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MicroRNA (miRNA) is a type of non-coding small RNA with a regulatory function at

the posttranscriptional level in plant growth development and in response to abiotic

stress. Previous studies have not reported on miRNAs responses to the phytohormone

abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for

studying abiotic stress responses in woody plants. Here we analyzed the miRNA

response to ABA at a genome-wide level in P. euphratica utilizing high-throughput

sequencing. To systematically perform a genome-wide analysis of ABA-responsive

miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated

with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group

included three libraries from three individual plantlets as biological replicate. In total, 151

uniquemature sequences belonging to 75 conservedmiRNA families were identified, and

94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with

miRNA∗ sequences. In all, 31 conservedmiRNAs and 31 novel miRNAs response to ABA

significantly differed among the groups. In addition, 4132 target genes were predicted for

the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes

of miRNAs were inversely correlated with the expression profiles of their putative

targets. The Populus special or novel miRNA-target interactions were predicted might

be involved in some biological process related stress tolerance. Our analysis provides

a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover,

different temporal dynamics were observed in different ABA-treated libraries.

Keywords: Populus euphratica, ABA, microRNA, high-throughput sequencing, target

INTRODUCTION

MicroRNA (miRNA), a kind of small non-coding RNA come from stem-loop structure, is single-
stranded RNAs containing 18–24 nt (Bartel, 2004), that were first found in Caenorhabditis elegans
lin-4 and let-7 (Lee et al., 1993; Reinhart et al., 2000). In plants, miRNAs were first reported in
Arabidopsis in 2002 (Reinhart et al., 2002), and then identified in other plant species. miRBase
(Release 21), the central database for miRNAs, lists 28,645 entries representing hairpin precursor
miRNAs expressing 35,828 mature miRNA products in 223 species of plants, animals and viruse
(Kozomara and Griffiths-Jones, 2014). MiRNA plays important roles in plant developmental
processes and responses to biotic and abiotic stress (Kidner and Martienssen, 2005; Jones-Rhoades
et al., 2006; Shukla et al., 2008; de Lima et al., 2012).
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Gene expression can be regulated at transcriptional,
posttranscriptional and translational levels, with miRNAs
negatively regulating it at the posttranscription level
(Obernosterer et al., 2006). With assistance from one of the
argonaute proteins (AGO1), miRNAs regulate complementary
target mRNA via specific cleavage or through translational
inhibition (Phillips et al., 2007; Voinnet, 2009; Rogers and
Chen, 2013). In plant, miRNAs are transcribed to form long
primary transcripts (pri-miRNA). Then the pri-miRNAs are
trimmed, producing miRNA precursors (pre-miRNA) with
stem-loop secondary hairpin structure. Then pre-miRNA is
cleaved into a double stranded RNA consisting of a miRNA and
its complementary sequence miRNA∗ (Park et al., 2002; Han
et al., 2004; Kurihara et al., 2006). The double-stranded RNA
is conveyed to the cytoplasm. One of the TWO strands acts as
mature miRNA, loaded on the RNA induced silencing complex
(RISC) to target mRNA (Bartel, 2004; Jones-Rhoades et al., 2006;
Brodersen et al., 2008), meanwhile the other strand, miRNA∗, is
typically degraded (Jones-Rhoades et al., 2006).

The phytohormone abscisic acid (ABA) plays vital
physiological roles in response to abiotic stress. The ABA
level is controlled by complex regulatory mechanisms including
biosynthesis, catabolism, transport and signal transduction
pathways. The 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), a
key enzyme for ABA biosynthesis, is induced by drought stress,
and it upregulates endogenous ABA levels in overexpressed
transgenic plants (Tan et al., 1997; Thompson et al., 2000; Iuchi
et al., 2001; Schwartz et al., 2003). CYP707A is the key enzyme
for ABA catabolism. Cyp707a3-1 mutant induces endogenous
ABA level and reduces transpiration rate, thereby resulting
in high tolerance to drought stress in Arabidopsis (Kushiro
et al., 2004). Pyrabactin resistance1/PYR1-like/regulatory
components of ABA receptors (PYR/PYL/RCAR protein
family), the type 2C protein phosphatases (PP2Cs), and
subfamily 2 of the SNF1-related kinases (SnRK2s) are a major
breakthrough in the field of ABA signaling (Ma et al., 2009;
Melcher et al., 2009; Nishimura et al., 2009; Park et al., 2009;
Santiago et al., 2009; Yin et al., 2009; Gonzalez-Guzman et al.,
2012). PP2C has a negative role in ABA signaling (Miyazono
et al., 2009). Under stress conditions, the abundance of PP2C
transcripts increase (Rubio et al., 2009; Szostkiewicz et al.,
2010). With the help of ABA, SnRK2s are released from
the PP2C inhibition, and activate their downstream targets
(Klingler et al., 2010). Srk2d srk2e srk2i (srk2d/e/i) triple mutants
show reduced tolerance to drought stress and highly enhanced
insensitivity to ABA (Fujita et al., 2009). PYR/PYL/RCAR protein
family, ABA receptor, play a major role in regulation of seed
germination and establishment, basal ABA signaling required
for vegetative and reproductive growth, stomatal aperture, and
transcriptional response to the hormone(Gonzalez-Guzman
et al., 2012).

Recent evidence indicates that miRNA and ABA affect each
other, and that the expression levels of some miRNAs are
regulated by ABA. For example, miR159, miR169, miR172 are
regulated by ABA in the embryogenic callus of Japanese larch
(Larix leptolepis) (Zhang et al., 2010). In maize roots, the entire
miR169 family is downregulated by ABA (Luan et al., 2014).

Under ABA treatment, the expression level of miR169a decreases,
and the target of miR169, NFYA5 is upregulated (Li et al., 2008;
Ni et al., 2013). The cistronic miRNA pair, miR842, and miR846,
is a product of alternative splicing regulated by ABA in the roots
of Arabidopsis. ABA regulating the alternative splicing, leading
to reduce the expression of miR846, along with the accumulation
of its target jacalin At5g28250 (Jia and Rock, 2013a,b).

Conversely, miRNAs change the sensitivity of plants to
ABA. In Arabidopsis, miR160 overexpression reduces ABA
sensitiveness during germination (Liu et al., 2007), and also
causes abnormal root morphology, that leads to the lack of
gravitropic responses in root tips and the promotion of more
adventitious roots (Wang et al., 2005). In Arabidopsis, miR172b
overexpression increased sensitivity to ABA and osmotic stress
during a specific postgerminative stage (Zou et al., 2013).

In addition, exogenous ABA also influences some miRNA
expression, with miRNA regulating the downstream genes of
ABA. Overexpressing miR168a lead to ABA hypersensitivity and
drought tolerance, while the loss-of-function mutant miR168a-
2 displays ABA hyposensitivity and drought hypersensitivity.
Both the precursor and mature of miR168 are induced by
ABA (Li et al., 2012). ABA also positively regulates both
mature miR394 and precursor miR394a/b in Arabidopsis.
Although ABA negatively regulates LCR, which is the target
of miRNA394, the overexpression of miR394a/b leads to ABA
hypersensitivity and ABA-associated phenotypes, whereas LCR
overexpressing plants showABA resistant phenotypes.Moreover,
the overexpression of miR394a/b plants accumulate higher
levels of ABA-induced hydrogen peroxide and superoxide
anion radicals compared to wild-type and LCR-overexpressing
plants (Song et al., 2013). MiR159 is induced by ABA, and it
targeted MYB33 and MYB101 germinating seeds of Arabidopsis;
the two MYB transcription factors are positively regulated
by ABA. Overexpression of miR159a reduces sensitivity to
ABA (Reyes and Chua, 2007). However, previous research has
generally focus on the relationship between a specific single
miRNA and ABA, with most regulation studied in the seed or
root.

