinozaki, 2011). The use of multivariate statistical
approaches could help solving this problem to some extent, by
making possible to perform an overall regulation study with a
single experimental design.

The Present Set of Sequential Multivariate
Analyses is Suitable for the
Characterization of the Environmental
Regulation of C. reinhardtii Metabolism
As already described in details, the results of the regression-
based initial screening are homogenous for the different spots
of proteins with multi-identifications (Additional file 3). In the
individual MLR models obtained for the selected biological
variables, an important proportion of the variability can be
explained by light, carbon and nitrogen (Figure 5, Additional file
10). These elements indicate that the screening procedure that we
used here is reliable for the present data set.

Hierarchical clustering is a key element of the present
work that enabled to partition biological variables according
to their regulatory similarities. Such a methodology had
already been employed by Höhner et al. for the analysis
of C. reinhardtii proteomic data to study the response to
environmental changes (iron availability and trophic status;
Höhner et al., 2013). The authors demonstrated that the proteins
participating to a common biological function tended to be
grouped together. Similarly here, hierarchical clustering enabled
to partition biological variables into eight co-regulated clusters
corresponding to specific biological processes: Calvin cycle
(cluster 1), acetate assimilation (cluster 4), protein synthesis and
maturation (cluster 5), anabolic pathways (cluster 6), processes
of energy transduction (cluster 7), and composition of the
photosynthetic apparatus (cluster 8; Figure 3, Table 5). The
observation of such a weak number of clusters is outstanding
with regard to the diversity of the environmental perturbations
applied here.

An overview of the regulation by light, carbon and nitrogen
within each cluster was further characterized by PCA, PLSR,
and ANCOVA (Figure 4, Additional file 9). These analyses
indicated the existence of slight in-cluster differences with
regard to the influence of the environmental variables. These
observations were particularly marked for clusters 1, 2, 4, 5, and
7, and suggested that subtle regulatory divergences could exist
within each cluster despite the existence of a common pattern.
These divergences among biological variables were therefore
assessed by modeling the influence of light, carbon and inorganic
nitrogen through MLR, independently for each protein spot
and additional assay. In contrast with PCA and PLSR, these
analyses enabled to simulate the mathematical influence profile
of each environmental variable by taking into account quadratic
effects and second-order interactions (Figures 5, 6). As expected,
the differences were much less marked within the clusters than

among them, confirming the existence of a clear regulatory
pattern unique to every cluster.

The Present Analyses Provide Deeper
Insight into the Metabolic Adaptations Set
Up in Response to Overall Environmental
Changes
Light, Carbon, and Inorganic Nitrogen Exert No

Influence on a Series of Biological Variables

Associated to Specific Sub-Cellular Compartments

or Biological Functions
According to the results of the initial regression-based screening,
most proteins which are not substantially influenced by light,
carbon or nitrogen (Table 4, Additional file 3) seem to belong
to discrete sub-cellular compartments or functional groups. On
the one hand, as verified by gene set enrichment analysis, this
absence of environmental regulation concerns the chloroplastic
and vacuolar subunits of ATP synthase. On the other hand, no
incidence of light, carbon and nitrogen could be noticed for
the glycolytic enzymes nor for the cytoskeleton and flagellar
components analyzed here, independently of their sub-cellular
localization. Previous studies indicated that light might influence
glycolysis by inhibiting pyruvate kinase in C. reinhardtii (Xue
et al., 1996). As suggested here, this possible light-mediated
inhibition of glycolytic activity might not be associated to
a significant decrease of the capacity of the pathway. In C.
reinhardtii, some subunits of the chloroplastic and vacuolar
ATP synthases are also known to be regulated by light through
the thioredoxin system (Lemaire et al., 2004). This variation of
activity does not seem to correlate with a significant modification
of protein abundance.

Among the functional assays for respiration and
photosynthesis, only NPQ800 did not pass the initial screening
(Additional file 4). This may be related to the lower ability
of C. reinhardtii to set up non-photochemical quenching of
chlorophyll fluorescence in comparison with plants (Finazzi
et al., 2006).

Influence of Light, Carbon, and Inorganic Nitrogen on

the Cellular Metabolism
As shown in Figure 5, the regulation of most selected biological
variables occurs through linear effects of light, acetate, nitrate and
ammonium. For CO2 concentration, the number of significant
coefficients (p ≤ 0.05) is twice lower in comparison with the
other variables.Moreover, no cluster-specific regulatory tendency
can be distinguished regarding this factor, except in cluster 5 in
which there is a positive influence of CO2 for many biological
variables. Remarkably, no influence of CO2 concentration could
be detected here for Calvin cycle enzymes, including RubisCO
as already reported at the abundance level (Borkhsenious et al.,
1998; Mitchell et al., 2014).

