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Plant development is exquisitely sensitive to the environment. Light quantity, quality, and
duration (photoperiod) have profound effects on vegetative morphology and flowering
time. Recent studies have demonstrated that ambient temperature is a similarly potent
stimulus influencing morphology and flowering. In Arabidopsis, ambient temperatures
that are high, but not so high as to induce a heat stress response, confer morphological
changes that resemble the shade avoidance syndrome. Similarly, these high but
not stressful temperatures can accelerate flowering under short day conditions as
effectively as exposure to long days. Photoperiodic flowering entails a series of external
coincidences, in which environmental cycles of light and dark must coincide with an
internal cycle in gene expression established by the endogenous circadian clock. It is
evident that a similar model of external coincidence applies to the effects of elevated
ambient temperature on both vegetative morphology and the vegetative to reproductive
transition. Further study is imperative, because global warming is predicted to have
major effects on the performance and distribution of wild species and strong adverse
effects on crop yields. It is critical to understand temperature perception and response
at a mechanistic level and to integrate this knowledge with our understanding of other
environmental responses, including biotic and abiotic stresses, in order to improve crop
production sufficiently to sustainably feed an expanding world population.

Keywords: circadian clock, circadian rhythms, photoperiodic flowering, flower induction, thermoresponsive
flowering

INTRODUCTION

Plant development is highly sensitive to the environment. For example, light dramatically
affects plant morphology (Arsovski et al., 2012). When grown in the dark, dicot seedlings
become etiolated, develop elongated hypocotyls, and are pale because chloroplast formation and
chlorophyll biosynthesis requires exposure to light. In contrast, seedlings grown in the light
undergo photomorphogenesis, exhibiting short embryonic stems and expanded green cotyledons.
Light quality also has a profound influence on plant morphology. Shading, in which the ratio of red
to far-red light is decreased, induces a suite of morphological changes that includes the elongation
of hypocotyls and petioles and upward (hyponastic) growth of the petioles and leaves to yield an
open rosette (Casal, 2012). In addition, the relative duration of light and dark during the day,
photoperiod, has a major influence on the transition to flowering (Song et al., 2015).
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Plant morphology and reproductive development are also
strongly influenced by temperature (Wigge, 2013; Quint et al.,
2016). Ambient temperatures that are high, yet insufficient to
cause heat stress, induce a suite of morphological changes that
are collectively termed thermomorphogenesis. In Arabidopsis,
growth at 27◦C results in elongated hypocotyls and petioles and
other morphological changes that are reminiscent of the response
to shade. In addition, elevated temperature accelerates flowering,
especially in short days that are non-inductive in Arabidopsis
grown at lower ambient temperatures (e.g., 15–20◦C).

In this mini review, we will consider the similarities and
differences in the thermoresponsiveness of growth and flowering,
with an emphasis on Arabidopsis, where our mechanistic
understanding is greatest.

THERMOMORPHOGENESIS

One of the first manifestations of thermomorphogenesis,
the suite of responses in growth to elevated temperature,
is increased elongation of the hypocotyl. The similarity of
thermomorphogenesis to responses to shading suggested
common underlying mechanisms. PHYTOCHROME
INTERACTING FACTOR4 (PIF4) and PIF5, basic helix-
loop-helix (bHLH) transcription factors that are key
components of phytochrome signaling with central roles in
photomorphogenesis (Leivar and Monte, 2014), also play pivotal
roles in thermomorphogenesis (Wigge, 2013; Quint et al., 2016).
Loss of PIF4 function attenuates hypocotyl elongation at elevated
temperature (Koini et al., 2009). Similarly, mutants that disrupt
auxin signaling block thermoresponsive hypocotyl elongation
(Gray et al., 1998). PIF4 interacts with BRASSINAZOLE-
RESISTANT1 to regulate many genes associated with growth
regulation (Oh et al., 2012), integrating multiple hormone (auxin,
brassinolide, gibberellin, and cytokinin) signaling pathways in
the growth response.

