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Biomass based alternative fuels offer a solution to the world’s ever-increasing energy

demand. With the ability to produce high biomass in marginal lands with low inputs,

sorghum has a great potential to meet second-generation biofuel needs. Despite the

sorghum crop importance in biofuel and fodder industry, there is no comprehensive

information available on the cell wall related genes and gene families (biosynthetic and

modification). It is important to identify the cell wall related genes to understand the cell

wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide

analysis using gene family specific HiddenMarkovModel of conserved domains identified

520 genes distributed among 20 gene families related to biosynthesis/modification

of various cell wall polymers such as cellulose, hemicellulose, pectin, and lignin.

Chromosomal localization analysis of these genes revealed that about 65% of cell

wall related genes were confined to four chromosomes (Chr. 1–4). Further, 56 tandem

duplication events involving 169 genes were identified in these gene families which

could be associated with expansion of genes within families in sorghum. Additionally,

we also identified 137 Simple Sequence Repeats related to 112 genes and target

sites for 10 miRNAs in some important families such as cellulose synthase, cellulose

synthase-like, and laccases, etc. To gain further insight into potential functional roles,

expression analysis of these gene families was performed using publically available data

sets in various tissues and under abiotic stress conditions. Expression analysis showed

tissue specificity as well as differential expression under abiotic stress conditions. Overall,

our study provides a comprehensive information on cell wall related genes families in

sorghum which offers a valuable resource to develop strategies for altering biomass

composition by plant breeding and genetic engineering approaches.

Keywords: cell wall polymers, cellulose, hemicellulose, lignin, pectin, plant biomass, sorghum, abiotic stress

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2016.01287
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.01287&domain=pdf&date_stamp=2016-08-31
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:venugopal.mendu@ttu.edu
http://dx.doi.org/10.3389/fpls.2016.01287
http://journal.frontiersin.org/article/10.3389/fpls.2016.01287/abstract
http://loop.frontiersin.org/people/313428/overview
http://loop.frontiersin.org/people/370449/overview
http://loop.frontiersin.org/people/363617/overview
http://loop.frontiersin.org/people/370450/overview
http://loop.frontiersin.org/people/368035/overview
http://loop.frontiersin.org/people/352070/overview


Rai et al. Sorghum Cell Wall Gene Families

INTRODUCTION

Sorghum (Sorghum bicolor), a C4 grass species, is one of the
world’s important multipurpose cereal crops with uses in food,
fodder, and biofuel industries. Sorghumwith its relatively smaller
genome size (∼730Mbp) makes it an ideal model bioenergy crop
compared to other C4 crops such as switch grass, sugarcane
or miscanthus with bigger and more complex genomes. Grain
sorghum is grown worldwide with an annual production of
62million tons of grain yield from an estimated area of 42
million hectares (FAOSTAT data 2013; http://faostat3.fao.org).
Biomass yield of energy sorghum (fodder sorghum) is twice that
of the grain sorghum due to longer vegetative growth period,
increased leaf area which helps in greater radiation interception
and efficiently converting the synthesized carbon into cell wall
polysaccharides (Olson et al., 2012). Apart from food, livestock
feed, and biofuel source, sorghum is also a source of malt for
brewing and various food industries (Taylor et al., 2006). With a
higher biomass yield potential (15–40 Mg/hc), sorghum can be
used as high value energy source in second generation biofuel
industry (Rooney et al., 2007). Due to its high adaptability to
different environmental conditions such as drought, salinity,
water-logging, ability to grow in marginal land areas, efficient
light to biomass energy conversion rate, and nitrogen utilization
rate, sorghum is emerging as favorite multipurpose crop in recent
years (Taylor et al., 2010; Byrt et al., 2011).