Populus euphratica (P. euphratica), which exhibits remarkable
tolerance to environmental stresses, is among a few tall tree that
can survives in saline and alkaline area. It is a model woody
plant for studying the molecular mechanisms of abiotic stress
responses (Ye et al., 2009; Lv et al., 2014). Previous studies show
miRNA participate in the drought and salt stress responses of
P. euphratica, and the high-throughput sequencing has widely
been used in miRNA research of P. euphratica (Li et al., 2011,
2013; Si et al., 2014), while other species poplus also involved in
stress response (Ren et al., 2012, 2013, 2015; Chen et al., 2012a,b,
2015; Shuai et al., 2013). Hence, screening for ABA-responsive
miRNA in P. euphratica may help elucidate the responses of
woody plants to ABA and thus the mechanisms underlying such
responses to abiotic stress; however, the relationship between the
mechanism of ABA and miRNA regulation at a genomic level
has not been reported. In this study, we attempt to provide new
insight into this issue by identifying more relationships between
ABA and miRNA regulation mechanisms in P. euphratica
leaves.
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MATERIALS AND METHODS

Plant Material and Growth Conditions
Uniformly grown 1-year-old P. euphratica acquired from the
Xinjiang Uygur Autonomous Region of China, were planted
in individual 5 L pots containing a loam soil and placed in
a greenhouse at Beijing Forestry University. Each container
contained three individual plants of similar height. They were
well watered and grown under natural conditions for 4 months
(from April to July). The relative soil moisture content (RSMC)
wasmeasured using a FieldScoutTM TDR 300 Soil MoistureMeter
(Spectrum Technologies, Aurora, IL, USA). For all seedlings, the
RSMC was controlled within 70–75%. To ensure that all leaves
received a similar amount of ABA, an aqueous solution of ABA
was used to water the P. euphratica. For the treated groups, 1
L 300µM ABA solution was applied to each pot; and for the
control group, pure water instead of ABA solution was used.
Every pot was placed on a tray to prevent the solution from
flowing away. Each group included three libraries from three
individual plantlets as biological replicate. Leaves collected 1
day after adding the ABA solution were considered the short-
term ABA treatment and named SL1, SL2, and SL3. Those
collected 4 days after adding the ABA solution were considered
the long-term ABA treatment and named LL1, LL2, and LL3.
The control groups were named CL1, CL2, and CL3. Leaf tissues
were collected at about 10:00 h, and all 8–12th (count from the
apex) mature leaves, from independent plants in each group were
collected. Prior to collecting, the photosynthetic rate, intercellular
CO2 concentration, stomatal conductance and transpiration
rate were measured using a Li-6400XT portable photosynthesis
system (Li-Cor Inc., Lincoln, NE, USA). Two leaves in one
plantlet were random selected, andmeasured with three technical
repeat. And all three biological replicate for each group were
measured. All of the collections were immediately frozen in liquid
nitrogen, and stored at−80◦C until RNA extraction.

RNA Extraction, Libraries Construction,
and Sequencing
Using themodified CTABmethod, total RNA enriched with small
RNA (sRNA) was isolated from the P. euphratica leaves in the
nine collections (Jaakola et al., 2001). RNA quality and integrity
were checked using a 2100 Bioanalyzer with the RNA 6000 Nano
Kit (Agilent Technologies, Santa Clara, CA, USA). Sequencing
libraries were generated using NEBNext R© Multiplex Small
RNA Library Prep Set for Illumina R© (NEB, USA.) following
manufacturer’s recommendations. All the nine libraries from
the three groups were for sRNA sequencing. High-throughput
sequencing was performed using Illumina HiSeq technology was
according to the manufacturer’s protocol (Illumina, San Diego,
CA, USA).

Analysis of Small RNA Sequencing Data
From the raw sequence reads obtained from the sRNA
sequencing, we first removed low quality reads, including
those shorter than 18 nt or longer than 30 nt, those with
more than 10 nt single nucleotide repeats, or more than
10% N, and those with 5′ adapter contaminants, or without

a 3′ adapter or the insert tag. Then the 3′ and 5′ adapters
were removed to obtain clean reads without any mismatches,
which were mapped to P. euphratica genome (Ma et al., 2013)
using bowtie software (http://sourceforge.net/projects/bowtie-
bio/files/) without any mismatch.

sRNA Reads Annotation and miRNA
Identification
All mapped reads were annotated as follows. First, mapped reads
were annotated as conserved miRNAs, which were previously
discovered, which were registered in miRBase (Release 21) for
Populus trichocarpa by BlastN algorithm with both mature and
hairpin were without any mismatches. The remaining reads were
annotated as non-coding RNA (i.e., tRNAs, rRNAs, scRNAs,
snRNAs, and snoRNAs). The sequences were collected from
the GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and Rfam
(11.0 release, http://rfam.xfam.org/) database. The similarity was
investigated using the BlastN algorithm. The RepeatMasker was
used to remove the repeat-associated RNAs (Repbase v.18.07,
http://www.girinst.org/). Then nat-siRNAs were removed (P.
trichocarpa in PlantNATsDB, http://bis.zju.edu.cn/pnatdb/). The
remaining sRNA exactly matched the mRNA exons and introns
in the P. euphratica genome (Ma et al., 2013). The remaining
reads were used to predict novel miRNA utilizing miREvo and
miRdeep2, based on secondary structure, the Dicer cleavage site,
and the minimal folding free energies (Friedlander et al., 2012;
Wen et al., 2012).

Differential Expression Analysis of miRNA
Response to ABA
The expression levels of miRNA between the two groups
were compared to determine which miRNAs were differentially
expressed. The frequency of miRNA read counts was normalized
as transcripts per million (TPM): normalized expression =

(number of miRNA reads/total number of clean reads)∗1,000,000
(Zhou et al., 2010). Raw data were used with the “DESeq2”
library in the R statistical software package for this analysis
(Love et al., 2014). The P-values were adjusted, and P-adjusted <

0.05 was considered to indicate significantly different expression
(Benjamini and Hochberg, 1995).

miRNA Targets Prediction and Function
Analysis
Conserved and novel miRNA target were predicted by the
psRNA Target Server (http://plantgrn.noble.org/psRNATarget/)
with default parameters (Dai and Zhao, 2011). All discovered
miRNA targets and differentially expressed miRNA targets were
classified based on gene ontology (GO) performed using the
online agriGO program (Du et al., 2010). miRNA targets
prediction and GO classification analysis were based on the P.
euphratica genome (Ma et al., 2013).

Real-Time Quantitative PCR Analysis of
miRNAs and Predicted Targets
Ten miRNAs were randomly selected for real-time quantitative
polymerase chain reaction (qPCR) for each comparison. The
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RNAs were extracted from each sample using CTAB method
(Jaakola et al., 2001). The miRNA First-Strand cDNA Synthesis
Kit (Aidlab Biotechnologies, Beijing, China), which is based on a
poly-adenylation protocol was used for mature miRNA reverse
transcription, and miRNA Real-Time PCR assay kit (Aidlab
Biotechnologies, Beijing, China) was used for real-time qPCR.
Real-time qPCR was performed using a total reaction volume of
20µL, which contained 0.5µL of diluted cDNA, 0.8µM primer
mix, 10.0µL of 2× miRNA qPCR Mix, and 8.7µL ddH2O,
which were performed using an ABI StepOnePlusTM instrument
(Applied Biosystems, Foster City, CA, USA). Amplification
reactions were performed as follows: 95◦C for 10 s, 60◦C for 20 s
and 72◦C for 30 s All reactions were performed in triplicate. P.
euphratica 5.8 s rRNA was used as internal control for miRNA
(Lu et al., 2008), and the 2−11CT method was applied to calculate
the relative changes in gene expression from real-time qPCR
experiments (Livak and Schmittgen, 2001). All primers used for
real-time qPCR are listed in Supplementary Data 7.