Expression of PIF4 and PIF5 is tightly regulated at both
transcriptional and post-transcriptional levels. PIF4 and PIF5
transcription and mRNA accumulation are regulated by the
circadian clock (Nozue et al., 2007; Niwa et al., 2009; Kunihiro
et al., 2011; Nusinow et al., 2011). During the light and
early evening, PIF4 transcription is repressed by ELONGATED
HYPOCOTYL5 (HY5) and the evening complex (EC) as well as
by additional transcriptional repressors (Lee et al., 2007; Toledo-
Ortiz et al., 2014; Quint et al., 2016). Photoperiod affects PIF4
expression, with transcripts accumulating during the night in
short days but only at about dawn in long days. This permits
increased PIF4 accumulation and greater hypocotyl elongation
in short days due to the greater stability and activity of PIF4 in
the dark (Quint et al., 2016). DE-ETIOLATED1 (DET1) plays
a role in this stabilization of PIF4 (Dong et al., 2014; Shi et al.,
2015). Although DET1 has not been shown to directly contribute
to PIF4 accumulation at elevated temperatures, det1 mutants are
impaired in thermoresponsive hypocotyl growth (Delker et al.,
2014). Thus, PIF4 plays a central role in integrating photoperiodic
and circadian clock control of hormone signaling into the
growth response through the external coincidence of clock and

photoperiod regulated PIF4 expression with environmentally
imposed dark (Nomoto et al., 2012b). Similarly, in long days
at elevated temperature PIF4 accumulates earlier in the dark,
again providing an example of external coincidence of clock-,
photoperiod-, and temperature-regulated PIF4 expression with
environmentally imposed dark (Nomoto et al., 2012a).

Quantitative trait locus (QTL) mapping with Arabidopsis
natural accessions revealed variation in thermoresponsive
hypocotyl growth and implicated the EC components, EARLY
FLOWERING3 (ELF3) and LUX ARRHYTHMO (LUX), as well
as PHYB. The elf3-1 loss of function mutant exhibits enhanced
growth under control temperatures and does not increase growth
at high temperature, coinciding with elevated PIF4 levels under
both conditions. These mutants also lose the high temperature
induction of LUX expression suggesting that ELF3 is required
for this rapid thermoresponsiveness (Box et al., 2015). Natural
allelic variation in ELF3 also alters the hypocotyl elongation
response to shading; QTL mapping in an Arabidopsis Bay-0 x
Sha recombinant inbred line (RIL) population revealed that the
Bay-0 ELF3 allele confers longer period and greater response to
shade than the Sha allele (Jiménez-Gómez et al., 2010; Coluccio
et al., 2011). Loss of ELF3 also disrupts rhythmic root growth
rates under diurnal and free running conditions (Yazdanbakhsh
et al., 2011).

FLOWERING TIME IN Arabidopsis

Arabidopsis has at least four flowering pathways: autonomous,
vernalization, gibberellic acid (GA), and photoperiodic (Simpson
and Dean, 2002; Amasino and Michaels, 2010). Recent evidence
strongly supports a fifth, thermoresponsive, pathway (Capovilla
et al., 2015). The autonomous pathway induces flowering in
an environmentally (temperature and photoperiod) insensitive
fashion. However, flowering is sensitive to environmental
conditions, particularly to photoperiod and temperature. In
Arabidopsis, a facultative long day plant, flowering is accelerated
both in long days and at elevated temperatures. In addition,
many accessions require vernalization, an extended period of cold
temperature that mimics winter, in order to flower.

VERNALIZATION

Much is known about vernalization in Arabidopsis (Kim et al.,
2009; Sheldon et al., 2009; Song et al., 2012; Berry and Dean,
2015; Hepworth and Dean, 2015). Two critical components
include FRIGIDA (FRI), an inducer of the flowering repressor,
FLOWERING LOCUS C (FLC). FLC complexes with SHORT
VEGETATIVE PHASE (SVP) to form a potent transcriptional
repressor of floral inducers, including FLOWERING LOCUS T
(FT), FD, and SUPPRESSOR OF CONSTANS 1 (SOC1) (Figure 1)
(Amasino, 2010). The expression of FLC, which encodes a MADS
domain transcriptional repressor, is progressively downregulated
in response to chromatin changes resulting from prolonged
(weeks to months) cold. Loss of function of either FRI or FLC
eliminates the vernalization requirement, permitting accelerated
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FIGURE 1 | Photoperiod and thermoresponsive pathways regulate
expression of FLOWERING LOCUS T (FT). Positive regulators of FT
expression are indicated by white lettering and negative regulators by black
lettering. The thin black horizontal line represents the FT promoter but only to
indicate that all these regulatory inputs converge on the FT promoter, without
depicting the number or spatial arrangement of binding sites within the
promoter. Jagged arrows indicate blue light input in the late afternoon of long
days, conferring photoperiod sensitivity in examples of external coincidence of
light with a photosensitive phase defined by the circadian clock. Abundance
of SVP (SHORT VEGETATIVE PHASE)/MAF2 (MADS AFFECTING
FLOWERING 2) and SVP/FLM (FLOWERING LOCUS M)-β complexes
declines with increasing temperatures. Additional complexes of SVP with
other MAFs are formed but have been omitted for simplicity. Incorporation of
the H2A.Z variant, which reduces access of transcriptional activators to the FT
promoter, declines with increasing temperature. Similarly, after exposure to
low temperature, FLC (FLOWERING LOCUS C) and MAF2 expression is
reduced allowing plants requiring vernalization to flower.