The focus of second generation biofuels is to produce biofuels
from lignocellulosic material, which is derived mainly from
plant cell walls. Lignocellulosic material is mainly composed of
cellulose (15–40%), hemicellulose (30–40%), lignin (20–30%),
and pectins (Mendu et al., 2011b). These structural polymers
composition varies between primary and secondary cell walls,
different tissues of an individual plant and among different plant
species (Mendu et al., 2011b; Welker et al., 2015). Primary
cell wall (PCW) is present in all plant cell types whereas
secondary cell wall (SCW) is present in specific cell types such
as tracheary elements (TE) and sclerenchymal cells. Cellulose,
the most abundant polymer on earth, is a homopolymer of
β-(1,4)-linked glucose monomers (Cosgrove, 2005; Somerville,
2006) whereas hemicelluloses are branched heteropolymers of
pentose and hexose sugar monomers (Burton et al., 2010;
Ochoa-Villarreal et al., 2012). Pectin, a complex polymer
consists of α-(1–4)-linked D-galacturonic acid backbone, is
another polysaccharide which is mainly present in primary
cell walls. Three classes of pectins, based on the nature of
the sugars on the branches have been known in plants;
homogalacturonans (HG), rhamnogalacturonans-I (RG-I), and
rhamnogalacturonans-II (RG-II; Burton et al., 2010). The
cellulose microfibrils are cross-linked with various matrix
polysaccharides such as hemicelluloses and pectins thereby
forming a complex polymeric network to maintain the cell
wall strength (Cosgrove, 2005; Muthamilarasan et al., 2015).
In addition to cellulose, hemicellulose and pectin, plant
secondary cell walls are enriched with lignin. Lignin is a
complex aromatic heteropolymer synthesized mainly from three
canonical hydroxycinnamyl alcohol monomers viz. p-coumaryl
(H), coniferyl (G), and sinapyl (S) alcohols (Boerjan et al., 2003;

Vanholme et al., 2010; Welker et al., 2015). Lignin is ester- and
ether-linked with cellulose and hemicellulose polysaccharides
in the plant cell walls with the help of ferulic acid (Harris
and Trethewey, 2010). Callose, another β-1,3-linked glucan
polymer, is present in the cell walls of specialized structures
involved in pollen development, cell wall formation during
cytokinesis, and plasmodesmatal canals (Nedukha, 2015). Apart
from developmental deposition, callose is deposited in response
to various external stimuli including biotic and abiotic stresses
(Chen and Kim, 2009; Muthamilarasan et al., 2015).

Cell wall biosynthesis, reassembly, and degradation are
complex processes, which involves cell wall biosynthetic,
modification, and degrading enzymes. Cellulose is synthesized
by plasma membrane localized cellulose synthase complexes
while other matrix polysaccharides such as hemicelluloses and
pectins are synthesized in Golgi complex followed by their
transport and cross-linking/embedding which involves cell wall
biosynthetic, modifying and degrading enzymes. Cell wall
hydrolyzing enzymes produced by bacteria, fungi, and nematodes
(Rai et al., 2015) degrade plant cell walls to gain entry into
the plant cell and access the sugars for their survival while
the cell wall hydrolyzing enzymes produced by plant cells
are primarily involved in controlled cleavage of wall polymers
to facilitate cell growth and elongation (Cosgrove, 2005).
Carbohydrate Active enZymes (CAZy; http://www.CAZy.org/)
database broadly classified cell wall enzymes into 135 families of
Glycoside Hydrolases (GHs), 98 families of Glycosyl Transferases
(GTs), 24 families of Polysaccharide Lyases (PLs), 16 families
of Carbohydrate Esterases (CEs), and 13 families of Auxiliary
Activities (AAs) enzymes based on the presence of protein
catalytic or functional domains (Lombard et al., 2014). Some
other web based databases such as Cell Wall Navigator (Girke
et al., 2004) and Cell Wall Genomics (https://cellwall.genomics.
purdue.edu/families/index.html) further classified these enzymes
into different groups based on biological processes in which they
are involved.