The expression analyses of several target genes were also
examined using qRT-PCR. The FastQuant RT Kit (with gDNase)
(Tiangen Biotech CO., LTD, Beijing, China), was used predicted
targets mRNA reverse transcription, and SuperReal PreMix Plus
(SYBR Green) (Tiangen Biotech CO., LTD, Beijing, China)
was used for real-time qPCR according to the manufacturer’s
instructions. Real-time qPCR was performed using a total
reaction volume of 20µL, which contained 0.8µL of diluted
cDNA, 1.2µM primer mix, 10.0µL of 2× SuperReal PreMix
Plus, and 8.0µL ddH2O, which were performed using an ABI
StepOnePlusTM instrument (Applied Biosystems, Foster City,
CA, USA). Amplification reactions were performed as follows:
95◦C for 10 s, 60◦C for 20 s and 72◦C for 30 s. All reactions were
performed in triplicate. P. euphratica UBQ was used as internal
control for mRNA (Wang et al., 2015). And the 2−11CT method
was applied to calculate the relative changes in gene expression
from real-time qPCR experiments (Livak and Schmittgen, 2001).
All primers used for real-time qPCR are listed in Supplementary
Data 7.

Accession Number
Sequencing data obtained in this work have been submitted to
the Sequence Read Archive the accession number SRP077948.

RESULTS

Physiological Characterization of
P. euphratica in Response to ABA
One-year-old P. euphratica seedlings were exposed to soil with
ABA. The photosynthetic rate, transpiration rate and stomatal
conductance were greatly affected after 1 day of treatment, but
had recovered by day 4. Compared to control, the photosynthetic
rate decreased 55% on day 1 but was 1.1 times the control level on
day 4 (Figure 1). Stomatal conductance decreased 80% after 1 day
of treatment and recovered to 82% of the control level after 4 days
of treatment. Similarly, the transpiration rate decreased 73% after
1 day of treatment, but recovered to 68% of the control level after
4 day of treatment. The intercellular CO2 concentration generally
decreased over the 4 days compared to controls, and was 9 and

14% lower, respectively, after 1 and 4 days of treatment. In this
study, the stomatal conductance decreased as the photosynthetic
rate and transpiration rate fell after 1 day of treatment and then
returned to normal, indicating that stomatal conductance was
a key limitation to the photosynthetic rate in an early ABA
response, although other factors, such as the activity of Rubisco,
photosystem I (PSI), and photosystem II (PSII) were all essential
factors for photosynthesis, may also inhibited photosynthesis
under ABA conditions. The impact of the ABA treatment on
photosynthesis in the early stage appeared to be recoverable.

Overview of sRNA Libraries Data for
High-Throughput Sequencing
To identify and characterize conserved and novel miRNAs in
P. euphratica, nine sRNA libraries from CLs, SLs, and LLs were
constructed. Through high-throughput sequencing, more than
10 million raw reads were obtained. After filtering the low-
quality reads, and adaptor and contaminant sequences, ∼90%
of the clean reads remained (Table 1). Those unique sequences
were then perfectly mapped to the P. euphratica genome (no
mismatches allowed) (Ma et al., 2013), and the results showed
that in most libraries over 50% of the total sRNA matched the P.
euphratica genome perfectly. Among these libraries, nearly 60%
of the total sequences were matched in all of the SL libraries,
which was the highest proportion (Table 1).

The size distribution of the sequencing of unique reads from
the nine libraries was similar, and themajority of sRNAs were 21–
24 nt in length (Figure 2). Specifically, 24 nt length reads were
the most abundant in most libraries (except CL1), and over 40%
were 24 nt sRNAs. The 21 nt class was the secondmost abundant.
The sRNAs with different sizes perform different functions: 21 nt
sRNAs usually mediate posttranscriptional gene silencing, while
24 nt sRNAs typically perform gene silencing mediated by RNA-
dependent DNA methylation and heterochromatin maintenance
(Zhang and Zhu, 2011; He et al., 2014; Lewsey et al., 2016).

Conserved miRNAs Discovered in P.

euphratica
Conserved miRNA, non-coding RNA, repeat-associated RNA,
nat-siRNA, exons, introns, and unknown sequences were
identified successfully (Supplementary Data 1).The known
conserved miRNAs were first identified, with no mismatches.
Presently 253 unique mature sequences (include both 5p and3p),
belonging to 136 families registered in miRBase (Release 21)
for P. trichocarpa, and here 151 unique mature sequences,
belonging to 75 miRNA families, were expressed in at least one
of the nine libraries. Detailed information about the known
miRNAs is shown in Supplementary Datas 2, 3. Seventy-two
conserved miRNA families were identified, including 91 unique
miRNAs belonging to 27 miRNA families and highly conserved
(identified in more than 10 species of angiosperm, Figure 3),
and 60 miRNAs belonging to 45 families were specific to
Populus. The average TPM of the highly conserved and Populus-
specific miRNA were 53,197.01 and 8,540.66, respectively. The
abundance of highly conserved miRNA families was significantly
higher than the Populus-specific miRNA.
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FIGURE 1 | The Response of Populus euphratica to ABA. (A) Photosynthetic rate, (B) stomatal conductance, (C) intercellular CO2 concentration, and (D)

transpiration rate of P. euphratica in response to ABA treatments for different amounts of time. Data are mean ± SE (n = 6). The values with different lowercase letters

are significantly different at the P < 0.05 level.

TABLE 1 | Deep sequencing read statistics for nine small RNA libraries.

CL libraries SL libraries LL libraries

Raw reads 12,029,234 12,029,235 12,029,236 12,029,235 12,029,236 12,029,237 12,029,236 12,029,237 12,029,238

Clean reads 11,467,477

(95.33%)

19,100,426

(96.21%)

11,189,160

(95.93%)

10,725,686

(95.44%)

11,100,606

(95.72%)

10,709,428

(95.95%)

10,725,686

(88.16%)

11,100,606

(97.36%)

10,709,428

(97.53%)

Length filtered unique reads 3,682,803 9,822,040 5,256,958 5,693,030 5,296,579 5,838,757 5,440,543 3,799,492 6,631,398

Mapped unique reads 2,427,929

(65.93%)

4,861,430

(49.50%)

2,986,411

(56.81%)

3,317,955

(58.28%)

3,200,469

(60.43%)

3,504,719

(60.03%)

3,148,652

(57.87%)

1,966,000

(51.74%)

3,553,027

(53.58%)

“+” Mapped unique reads 2,202,965

(59.82%)

4,212,799

(42.89%)

2,446,345

(46.54%)

2,784,750

(48.92%)

2,711,778

(51.20%)

3,036,658

(52.01%)

2,682,254

(49.30%)

1,628,852

(42.87%)

3,050,045

(45.99%)

“−” Mapped unique reads 224,964

(6.11%)

648,631

(6.60%)

540,066

(10.27%)

533,205

(9.37%)

488,691

(9.23%)

468,061

(8.02%)

466,398

(8.57%)

337,148

(8.87%)

502,982

(7.58%)

Analysis of Novel miRNAs from P.

euphratica
All novel miRNA candidates were obtained from miREvo and
miRdeep2, and confidently met the novel miRNA requirements:
(i) sequencings represented both the miRNA and miRNA∗, and
(ii) in miRNA∗-deficient cases, the novel miRNA came from
multiple and independent libraries(Xu et al., 2013). Ninety-four
unique sequences were identified as novel miRNAs, while for 56
of themwe found the correspondingmiRNA∗ sequences (Table 2
and Supplementary Data 4).