We hypothesize that the weakness of CO2 influence could
arise from two particularities of the experimental design. Firstly,
the cellular density in algal cultures was relatively weak at the
time of harvest (biomass: 250µg.mL−1). The uptake of CO2

by algal cells was therefore probably not limited by the rate
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of CO2 diffusion in the aqueous phase. In these conditions,
the induction of the carbon-concentrating mechanism (CCM)
under 350 ppm CO2 might have been sufficient to buffer the
variations of CO2 levels in the local environment of RubisCO
(Moroney et al., 2011; Wang et al., 2011; Kupriyanova et al.,
2013). Accordingly, the acclimation of C. reinhardtii cells to low
CO2 has been associated with increased levels of several CCM
proteins without modification of the abundance of RubisCO
large and small subunits (Mitchell et al., 2014). Secondly, the
maximal light intensity used here (200µmolphotons.m

−2.s−1)
is not high enough to induce saturation the photosynthetic
electron transport chain (Sueltemeyer et al., 1986; White and
Critchley, 1999). The production rates of NADPH and ATP
(rather than the availability of CO2) are therefore likely to
constitute limiting factors for the Calvin cycle in the present
conditions. Altogether, these different elements might rationalize
that huge modifications of CO2 availability (from 350 ppm to
1.5%) are shown here to induce only slight metabolic adaptations.

The features discussed below regarding the influence of light,
carbon, and inorganic nitrogen on the cellular metabolism are
illustrated in Figure 7. Figure 7A is for nitrate and ammonium;
Figure 7B is for light, acetate and CO2. These schemes represent
interpretations of our results, mostly related to changes in protein
abundance.

Influence of nitrate and ammonium
As shown in Figure 5, nitrate and ammonium exert a
significant influence on biological variables related to carbon
metabolism (Calvin cycle, glyoxylate cycle, gluconeogenesis) and
processes of energy transduction (respiration, photosynthesis,
light harvesting; see also Table 5). The predominant regulatory
nitrogen form and its mathematical influence profile are
specific for each pathway: for example, light-harvesting antennae
components (cluster 8) are regulated by nitrate concentration
through a quadratic influence profile, whereas processes of
energy transduction (cluster 7) rather depend on the total
availability of inorganic nitrogen through negative effects. To
date, the influence of nitrate and ammonium concentrations
had poorly been investigated, but dramatic effects of nitrogen
deprivation on many aspects of biological functions had
nonetheless been reported (Plumley and Schmidt, 1989; Turpin,
1991). Altogether, these data and the present results emphasize
that the inorganic nitrogen source is a key factor controlling the
energetic balance of the cell. Interestingly, for nearly half of the
biological variables, a significant interaction could be detected
between nitrate and ammonium concentrations (Figure 5).
This suggests that the balance between these two forms also
exerts a particularly important control on biological processes,
probably because of the higher energetic requirements of nitrate
assimilation (Fernandez et al., 2004).

Nitrate quadratically influences the machineries for light-
harvesting, photosynthesis and CO2 fixation: A way to adjust
the photo-production of reductant, ATP and carbon skeletons
to the assimilation of this N source? The components of light-
harvesting antennae (LHC proteins ant pigments in cluster
8) are shown here to be regulated by nitrate concentration

through a convex profile with an inflecion point around 12.5mM
(Figures 5, 6, Additional file 10). Interestingly, several other
biological variables related to photosynthesis are controlled by
nitrate through a reciprocal concave profile: Calvin cycle enzymes
(sedoheptulose-1,7-bisphosphatase, phosphoribulokinase, some
spots of RubisCO large subunit), linolenic acid (the most
abundant fatty acid in thylakoid membranes), P800 (the gross
photosynthetic O2 evolution), and some spots of ferredoxin-
NADP reductase (Figures 5, 6). These data suggest that certain
aspects of light harvesting, photosynthetic electron transport and
CO2 fixation are coordinately regulated by nitrate concentration.
Remarkably, the observation of quadratic profiles indicates
the existence of an optimal concentration of this factor for
photosynthesis. The experimental elements are nevertheless
insufficient to rationalize the occurrence of two types of
reciprocal quadratic effects.