flowering and a summer annual lifecycle, whereas accessions with
functional FRI and FLC genes have a vernalization requirement
and a winter annual habit (Gazzani et al., 2003; Song et al.,
2012). A second transcriptional repressor closely related to
FLC, MADS AFFECTING FLOWERING 2 (MAF2), is more
slowly downregulated in response to vernalization than is FLC,
and prevents premature vernalization in response to brief cold
spells, although loss of MAF2 function does not eliminate the
vernalization requirement (Ratcliffe et al., 2003). Like FLC, MAF2
also interacts with SVP; multiple tetrameric complexes, such as
FLC-SVP-MAF3-MAF4 and SVP-FLM (FLOWERING LOCUS
M)-MAF2-MAF4 have been postulated (Gu et al., 2013b; Airoldi
et al., 2015).

THERMORESPONSIVE FLOWERING

The transition to flowering is influenced by moderate changes
in ambient temperature. Genome-wide association (GWAS) and

QTL studies in Arabidopsis indicate a complex architecture of
natural variation in thermal responses (Sanchez-Bermejo et al.,
2015). A growth promoting temperature change from 23 to
27◦C is as effective at inducing flowering as the transfer from
non-inductive (8-h) short days to inductive (16-h) long days
(Balasubramanian et al., 2006). Although, thermoresponsive
flowering is not as well understood as vernalization, evidence
supports a number of independent thermoresponsive pathways
(Capovilla et al., 2015).

The histone variant H2A.Z acts as a thermosensor for
flowering time. H2A.Z is incorporated into nucleosomes by a
chromatin-remodeling complex that includes ACTIN-RELATED
PROTEIN6 (ARP6) and PHOTOPERIOD-INSENSITIVE
EARLY FLOWERING1 (PIE1) (Talbert and Henikoff, 2014).
H2A.Z incorporation into nucleosomes makes DNA less
accessible for transcription factors and slows RNA polymerase
II. This limits gene expression at lower temperatures because,
with increasing temperature, H2A.Z nucleosomes are depleted
(Talbert and Henikoff, 2014). Of relevance to flowering,
H2A.Z occupancy at the FT promoter is decreased at higher
temperatures, permitting promoter binding by PIF4 (Kumar
and Wigge, 2010; Kumar et al., 2012). PIF4, initially identified
as important in the shade avoidance response, was implicated
in thermoresponsive flowering because the pif4 mutant failed
to accelerate flowering at elevated temperatures (Kumar et al.,
2012). Similarly, pif5 loss of function delays flowering at high
temperature and the pif4 pif5 double mutant flowered later
than either single mutant, showing that both PIF4 and PIF5
accelerate flowering at elevated temperature (Fernández et al.,
2016).

PHYTOCHROME INTERACTING FACTOR3, PIF4, and
PIF5, but not PIF1 and PIF6, promote flowering when
overexpressed in the phloem companion cells (Galvão et al.,
2015). The PIFs promote flowering through induction of FT
and its paralog TWIN SISTER OF FT (TSF) in response to
warm nights and independently of FT during warm days (Thines
et al., 2014; Galvão et al., 2015; Fernández et al., 2016). The
increased expression of FT at high temperatures requires CO
in addition to PIF4 and PIF5; co pif4 double, and co pif4 pif5
triple mutants flower later than pif single or double mutants.
PIF4 and CO physically interact and this complex contributes
to the induction of FT and TSF expression (Fernández et al.,
2016). However, the co pif4 pif5 triple mutant still flowers earlier
at 27 than at 21◦C (Fernández et al., 2016). Similarly, quadruple
pif1 pif3 pif4 pif5 (also called pifQ) loss of function mutants only
partially suppress the early flowering and elevated FT expression
at high temperature persists in the arp6 mutant (Galvão et al.,
2015). This indicates that the mechanism by which H2A.Z delays
flowering must be more complex than simply through PIF
interaction with the FT promoter and that there is additional
complexity in the acceleration of flowering in response to elevated
temperature.