The length of mature novel miRNA sequences were 18–24
nt. Mfold was utilized to predict the stem-loop structure of
precursors of all non-conserved miRNAs (Zuker, 2003), and the
information was provided in Figure 4 and Supplementary Figure
1. The pre-miRNA length ranged from 56 to 292 nt. The negative
minimal folding free energies (MFEs) varied from −127.0 to

−23.4 kcal/mol; the average value was –49.47, which was much
less than that of the tRNA (−27.5 kcal/mol) and rRNA (−33
kcal/mol) (Bonnet et al., 2004). The minimal folding free energy
index (MFEI) values ranging from 0.66 to 2.93. Seventy-one
miRNAs (∼74%) were above 0.85, which was a key characteristic
in distinguishing pre-miRNAs from other sRNAs (Zhang et al.,
2006). The MFEI of all pre-miRNAs was significantly higher
than that of tRNAs (0.64), rRNAs (0.59), and mRNAs (0.62–
0.66). All data indicated that pre-miRNAs possessed highly stable
hairpin structures. A nucleotide bias tendency indicated that in
46 of 94 cases, the first nucleotide was U in 48% of the novel
non-conserved miRNAs, in agreement with that of conserved
miRNAs in other plants (Voinnet, 2009). These results agree with
that miRNAs were preferentially loaded onto AGO1-containing
RISC, and preferentially contain a U at the 5′-end (Table 2; Mi
et al., 2008).
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The expression levels of these novel miRNA showed a large
TPM range (Supplementary Data 3). Seven of 94 novel miRNA
were above 10,000 TPM for the sum of all nine libraries, with
the most abundant being miR-n1 at an amazing 623,863.3 TPM.
More than half of these miRNAs (∼78%) were discovered to be
less than 1000 TPM, which is consistent with the finding that
novel miRNAs are often expressed at a lower level compared to
conserved miRNAs.

FIGURE 2 | Length distributions of small RNAs in nine samples.

Distribution of the sequence lengths of the sRNA from the nine libraries.

Counts are based on unique sequences rather than the number of reads per

unique sequence.

The average TPM of all Populus-specific microRNAs,
including known Populus-specific microRNAs and novel miRNA
was 8,611.81. The abundances of those consistent with species-
specific conserved miRNAs were expressed lower than those of
highly conserved miRNAs (Zhao et al., 2010).

Differentially Expressed miRNAs Response
to ABA
To compare the expression of miRNA in different samples,
the “DEseq2” library in the R statistical software package was
performed on the raw counts for all of the conserved and novel
miRNAs. The analysis of the differential expression of miRNAs
showed that 31 known miRNAs and 31 novel miRNAs under
ABA were significantly differentially expressed in P. euphratica
(Table 3 and Supplementary Data 5).

Results showed that of miRNA expressed after 1 day
of treatment, eight conserved and six novel miRNAs were
upregulated, whereas five conserved and eight non-conserved
miRNA were downregulated, compared to that control. Among
them miR-n91 and peu-miR408-3p were upregulated, and
peu-miR6421 and miR-n87 was downregulated. Similarly,
after 4 days of treatment, eight conserved and six novel
miRNAs were upregulated, whereas seven conserved and
nine novel miRNAs were downregulated, compared to

FIGURE 3 | Conserved miRNA families in Populus euphratica and across species. Twenty-two representative conserved miRNA families in 23 angiosperms.

All miRNAs of P. euphratica were identified based on sRNA sequencing data, and those of other plants were taken from miRBase (Release 21).
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TABLE 2 | Novel miRNAs in P. euphratica.

TRS Sequences (5′–3′) Arm LM

(nt)

MEF

(kcal/mol)

LP

(nt)