Photosynthesis is an important source of reductant, ATP
and carbon skeletons for nitrogen assimilation (Turpin,
1991). Consequently, it can be argued that the regulation of
photosynthesis by nitrate concentration arises from the need to
adjust the rate of reductant, ATP and carbon skeleton production
to the rate of nitrate assimilation. That had already been
suggested for P800 in a previous publication (Gérin et al., 2014).
The data reported here indicate that nitrate-induced adaptations
occur at two levels: (i) at the level of the photosynthetic electron
transport chain as a way to control the production of reductant
and ATP, and (ii) at the level of the Calvin cycle as a way to
adjust the rate of carbon skeleton production (Figure 7A). Such
adaptations are likely to contribute to the regulation of the
carbon-to-nitrogen balance of the cell under changing nitrate
availability in the culture medium.

Nitrogen down-regulates pathways contributing to its assimilation
at the protein abundance level A recent study reported the
proteomic adaptations of algal cells upon changes of ammonium
availability in the culture medium (testing of four different
concentrations; Lee et al., 2012). A drastic increase of the
abundance of several TCA cycle enzymes (citrate synthase,
isocitrate dehydrogenase, α-ketoglutarate dehydrogenase,
succinate dehydrogenase, malate dehydrogenase) and of
glutamine synthetase could be detected while decreasing
ammonium concentration. These results were attributed to
the need to heighten the capacity for amino acid biosynthesis
through the GS/GOGAT cycle and anabolic pathways (requiring
organic acids as carbon skeletons) in case of low nitrogen supply
(Lee et al., 2012). Here the observation that total nitrogen
availability (nitrate + ammonium) exerts a negative influence
on biological variables involved in mitochondrial catabolism
(notably citrate synthase and isocitrate dehydrogenase) and
amino acid biosynthesis (argininosuccinate synthase; see cluster
7 in Figure 5) is in agreement with this assumption. In line with
that previous study, a strong negative influence of ammonium
concentration on the abundance of glutamine synthetase could
also be detected here (Figure 5). The present work further
demonstrates that nitrogen influence prevails over the effects
of light and carbon for the regulation of TCA cycle and amino
acid biosynthetic enzymes at the protein abundance level (no
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FIGURE 7 | Metabolic adaptations induced in response to variations of light, carbon, and nitrogen in the medium. These schemes represent

interpretations deduced from our results, mostly related to changes in protein abundance. (A) Influence of nitrate and ammonium concentrations. (B) Influence of light

intensity and carbon availability (acetate and CO2). The postulated effects of the environmental factors are colored in blue and pointed out by bold arrows surrounded

by specific symbols describing the type of influence: + and – are for linear profiles whereas concave and convex shapes are for quadratic profiles. CETC, chloroplastic

electron transport chain; Fd, ferredoxin; G-3-P, glyceraldehyde-3-phosphate; LHC, light-harvesting complex.

clear regulatory tendency upon changes related to light, CO2 and
acetate, see Figures 5, 7A).

Influence of light, acetate and CO2

Light-mediated activation of the Calvin cycle does not always
correlate to higher protein abundance Calvin cycle enzymes
are known to be activated by light through redox mechanisms
mediated by the thioredoxin system. That enables to accelerate
the turnover of NADPH and ATP when light intensity increases,
with a concomitant improvement of CO2 fixation (Perchorowicz
et al., 1981; Brooks et al., 1988). Remarkably, the data presented
here indicate that the thioredoxin activation of Calvin cycle
enzymes is not always associated to higher protein abundance
levels. Statistically significant coefficients were indeed detected
for some enzymes (glyceraldehyde-3-phosphate dehydrogenase,
phosphoribulokinase) but in other cases light was not shown to
be a regulatory factor (RubisCO large subunit, sedoheptulose-
1,7-bisphosphatase, transketolase; Figure 5). Accordingly, no
major changes of the abundance of RubisCO large and small
subunits could be detected during the dark-to-light transition
in C. reinhardtii (Mitchell et al., 2014). Light had previously
been reported to considerably enhance the mRNA levels for
sedoheptulose-1,7-bisphosphatase in C. reinhardtii (Hahn et al.,

1998) but our results indicate that this increase in transcript
abundance does not result in higher protein amount.

Adaptation to increasing irradiance heightens the capacity
to assembly and protect photosystem II reaction centers The
quantum yield of photosystem II under saturating light
(ϕPSII800) was partitioned in the same cluster (n◦5) as
the components of the machinery for protein synthesis and
maturation (Figure 3, Table 5). In this group, biological variables
are positively influenced by light, acetate and CO2 (Figure 5).
Interestingly, increasing light irradiance is known to accelerate
the turnover of the D1 protein of photosystem II as a way to
replace photo-damaged reaction centers (Schuster et al., 1988).
In this context, the chloroplastic heat-shock protein 70B has been
suggested to participate to both the protection and repair of
the reaction centers (Schroda et al., 1999). Here the observation
that ϕPSII800 and HSP70B are found in the same light-
dependent cluster is in agreement with this postulated role of
HSP70B.