SHORT VEGETATIVE PHASE plays a central role in
thermoresponsive flowering as well as in vernalization. SVP
encodes a flowering repressor and thermoresponsive flowering
likely includes a reduction of SVP expression at higher
temperatures, because SVP overexpression delays flowering at
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27◦C (Fernández et al., 2016) and svp loss of function mutants
flower early and fail to modify their flowering time in response
to temperature (Capovilla et al., 2015) (Figure 1). SVP forms
repressor complexes with MADS box transcription factors related
to FLC: FLM and MAF (Ratcliffe et al., 2003; Lee et al.,
2013; Posé et al., 2013; Gu et al., 2013a). These complexes
repress FT and SOC1 transcription at low temperatures but
decline in abundance at higher temperatures, relieving repression
(Figure 1). The circadian clock imposes a circadian oscillation
on SVP expression, linking thermosensitivity to circadian cycling
(Fujiwara et al., 2008).

Gibberellic acid stimulates flowering. GA signaling entails
the degradation of the DELLA transcriptional repressors; low
GA levels allow the accumulation of the DELLAs, which delays
flowering (Galvão et al., 2012; Yu et al., 2012). Inhibition of
GA biosynthesis suppresses the acceleration of flowering at
high temperature (Balasubramanian et al., 2006) and blocks the
acceleration of flowering and increase of FT expression seen in
the arp6 mutant (Galvão et al., 2015). However, both ft and ft
tsf mutants still accelerate flowering in response to exogenous
active GA, indicating that GA can act independently of FT and
TSF. Similarly, GA can accelerate flowering in the arp6 mutant
and the pif3 pif4 pif5 triple mutant indicating that GA can
act independently of H2A.Z incorporation and the PIF genes.
Expression of a constitutively active DELLA protein at the shoot
apical meristem (SAM) but not in the phloem companion cells
prevented GA-induced flowering, indicating that the GA acts at
the SAM, consistent with its independence from the PIFs, which
induce FT and TSF in phloem companion cells. The action of GA
at the SAM, at least in part, involves the induction of the floral
inducers SPL3 and SPL5 (Galvão et al., 2012, 2015; Porri et al.,
2012; Yu et al., 2012).

There is considerable natural variation in thermoresponsive
flowering and FLM is a major-effect QTL (Balasubramanian et al.,
2006). Consistent with FLM as a flowering repressor, the loss of
function flm-3 allele confers early flowering (Lee et al., 2013; Posé
et al., 2013). The FLM primary transcript undergoes temperature
dependent alternative splicing to yield two main isoforms that
differ in terms of use of exon 2 (FLM-β) or exon 3 (FLM-δ);
FLM-β binds DNA but FLM-δ does not (Lee et al., 2013; Posé
et al., 2013). At lower temperatures the SVP-FLM-β complex is
abundant and represses the floral integrators, FT and SOC1, but
at higher temperatures the abundance of both FLM-β and SVP
decreases, relieving repression (Lee et al., 2013; Posé et al., 2013).
At higher (27◦C) temperatures additional longer transcripts
arise due to intron retention and the use of novel splice sites
(Sureshkumar et al., 2016). Most of these longer transcripts
include premature termination codons and are subjected to non-
sense-mediated decay. The net result is a decreased abundance of
the FLM-β transcript, the FLM-β isoform, and the SVP-FLM-β
repressor complex (Sureshkumar et al., 2016).

A natural allele of FLM, in which a LINE retrotransposon has
inserted into the first intron, confers early flowering both at 15
and at 21◦C, although the effect was more pronounced at 15◦C
(Lutz et al., 2015). This insertion reduces abundance of both
the major FLM transcripts, although temperature-dependent
alternative splicing is preserved. Similar alleles were found in

additional accessions, suggesting that this class of insertion
confers early flowering at 15◦C in summer annual accessions
through reduced expression of the FLM-β isoform and the SVP-
FLM-β repressor complex (Lutz et al., 2015).

SHORT VEGETATIVE PHASE also forms floral repressor
complexes with MAF2, MAF3 and MAF4 (Ratcliffe et al.,
2003; Gu et al., 2013a). MAF2 has evolved a temperature
dependent alternative splicing pattern independently from FLM.
The abundant MAF2 splice form at low temperatures encodes a
functional MAF2 isoform that complexes with SVP to generate
a floral repressor, but at elevated temperature an alternatively
spliced intron-retaining variant encodes a prematurely truncated
and non-functional MAF2 isoform that fails to repress flowering
(Airoldi et al., 2015).