GC% MEFI

miR-n1 8 gguaguucgaucguggaauu 5p 20 −57.8 244 0.34 0.69

miR-n2 564 gggaauguagccugacucgaga 5p 22 −38.4 84 0.50 0.91

miR-n3 uggugccacgcugcgugcgac 3p 21 −33.7 63 0.59 0.91

miR-n4 18 uuagucuuaauaauuguguga 5p 21 −44 80 0.19 2.93

miR-n5 24 gcaugaggggagucacgcagg 3p 21 −46.6 86 0.55 0.99

miR-n6 ucauuugagcaagaaauauu 3p 20 −52.2 129 0.34 1.19

miR-n7 gcggcagcaucaagauucaca 5p 21 −46.8 109 0.48 0.90

miR-n8 caggcggucuccuuggcua 5p 19 −78.9 215 0.47 0.78

miR-n9 cagaauugcagugccuugauc 3p 21 −41.4 98 0.40 1.06

miR-n10 gaaugcugaccgaauauggau 5p 21 −27.5 70 0.41 0.95

miR-n11 ucaauggccauuguaagagag 5p 21 −23.4 81 0.40 0.73

miR-n12 ucggaccaggcuucauccccc 3p 21 −30.4 84 0.50 0.72

miR-n13 guuccucugagcacaucacug 5p 21 −30.9 80 0.46 0.84

miR-n14 aagauggagaagcagggcacg 5p 21 −62.2 154 0.46 0.88

miR-n15 233 ugaugacugaucuugagcaug 5p 21 −41.1 81 0.49 1.03

miR-n16 gugggcuugugauccaagu 5p 19 −94.9 287 0.46 0.71

miR-n17 cuuggcuauuguagauaaccc 3p 21 −39.5 93 0.46 0.92

miR-n18 122 ggauugucgucugguucgaug 5p 21 −33.2 83 0.41 0.98

miR-n19 ucagcgcugcauucaaucaug 3p 21 −39.7 104 0.42 0.90

miR-n20 5 cucaagaaagccgugggaga 3p 20 −42.3 127 0.42 0.80

miR-n21 uaucccuuuggauuccuccuu 3p 21 −43.8 82 0.51 1.04

miR-n22 guuccuccuagcuucuucagug 5p 22 −61 207 0.40 0.74

miR-n23 guuccucugagcacuucaacg 5p 21 −33.1 80 0.46 0.89

miR-n24 7 cucccccucaagggcuuccugu 5p 22 −54.9 110 0.51 0.98

miR-n25 14 ucggaccaggcuucauuccuc 3p 21 −25.7 82 0.46 0.68

miR-n26 53 aguuuguucguggaacugaug 5p 21 −28.6 80 0.48 0.75

miR-n27 14 ucgagaucuguucaauaguac 5p 21 −89.9 248 0.33 1.11

miR-n28 6 uauuggccugguucacucaga 5p 21 −36.4 106 0.40 0.87

miR-n29 385 aggugcaggugcuagugcagg 3p 21 −51.3 151 0.39 0.87

miR-n30 564 uaaugcugucugguucgagac 5p 21 −35.3 80 0.50 0.88

miR-n31 160 uugacagaagagagugagcac 5p 21 −42 85 0.38 1.31

miR-n32 14 cucggaccaggcuucauuccc 3p 21 −36.9 73 0.52 0.97

miR-n33 1 uuucgggaagugaaauuugga 3p 21 −35.8 113 0.36 0.87

miR-n34 26 ggucaugcucugacagccucacu 3p 23 −31 89 0.45 0.78

miR-n35 2 ugagaucuuuugaauuauaucauu 5p 24 −58.9 233 0.28 0.89

miR-n36 74 auugaugguagaauuacuugg 3p 21 −32 78 0.28 1.45

miR-n37 102 auaaagugggcaguagagagu 5p 21 −48.3 78 0.40 1.56

miR-n38 26 caacccuuccagauauuggug 3p 21 −47.3 61 0.52 1.48

miR-n39 3 uggacugaagggagcuccuuc 3p 21 −79.2 184 0.43 0.99

miR-n40 108 uucauguaucucucgacucuu 3p 21 −39.9 93 0.34 1.25

miR-n41 130 auuugcuuguauuuaacuccc 5p 21 −51.1 75 0.43 1.60

miR-n42 1 ugacaggcucuucucucucaug 3p 22 −64.8 172 0.41 0.93

miR-n43 1 gaauguugucuggcucgagga 5p 21 −42.6 110 0.41 0.95

miR-n44 15 auaugcguuuuugucccucgc 3p 21 −83.8 264 0.42 0.75

miR-n45 cacgugcuccccuucuccaac 3p 21 −34.9 66 0.55 0.97

miR-n46 caugugcucuagcucuccagc 3p 21 −41.7 74 0.47 1.19

miR-n47 57 uauuauaaccaagacuaaugc 5p 21 −37.7 120 0.24 1.30

miR-n48 2709 uuacacuggcaacucauuuga 3p 21 −62.6 186 0.37 0.92

miR-n49 38 cgggguuggguguucuaugag 3p 21 −42.3 85 0.49 1.01

miR-n50 1 uuuaugcguuuuuggcccucg 3p 21 −36.7 119 0.39 0.80

(Continued)
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TABLE 2 | Continued

TRS Sequences (5′–3′) Arm LM

(nt)

MEF

(kcal/mol)

LP

(nt)

GC% MEFI

miR-n51 331 acacacacuggagaagggaag 3p 21 −47.2 71 0.56 1.18

miR-n52 1 aaguaccugauagcaacucaagu 5p 23 −84.4 278 0.46 0.66

miR-n53 1 gaagauuuggugugccucugaggu 3p 24 −68.6 226 0.39 0.78

miR-n54 ugccaaaggagaguugcccug 3p 21 −40.2 87 0.49 0.93

miR-n55 53 uuguaaugauauagaugugau 5p 21 −43.2 103 0.26 1.60

miR-n56 4 ucaauggagcccagauguaga 5p 21 −33.4 78 0.36 1.19

miR-n57 2 uugaauaugcuugagcugugu 5p 21 −36 64 0.36 1.57

miR-n58 1 ugaaaagacgaaagaguagaga 5p 22 −63.2 140 0.44 1.02

miR-n59 1 aggggcaaaaaucgcauaaga 5p 21 −43.9 105 0.43 0.98

miR-n60 3 uuaagucgcaugcaugauuga 3p 21 −68.9 234 0.38 0.77

miR-n61 1 uguugaugaugauaaauu 5p 18 −64.3 292 0.21 1.04

miR-n62 1 uagccaaggaugacuugcccgc 5p 22 −50.7 122 0.44 0.94

miR-n63 21 uuauaaagccauaagaagucc 5p 21 −47.3 76 0.26 2.37

miR-n64 11 aagagacucuuguauguauguaug 5p 24 −41.1 59 0.31 2.28

miR-n65 795 uucugucgccggaaagauggug 5p 22 −43.7 82 0.48 1.12

miR-n66 4 agaaagaagacagaaggcagcgug 5p 24 −67.8 105 0.44 1.47

miR-n67 13 acauaaauugcaaggaacuua 5p 21 −30.2 72 0.31 1.37

miR-n68 gugaggcugguuucacagagc 3p 21 −41.6 115 0.50 0.72

miR-n69 90 cucgaugaccgaucuugggca 5p 21 −38.3 84 0.49 0.93

miR-n70 guuccccugagcacuucacu 5p 20 −42.1 82 0.44 1.17

miR-n71 auuagauguagguuugauacgugu 3p 24 −31 166 0.23 0.79

miR-n72 6 uuucaguuugauucagcaugc 5p 21 −49.7 193 0.36 0.72

miR-n73 auaaacuugauuauguggaauaua 5p 24 −127 254 0.25 2.02

miR-n74 183 ugaacucucucccucaacugc 5p 21 −41.5 85 0.48 1.01

miR-n75 10 uuuguaauuuguaaacuuguu 3p 21 −73.3 123 0.29 2.04

miR-n76 ugaggccuuugggggagaguga 3p 22 −40.7 89 0.53 0.87

miR-n77 gcgaccccaggucaggcgga 5p 20 −98.2 220 0.64 0.70

miR-n78 1 uuuuucuugguguuguuggacucu 3p 24 −70.1 148 0.41 1.17

miR-n79 uaagaucauugccuauuggagacu 3p 24 −29.2 81 0.37 0.97

miR-n80 ugcucacuucucuucugucagc 3p 22 −49.2 85 0.46 1.26

miR-n81 uugacagaagauagagagcacu 5p 22 −41.2 87 0.41 1.14

miR-n82 uuuggaaggaagauuugaagu 3p 21 −61.9 180 0.42 0.81

miR-n83 auuuaaauugauucugaaacuauu 3p 24 −88.9 221 0.17 2.34

miR-n84 uuggacugaagggagcucccuc 3p 22 −80.4 179 0.46 0.97

miR-n85 aggugcuggugccggugcagg 3p 21 −40.3 112 0.40 0.90

miR-n86 ccucgcucccagcugacaccc 5p 21 −73.7 195 0.49 0.77

miR-n87 aaauugaugaauuuauggagu 3p 21 −47.2 155 0.40 0.76

miR-n88 24 gugcucacgucucuucugucag 3p 22 −53.3 85 0.47 1.33

miR-n89 4010 uuccaaagggaucgcauugauc 5p 22 −42.5 93 0.37 1.25

miR-n90 uaugggaggauuggacaggac 5p 21 −34.1 75 0.48 0.95

miR-n91 uagccaaggacgauuugccugu 5p 22 −47.7 99 0.53 0.92

miR-n92 93 aaccccuaguugcacguggacgug 5p 24 −49.6 109 0.59 0.78

miR-n93 uucgaucugggucaaaucuuuc 3p 22 −30.4 56 0.52 1.05

miR-n94 ggagcgaccuggaaucacaug 5p 21 −38.3 76 0.61 0.83

TSR, total read count of miRNA*; nt, nucleotide; LM, length of miRNA; LP, length of precursors.

the control. For example, miR-n87 and peu-miR6462-3p
were downregulated, and peu-miR6421 and miR-n9 were
upregulated. After 4 days of treatment, 11 conserved and
10 novel miRNAs were upregulated, whereas 12 conserved

and 11 novel miRNAs were downregulated, compared to
those after 1 day of treatment. For example, miR-n19 was
downregulated, and peu-miR6462-3p and peu-miR6421 were
down-regulated.
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FIGURE 4 | Predicted miRNA precursor stem–loop structures of novel miRNA precursors. Precursor structures of four novel P. euphratica miRNAs (miR-n26,

miR-n59, miR-n65, and miR-n88) were predicted by the online software MFOLD. The MEFs are shown after the miRNA names. The mature miRNA and miRNA star

sequences are marked in red and blue, respectively.

In comparing the three groups with each other, only
five miRNAs (miRNA-n2, miRNA-n91, peu-miR164a, peu-
miR395a, and peu-miR6421) were all significantly differentially
expressed. Compared to the control libraries, nine miRNAs were
significantly differentially expressed in both the 1- and 4-day
ABA treatment libraries. Compared to the control, the expression
levels of three miRNAs were all significantly increased in the 1
day of treatment libraries, and the other six miRNAs decreased
for 4 days. Between SL vs. CL and LL vs. SL, nine miRNAs
were significantly differentially expressed. Three of them first
ascended, then descended, while the others were opposite.
Compared to the 4 days of treatment libraries, both in the control
and 1 day of treatment libraries, 11 miRNAs were significantly
differentially expressed. Five of themwere upregulated, and other
six miRNAs were all downregulated.