ϕPSII800 and P800 were partitioned in the same cluster,
but nonetheless differ from each other regarding the effects
of acetate, nitrate and CO2 concentrations (Figure 5).
These features might be attributable to the fact that
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P800 does not only depend on intrinsic properties of the
photosynthetic apparatus, but is also modulated by interactions
of photosynthesis with other metabolic pathways (Calvin cycle,
photorespiration, Mehler reaction, etc.; Badger et al., 2000).
The molecular mechanisms underlying P800 environmental
regulation are therefore likely to be more complex than
ϕPSII800.

Heightening the metabolic rate and decreasing the capacities for
light and acetate assimilation: A double strategy to limit the
harmful effects of excess energy input? In C. reinhardtii, the
metabolic rate is known to be stimulated by light, acetate and
CO2 (Sager and Granick, 1953; Yang and Gao, 2003; Boyle and
Morgan, 2009). Here data demonstrate that these environmental
variables exert a positive influence on the enzymatic machinery
for protein synthesis and maturation (Figure 5). That could
indicate that the capacity for protein turnover is increased in
response to light, acetate and CO2, possibly as a way to support
the higher metabolic rates induced by heightening these variables
(Figure 7B).

Conversely, light was shown here to exert a negative
influence on some pathways related to carbon assimilation,
i.e., acetate metabolism (acetyl-CoA synthetase, glyoxylate
cycle, TCA cycle, gluconeogenesis) and light harvesting
(indirectly connected to CO2 fixation through the photo-
production of reductant and ATP as substrates of the Calvin
cycle; Figure 5). In addition, a negative influence of acetate
concentration could also be detected for light-harvesting
antennae components. For acetate assimilatory enzymes, the
influence of this factor occurs indirectly through a negative
second-order interaction with light intensity (Figure 5). This
interaction strengthens the negative influence of light while
increasing acetate availability, in such a way that the most
important effect of light is observed in case of high acetate
concentration (see also Figure 6). Accordingly, cross-talk
between light and acetate signaling pathways has already been
reported to play a key role in the regulation of malate synthase,
a specific enzyme of the glyoxylate cycle (Nogales et al., 2004).
However, varying acetate concentration alone (i.e., without
changing light) appears to be insufficient to induce metabolic
adaptations of the acetate assimilatory pathways (Figure 5).
This observation that acetate does not exert a direct control
on its own assimilation at the protein abundance level is quite
remarkable.

The negative influence of light on the capacity of
the photosynthetic antennae has long been known to
avoid over-reducing the photosynthetic apparatus while
increasing irradiance. This adaptation enables to control
light energy capture and to prevent the occurrence of
oxidative stress within the cell (Falkowski and LaRoche,
1991; Teramoto et al., 2002). By extension, the aforementioned
adaptations related to acetate assimilation and light harvesting
(Figure 5) could be a way to limit the energy input while
increasing the availability of electron sources such as light
and acetate. Overall, accelerating the metabolic rate and
decreasing the capacities for light and acetate assimilation
might be a double strategy enabling to prevent primary

metabolism blocking and to limit oxidative damages
consequently to increased availabilities of light and acetate
(Figure 7B).

CONCLUSIONS

Altogether, the present results support that the environmental
regulation of the primary metabolism is a multifactorial
issue, since nearly all biological variables were found to be
influenced by complex superimpositions of linear effects,
quadratic effects and/or second-order interactions of the
environmental variables. That supports the usefulness of
studying regulation in a context where light, carbon and
nitrogen are varied simultaneously in the medium, in order to
guarantee that the observations are not specific of a particular
physiological state. The quadratic effects exerted by nitrate
concentration on some components of the machineries for
photosynthesis and CO2 fixation appear to us as particularly
interesting. In our opinion, this influence of nitrate would
deserve to be further investigated with regard to its possible
consequences on primary productivity and industrial biomass
yields (potential existence of an optimal nitrate concentration).
If combined to omics methods exhibiting higher output
levels than 2D-DIGE (gel-free proteomics, microarray, etc.),
we think that the present statistical methodology could
enable to considerably improve current understanding
of systems biology in diverse organisms. In this context,
extensive sequential statistical analyses could help dealing
with heterogeneous experimental and analytical procedures to
unveil hidden information in increasingly large biological data
sets.
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