Temperature influences flowering, but the magnitude and
direction of the temperature response depends on ecological
details of the species under consideration (Capovilla et al., 2015).
In Boechera stricta, a perennial relative of Arabidopsis, elevated
temperature delays flowering (Anderson et al., 2011).

PHOTOPERIODIC FLOWERING

In the photoperiodic pathway, the circadian clock regulates the
induction of critical flowering inducers, CONSTANS (CO) and
FT, via an external coincidence mechanism in which the external
stimulus, light, must coincide with an inductive window that is
restricted (gated) by the circadian clock (Romera-Branchat et al.,
2014; Greenham and McClung, 2015; Song et al., 2015). The
following simplification emphasizes several examples of external
coincidence.

The circadian clock drives morning-specific expression of
several CYCLING DOF FACTOR (CDF) genes whose protein
products repress CO transcription. The CDF proteins are
targeted for degradation by a SCF complex containing FLAVIN
BINDING, KELCH REPEAT, F-BOX1 (FKF1), and GIGANTEA
(GI) (Figure 1). Both FKF1 and GI exhibit circadian cycling
in protein abundance. In short days, GI protein abundance
peaks at dusk while FKF1 protein peaks after dark. This leads
to the formation of the FKF1-GI complex in the dark. Thus,
CO transcription is repressed until about dusk and CO mRNA
accumulates after dusk. CO protein is unstable in the dark so, in
short days, CO protein fails to accumulate and FT transcription
is not induced.

In long days the phase of peak GI expression is delayed
and coincides with that of FKF1 in late afternoon. FKF1 is a
blue-light photoreceptor, and the interaction of FKF1 with GI
is enhanced by blue light. This is a second example of external
coincidence, when the peaks of FKF1 and GI proteins coincide
in the light to allow the formation of the FKF1-GI complex
to degrade the CDFs in the late afternoon. As a consequence,
transcriptional repression of CO is relieved in the afternoon of
long days and CO mRNA accumulates in the light, which permits
the stabilization of nascent CO protein and activation of FT
transcription.

FLOWERING LOCUS T transcription is also induced
independently of CO. Several CRY2-INTERACTING bHLH
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(CIB) transcription factors accumulate in long days to
stimulate FT transcription. The CIBs are activated in the
afternoon by blue-light dependent interaction with CRY2
(Liu et al., 2008). In addition, CIB protein stability is
enhanced via a blue light dependent interaction with the
FKF1 relatives, ZEITLUPE (ZTL) and LOV KELCH PROTEIN
2 (LKP2), although not with FKF1 (Liu et al., 2013).
Thus, this CO-independent induction of FT is mediated
in the afternoon/evening of long days via two classes of
blue light photoreceptors, CRY2 for CIB activation and
ZTL/LKP2 for CIB stabilization, a third example of external
coincidence.

CONCLUSION

Studies of growth and flowering have emphasized the effects
light intensity, quality, and duration (photoperiod), each of
which has dramatic effects on vegetative morphology and the
developmental transition from vegetative to reproductive growth
(Arsovski et al., 2012; Casal, 2012; Song et al., 2015). Temperature
also affects plant growth and reproduction, but only in recent
years has it been realized that the effects of elevated but non-
stressful temperatures on growth and reproduction can be
of similar magnitude to those of light quantity and quality
(Wigge, 2013; Quint et al., 2016). Temperature and light share
some regulatory networks, but also employ specific regulatory
pathways. One particularly prominent theme is the strong
intersection of light and temperature signaling with time of
day imposed by the circadian clock. In thermomorphogenesis
as well as in thermosensitive and photoperiodic flowering,
internal rhythms established by the circadian clock must coincide
with the externally imposed environmental cycle of light and

dark, an intersection termed “external coincidence.” Against a
backdrop of global warming predicted to have major effects on
the performance and distribution of wild species and strong
adverse effects on crop yields (Willis et al., 2008; Wolkovich
et al., 2012; McClung, 2014), it is crucial to integrate our
understanding of temperature perception and response with
other environmental responses, including biotic and abiotic
stresses. Circadian clock function is intricately intertwined with
each of these environmental response pathways (Greenham and
McClung, 2015).

It is well-established that there is heterogeneity among plant
species in terms of clock function and its relationship to flowering
time (Song et al., 2015), so extrapolation to crops will require
dedicated study in each species under consideration, using
models established in Arabidopsis as guides.
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