Confirmation of miRNAs by
Real-Time-qPCR
Real-time qPCR analysis was utilized to confirm the expression
patterns for the significantly differentially expressed miRNA. Ten
miRNAs were selected for each comparison (SL/CL, LL/CL, and
LL/SL) with three experimental and three biological replicates
to validate and measure the sequencing results. The comparison
expression levels of these miRNAs between real-time qPCR and
sequencing analyses were consistent (Figure 5).

Prediction and Annotation of Target Genes
of miRNAs
To understand the functions of miRNA responses to ABA, the
prediction and identification the function of their targets is a
crucial step of in analysis. The psRNA Target Server was used to
predicted target of miRNAs. In total of 4132 targets genes were

predicted for known and novel miRNAs. 1584 were for novel
miRNAs, and 2548 were for conserved miRNAs (Supplementary
Data 6).

Generally, several targets were regulated by a single miRNA.
MiRNA-n61 targeted 155 transcripts, the most targets of
all discovered miRNA. Considering conserved miRNAs only,
miRNA482a.1 target 129 transcripts. Whereas a single gene could
be targeted by multiple miRNA. CCG015515.1 was targeted
by 12 members of the miRNA169 family and two novel
miRNAs, miR-n62 and miR-n91. Furthermore, one gene being
targeted by several miRNAs from at least two miRNA families
was not unusual. In particular, CCG030854.1 was targeted by
six miRNAs, peu-miR478b, peu-miR478d, peu-miR481a, peu-
miR481b, peu-miR6421, and peu-miR7812, which were belonged
to four different miRNA famines.

To better understand the functions of these genes, GO
analysis was employed to classify target genes based on their
involvement in biological processes, cellular components and
molecular functions. Findings showed that 2179 of all predicted
target genes could be categorized into totally 706 GO terms,
including 260 biological processes, 365 molecular functions and
81 cellular components. For all differential expressed miRNA
targets 280 GO terms, included 139 biological processes, 116
molecular functions and 25 cellular components. Compared to
all discovered miRNA targets, some GO terms had different
proportions. The secondary level GO terms for all of differentially
expressed miRNA targets, all miRNA targets and the reference
genome was determined (Figure 6). In this study, the cellular
components, the proportions of differentially expressed miRNA
targets of “organelle” (GO: 0043226), “cell part” (GO: 0044464),
and “cell” (GO: 0005623) were higher compared to those
of all discovered miRNAs. In molecular functions, that of
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TABLE 3 | Significantly differentially expressed miRNA showing log2-fold changes in expression.

miRNA SL vs. CL LL vs. CL LL vs. SL

Log2-fold change Significant level Log2-fold change Significant level Log2-fold change Significant level

peu-miR1446 1.05 * 1.17 *

peu-miR1448 −0.32 **

peu-miR156a 0.79 ** 1.05 **

peu-miR160a-3p −1.17 *

peu-miR160b-5p 0.91 * 0.65 *

peu-miR164a 1.10 ** 1.82 ** 0.66 *

peu-miR167b 0.26 *

peu-miR167c-3p −0.90 * 0.76 **

peu-miR167c-5p 0.40 **

peu-miR168-3p −0.67 ** −0.73 **

peu-miR168-5p −1.30 *

peu-miR171c-3p −1.15 * −1.05 **

peu-miR171d-5p −1.68 *

peu-miR319a 0.70 ** −0.62 **

peu-miR319b 0.58 * −0.83 **

peu-miR395a 1.27 * 2.96 ** 1.58 **

peu-miR395b 2.07 ** 1.82 **

peu-miR398b 0.95 ** −0.50 **

peu-miR399c 1.50 ** 1.65 **

peu-miR403-3p −0.93 **

peu-miR408-3p 0.88 ** −0.61 *

peu-miR408-5p 0.99 *

peu-miR472a −0.78 **

peu-miR472b −0.47 *

peu-miR475a-5p 0.84 * 1.60 **

peu-miR477a-3p 1.06 **

peu-miR482a.2 −0.76 ** −0.78 **

peu-miR6421 −2.10 ** 1.28 ** 3.56 **

peu-miR6462a-3p −2.04 ** −1.72 **

peu-miR6462b −1.69 ** −2.33 **

peu-miR7814 −0.92 *

peu-miR-n2 −1.57 ** −2.21 ** −0.66 **

peu-miR-n10 −1.17 **

peu-miR-n11 1.19 * 1.61 **

peu-miR-n13 2.24 ** 0.83 *

peu-miR-n19 1.90 ** −2.63 **

peu-miR-n24 −1.20 *

peu-miR-n25 0.77 **

peu-miR-n26 −1.35 ** −0.83 *

peu-miR-n29 0.88 **

peu-miR-n30 1.34 *

peu-miR-n31 1.23 **

peu-miR-n32 −1.28 ** −1.93 **

peu-miR-n34 −1.97 ** −1.64 **

peu-miR-n35 −1.43 *

peu-miR-n37 2.27 **

peu-miR-n38 −1.40 *

peu-miR-n49 1.52 **

peu-miR-n51 1.50 * 1.98 **

peu-miR-n58 1.61 ** 1.77 **

(Continued)
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TABLE 3 | Continued

miRNA SL vs. CL LL vs. CL LL vs. SL

Log2-fold change Significant level Log2-fold change Significant level Log2-fold change Significant level

peu-miR-n59 −1.63 ** −2.02 **

peu-miR-n62 −1.71 **

peu-miR-n65 −1.81 ** −1.34 **

peu-miR-n74 0.57 **

peu-miR-n75 −0.95 *

peu-miR-n77 −1.49 * −1.19 *

peu-miR-n81 −0.70 * 0.96 **

peu-miR-n86 1.41 *

peu-miR-n87 −2.03 ** −2.82 **

peu-miR-n88 −1.25 ** 1.28 **

peu-miR-n91 3.68 ** 3.46 ** −0.43 *

peu-miR-n94 0.82 * −1.19 **

*P < 0.05, **P < 0.01.

Red means miRNA up-regulated by ABA, and blue means down-regulated by ABA. The darker color means the greater the change, and vice versa in one comparison.

“binding” (GO: 0005488), “transporter activity” (GO: 0005215)
and “electron carrier activity” (GO: 0009055) were also higher
than that for all discovered miRNA here. Similarly, in biological
processes, those of “death” (GO: 0016265), “response to stimulus”
(GO: 0050896), and “immune system process” (GO: 0002376)
were higher than that for all of the discovered miRNAs.

Expression Analyses of Predicted Target
Genes
The expression levels of predicted targets were measured by
real-time qPCR to study whether the predicted target genes
were actually regulated by corresponding miRNAs (Figure 7).
Sixteenth predicted target genes for 10 miRNAs, which have
a low borderline score with 2.0–3.0 (Supplementary Data 6),
were selected randomly for the real-time qPCR. CCG008392.2,
Cytochrome b/b6, a predicted target of miR-n49 were up-
regulated with ABA for 1 day and down-regulated for
4 days. CCG004054.1, Carotenoid oxygenase; CCG009428.1,
Cytochrome b5 (Cb5); CCG032972.1, Spermine synthase, were
all predicted targets of peu-miR408-5p, were first down-
regulated with ABA for 1 day and then up-regulated for 4
days. CCG027148.1 and CCG033426.1, two targets predicted
of peu-miR408-3p, which was the complementary sequence
of peu-miR408-5p, also both were also first down-regulated
with ABA for 1 day and then up-regulated for 4 days. And
also, one of predicted targets of peu-miR482a.1, CCG010532.1,
Gos1; one of predicted targets of miR-n10, CCG020696.1,
Cation/H+ exchangers (CAXs), and one of predicted targets
of peu-miR475a-5p, CCG020392.1, vesicle associated membrane
protein 7 (VAMP7), were all down-regulated with ABA for
1 day and up-regulated for 4 days. Two predicted targets of
peu-miR6462a-3p, CCG012018.1 and CCG014959.1, ROPs (rho
GTPases from plants), and two predicted targets of miR-n87,
CCG033430.1, PP2C, CCG032739.1, drought-induced protein19
(Di19), were induced by ABA. Conversely, two predicted targets
of peu-miR395, CCG007855.1, Sulfate adenylyltransferase, and

CCG033595.2, sulfate transporter, and predicted target of peu-
miR6421, CCG011696.1, Sec22, were both inhibited by ABA.
The expression profiles of miRNAs and their target genes were
complementary.

DISCUSSION

High-Throughput Sequencing of P.
euphratica
Compared with other deep sequencing studies for P. euphratica
before, the P. euphratica genome was utilized as the reference
genome instead of P. trichocarpa genome in this study. Finding
additional new P. euphratica-specific miRNAs was desirable
here. Consistently, 94.7% (89/94) of novel miRNAs were
not identified in other P. euphratica studies before, where P.
trichocarpa genome was used as reference genome. Only 5 out
of 94 novel miRNAs (miRNA-n5, miRNA-n7, miRNA-n33,
miRNA-n34, and miRNA-n82) had been found (Li et al., 2013;
Si et al., 2014; Table 4). And more novel P. euphratica-specific
miRNAs, which do not exist in the P. trichocarpa genome, were
successfully discovered. All of the novel miRNAs discovered had
not been reported in other previously studies in P. trichocarpa or
registered in miRBase (Puzey et al., 2012; Shuai et al., 2013). Our
results indicate that it is a more useful approach to discover P.
euphratica-specific miRNAs based on the P. euphratica genome
used here.

Several conserved ABA-responsive miRNAs in this study,
also significant differentially expressed under drought or salt
in previous studies in P. euphratica (Li et al., 2013; Si et al.,
2014). For example, the expression level of two miRNAs,
peu-miR1446 and peu-miR319a, significant changed under
salt treatment; four miRNAs, peu-miR399c, peu-miR403-3p,
peu-miR472a, and peu-miR6421 were all expression significant
changed to respond to drought, other nine miRNAs, including
peu-miR156a, peu-miR160a-3p, peu-miR164a, peu-miR168a-3p,
peu-miR171c-3p/d-3p, peu-miR395, peu-miR408, peu-miR472b,
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FIGURE 5 | Verification of selected miRNAs by real-time quantitative

PCR. Differentially expressed miRNAs identified by sequencing were

confirmed by real-time qPCR, and their expression levels were compared

among the three groups. The expression level of miRNA in deep sequences

was performed with R statistical software package, which was“DESeq2”

library used with raw date. *P < 0.05, **P < 0.01. (A) The miRNA expression

for the comparison SL/CL; (B) The miRNA expression for the comparison

LL/CL; (C) The miRNA expression for the comparison LL/SL.

and peu-miR475, were all differentially expressed under both salt
and drought. These observations revealed that some conserved
miRNAs respond to multiple forms of stress, and that complex

miRNA effects are involved in resistance to abiotic stress in
P. euphratica.

miRNAs have been shown to play an important role in abiotic
stress responses in plants (Ferdous et al., 2015), and ABA is a
core signal for abiotic stress responses (Lee and Luan, 2012).
The analysis regarding the mechanism between ABA andmiRNA
at a genomics-level had not been reported previously. In total,
79 conserved miRNAs and 31 novel miRNAs were differentially
expressed in response to ABA. Many conserved plant miRNAs
regulatory mechanisms have been previously reported, which
were also discovered here. For example, a negative regulator
in responses abiotic stress, no apical meristem (NAM), was
targeted by miR164, which was upregulated by ABA (Souer
et al., 1996; Wang et al., 2009; Puranik et al., 2012; Fang et al.,
2014). In addition, miR395 targeted two different groups of
genes, ATP sulfurylases and SULTR2;1, which are both involved
in sulfate translocation and assimilation (Jones-Rhoades and
Bartel, 2004; Allen et al., 2005). Targets of all discovered miRNAs
and differentially expressed miRNAs were both predicted and
subjected to a functional analysis. Predicted target genes of
differentially expressed miRNA were more focus on response to
ABA addition, with the help of further study that may provide
us insight into the molecular mechanism underlying ABA in P.
euphratica.

Photosynthesis and Stomata Movement
Photosynthesis was one of the most sensitive physiological
processes responsive to ABA. ABA significantly influenced the
transcriptional abundance of genes involved in photosynthesis
(Yamburenko et al., 2013; Mou et al., 2015). Protection of
the photosynthesis apparatus is very important for stress
tolerance (Xiao et al., 2015). Plants can survive severe
drought by maintaining the photosynthesis ability to avoid
carbon-starvation (McDowell et al., 2008). Similar findings
were recorded indicating that P. euphratica maintained high
photosynthetic rates under moderate drought stress levels (Chen
et al., 2006; Tang et al., 2013). In the present study, we found
that the photosynthetic rate of P. euphratica first decreased and
then increased. At 4 days of treatment, the photosynthesis rate
of the treated seedlings was higher than that of the control.
The internal CO2 concentration, however, always decreased
suggesting that after 1 day of treatment, stomatal limiting was
the most important factor for photosynthesis and transpiration
rate, corroborating previous studies (Chaves et al., 2009). After 4
days of treatment, the increase of photosynthesis consumedmore
CO2, and then loaded internal CO2 concentration continued to
decline. Even when the stomata were still mildly closed, with
the transpiration rate lower than of control, the photosynthetic
rates still remained at high levels. ABA is a phytohormone,
and exogenously supplied ABA can be considered simulating
the stress that caused by ABA increasing, suggesting that P.
euphratica couldmaintain a high photosynthetic ability to reserve
the energy and materials necessary for stress adaptation.

Although variance is correctly used it might be confusing as
it is a term used in statistics, variation or changes would be
more adequate. ROP2 inhibited ABA-induced stomatal closure
(Lemichez et al., 2001; Hwang et al., 2011; Miyawaki and

Frontiers in Plant Science | www.frontiersin.org 12 August 2016 | Volume 7 | Article 1184

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Duan et al. P. euphratica miRNA Response to ABA

FIGURE 6 | GO analysis of miRNA putative target genes. GO annotation categorized all of the predicted miRNA target genes and differentially expressed miRNA

target genes into biological processes, molecular functions, and cellular components.

Yang, 2014). Two ROPs were the predicted target of peu-
miR6462a-3p. The expression of peu-miR6462a-3p decreased in
response to ABA, while ROPs were up- regulated (Figure 7J),
which would lead to ABA-induced stomatal closure. That
agreed with the phenomenon in this study that stomatal
conductance recovered after 4 days of treatment. CAXs involved
in calcium (Ca2+) transport and homeostasis (Conn et al.,
2011; Manohar et al., 2011; Punshon et al., 2012). CAX was a
predicted target of miR-n10. After ABA treatment 4 days, miR-
n10 was downregulated by ABA, while CAX was upregulated
(Figure 7H). In addition, due to CAX genes playing a critical
role in sequestering Ca2+ into vacuole (Barkla et al., 2008), the
increasing of CAX resulted in stomatal opening, which is agreed

with the stomatal conductance in this study. And it can been
speculated that the regulation mechanism between miRNA and
stomata movement may exist, which need further exploration.

miRNA Take Part in ABA Synthesis and
Metabolism
ABA is one of the final products of carotenoids (Schwartz
et al., 1997; Wang et al., 2013). Carotenoid oxygenase was
one of the peu-miR408-5p predicted targets. As peu-miR408-
5p was upregulated by ABA after being treated for 1 day, while
carotenoid oxygenase was downregulated (Figure 7E), which
would influenced the synthesis of ABA. The group A PP2C
interacted with SnRK2. And without ABA, SnRK2 is inhibited
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FIGURE 7 | The expression profiles of predicted target genes and their

corresponding miRNAs by real-time quantitative PCR. Complementary

miRNAs and predicted target gene were confirmed by real-time qPCR. The

level of every gene in the control was set at 1.0. Error bars the standard

(Continued)

FIGURE 7 | Continued

deviation of three replicates. The values with different lowercase letters are

significantly different at the P < 0.05 level. (A) The relative expression of

miR395a/b with the predicted targets CCG007855.1 and CCG033595.2; (B)

The relative expression of miR475a-3p with the predicted targets

CCG020392.1; (C) The relative expression of miR6421 with the predicted

targets CCG011696.1; (D) The relative expression of miR-n87 with the

predicted targets CCG033430.1 and CCG0327391.1; (E) The relative

expression of miR408-5p with the predicted targets CCG004054.1,

CCG009428.1 and CCG032972.1; (F) The relative expression of miR408-3p

with the predicted targets CCG027148.1 and CCG033426.1; (G) The relative

expression of miR482a.1 with the predicted targets CCG010532.1; (H) The

relative expression of miR-n10 with the predicted targets CCG020696.1; (I)

The relative expression of miR-n49 with the predicted targets CCG008392.2;

(J) The relative expression of miR6462a-3p with the predicted targets

CCG012018.1 and CCG014959.1.

TABLE 4 | Novel miRNAs found in other studies.

miRNA Name in

others

Found by

others

Squences (5′–3′)

miRNA-n5 peu-sM54L A GCAUGAGGGGAGUCACGCAGG

miRNA-n7 peu-sM36L A GCGGCAGCAUCAAGAUUCACA

peu-sM44R A

miRNA-n34 peu-sM132L A GGUCAUGCUCUGACAGCCUCACU

miRNA-n33 peu-sM111R A UUUCGGGAAGUGAAAUUUGGA

peu-MIR343 B

miRNA-n79 peu-sM64L A UUUGGAAGGAAGAUUUGAAGU

peu-sM70L A

peu-MIR350 B

A: Si et al. (2014); B: Li et al. (2013).

by PP2C; with ABA, PP2C binds to the receptor to release the
inhibition SnRK2 (Umezawa et al., 2009; Ng et al., 2011; Soon
et al., 2012). MiRNA-n87 was downregulated by ABA. PP2C was
a predicted gene of miRNA-n87, while PP2C was upregulated
(Figure 7D). PP2C interacted with SnRK2, and ABA inhibited
the reaction—the feedback regulation for ABA and PP2C. It can
be speculated that miRNAs may be involved in balance the ABA
level and metabolism, and more studies will be needed in the
future to address this issue.

miRNA Involved in the Crosstalk Between
ABA and Other Phytohormone
Overexpression of Cb5s confers lower ethylene sensitivity (Chang
et al., 2014). ABA negatively regulated ethylene production
(Dong et al., 2015). The two stress-induced hormones ABA and
ethylene interacted each other in stomata movement (Wilkinson
and Davies, 2010). Cb5 was predicted target of peu-miR408-
5p, which increased significantly after ABA treatment 1 day,
and Cb5 was increased in expression (Figure 7E). As Cb5
may affected ethylene signaling, suggesting that miRNAs may
facilitate another way for ABA to inhibit ethylene signaling.
Auxin response factor (ARF), the repressor of indole-3-acetic
acid (IAA), decreased in expression in response to ABA.
Exogenous IAA increased sensitivity to ABA in Arabidopsis.
Furthermore, overexpression of miR160 reduced sensitivity to
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ABA (Liu et al., 2007). MiR160 appears to promote auxin
activity by suppressing the levels of the ARF (Nizampatnam
et al., 2015). ARF was the target of miR160 in plant
(Liu et al., 2007; Turner et al., 2013; Damodharan et al.,
2016; Tian et al., 2016). Therefore, miR160 targeted ARF
to decrease ARF-mediated IAA-induced ABA hypersensitivity.
In this study, six targets of peu-160b-5p involving ARF
were downregulated by ABA at 4th day, corroborating the
findings of previous studies. In general, miRNA may involves
a very complex set of the crosstalk between ABA and other
phytohormone.

miRNA Regulated SNARE Interactions in
Vesicular Transport
In this study, peu-miR6421 expression was first increase and
then decreased to response to ABA. Sec22, a synaptobrevin,
was one of the predicted target genes that participated in
soluble N-ethylmaleimide sensitive factor attachment protein
receptor (SNARE) interactions in the vesicular transport pathway
(Supplementary Figure 2). In addition, Gos1 and VAMP7
were the predicted targeted of miR482a.1 and miR475a-5p,
respectively. They were both upregulated by ABA (Figure 7G)
and also involved in the vesicular transport pathway. Sec22
played an essential role in early secretory traffic between the ER
and the Golgi (El-Kasmi et al., 2011). In Arabidopsis, VAMP721
and VAMP722 protein levels were downregulated by ABA,
leading to slow down plant growth; (Yi et al., 2013). A reasonable
speculation was that this inhibited expression by miRNA, so
further study was needed.

miRNA Involved in Stress-Related Genes
Regulation
Di19s were upregulated by the supply of ABA (Li et al., 2010b),
and it induced sensitivity to ABA and tolerance to stress in
Arabidopsis and rice (Li et al., 2010a; Qin et al., 2014; Wang
et al., 2014). Di19 was one predicted targets of miR-n87, which
was reduced by ABA. While Di19 was induced (Figure 7D) to
improve stress resistance, an assumption was consistent with that
of pervious reports. Spermine was a part of polyamines. Free
spermine accumulation was showed as a particular metabolic
feature of being under long-term salt stress (Maiale et al., 2004).
Meanwhile polyamines had been shown to be an important part
of plant responses to improve stress resistance (Shi and Chan,
2014; Tiburcio et al., 2014). Spermine synthase was a predicted
target of miRNA408-5p, which was significant upregulated
by ABA at 1 day, while spermine synthase was inhibited
(Figure 7E), which resulted in free spermine accumulation

to affect stress resistance. But more evidence was needed to
support the interaction between miRNAs and the predicted
targets.

CONCLUSIONS

We constructed nine sRNA libraries based on P. euphratica
leaves for high-throughput sequencing. In total, 151 unique
mature sequences belonging to 75 conserved miRNA families

were identified. Meanwhile, 56 novel miRNAs of 94 sequences
were discovered. Among them, the expression levels of 31
conserved miRNAs belonging to 22 families were significantly
different. Confirmed by real-time qPCR, the expression profiles
of miRNAs and their predicted target genes were complementary.
Based on function analysis, we suggest may play critical roles in
maintaining a high photosynthetic ability to facilitate adaptation
to stress. And involved several pathways and cellular processes
that help this plant to cope with stresses. How individual
genes participate in stomatal closure, photosynthesis and other
processes involves a very complex set of mechanisms. Our
results provide a foundation for further analyses of plant miRNA
responses to ABA, and provide new insight into the mechanism
underlying the role of ABA in the abiotic stress response and
other biological processes, in P. euphratica.
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