Most of the enzymes involved directly in polysaccharide
biosynthesis belong to the glycosyl transferases. Glycosyl
transferases form glycosidic bonds by catalyzing the transfer of
sugar moieties from donor to accepter molecules (Scheible and
Pauly, 2004). Cellulose microfibrils are synthesized exclusively
by cellulose synthases A (CESA) protein complexes, which
belong to GT2 family of enzymes. Apart from CesA genes,
Cellulose synthase like (Csl) genes are also found in plants which
are involved in hemicellulose and other glucan biosynthesis
(Lerouxel et al., 2006). Among the other hemicellulose
biosynthetic enzymes, xyloglucan α-1,6-xylosyltransferases
(GT34), xyloglucan fucosyltransferases (GT37), xyloglucan
galactosyltransferases (GT47) are involved in synthesis of various
xylan and xyloglucan molecules (Zhong and Ye, 2003; Del Bem
and Vincentz, 2010; Vuttipongchaikij et al., 2012; Zabotina
et al., 2012; Voiniciuc et al., 2015). The pectin biosynthetic
galacturonosyltransferases (GT8) genes such as FRAGILE
FIBER8, IRREGULAR XYLEM8, and IRREGULAR XYLEM9 are
reported to be involved in glucuronoxylan biosynthesis (Lee
et al., 2007; Yin et al., 2010). In addition to the regular cell
wall polymers, callose, a β-1,3-glucan, which is deposited by
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the callose synthase (glucan synthase like; Gsls) belongs to the
GT48 family (Farrokhi et al., 2006; Muthamilarasan et al., 2015).
Integration of new polymers into the cell wall through synergistic
action of biosynthesis and wall loosening process is essential in
order to maintain the integrity during the cell elongation process
(Cosgrove, 2005). This loosening and reassembly is accomplished
by the combined action of various degrading enzymes such as
glycoside hydrolases (Buchanan et al., 2012; Glass et al., 2015;
Wei et al., 2015), pectin lyases (Jiang et al., 2013), xyloglucan
endotransglucosylases/hydrolases (XTH; Rose et al., 2002;
Nishitani and Vissenberg, 2007), and cell wall loosening proteins
such as expansins (Cosgrove, 2015; Marowa et al., 2016), and
yieldins (Okamoto-Nakazato et al., 2001). In sorghum, a total
of 12 CesA and 36/37 Csl genes have been reported in previous
studies (Paterson et al., 2009; Yin et al., 2009). Characterization
of sorghum (1,3; 1,4)-β-glucan biosynthetic gene subfamilies
CslF and CslH showed that CslF6 plays an important role in
elongating cells while CslH3 has a major role in cells that has
stopped growth and started depositing storage compounds
(Ermawar et al., 2015a). In a recent study, genes encoding
cellulose, lignin, and glucuroarabinoxylan biosynthetic enzymes
were dynamically expressed during the different development
stages of sorghum (McKinley et al., 2016). The expansins and
XTHs encoding genes were also shown to be differentially
expressed in the growing stem internodes of sorghum. One of
the glycosyl hydrolases gene families, endo-(1,4)-β-glucanase
(GH9) has been studied across 5 grass genomes and 24 members
were reported from sorghum (Buchanan et al., 2012).

The focus of second-generation biofuel production from
plant biomass is to utilize the sugars from lignocellulosic
material for biofuels, in particular for bioethanol production.
In order to utilize the lignocellulosic biomass for bioethanol
production, the cell wall polysaccharides need to be separated
from lignin, hydrolyzed by polysaccharide degrading enzymes to
produce fermentable sugars, a process called saccharification (Lin
and Tanaka, 2005). The presence of interlinked lignin around
cell wall polysaccharides contributes to biomass recalcitrance
by hindering the enzyme access to polysaccharides (Ermawar
et al., 2015b). Separation of lignin from other cell wall
polysaccharides requires pretreatment with concentrated acids
at high temperatures. In addition, the presence of hydroxyl
groups in the cellulose units allows intra and intermolecular
hydrogen bonding which makes the structure more crystalline.
Either decreasing the lignin content or reducing the cellulose
crystallinity or both will improve saccharification efficiency. A
comparative analysis of lignin biosynthesis related gene families
have been done across plant kingdom including sorghum (Xu
et al., 2009). In sorghum, several mutants (bmr, brown midrib,
and rg, red for green) with reduced lignin content showed increase
in saccharification and digestibility compared to control plants
(Palmer et al., 2008; Xin et al., 2008; Saballos et al., 2009; Yan
et al., 2012; Petti et al., 2013; Sattler et al., 2014). Among these bmr
mutants, several loci have been identified which includes bmr2
encoding 4-coumarate: coenzyme A ligase (4CL), bmr6 encoding
cinnamyl alcohol dehydrogenase (CAD), and bmr12 and bmr18
encoding caffeic acid O-methyltransferase (COMT) enzymes of
monolignol pathways (Saballos et al., 2009; Sattler et al., 2009;

Scully et al., 2016). The sorghum biomass digestibility and
saccharification efficiency can be further improved by targeting
various genes involved in lignin biosynthesis coupled with genes
that alter the cellulose crystallinity. Apart from lignin related gene
families, CesA, Csls, and Gsls are among the most studied cell
wall related gene families in sorghum. As the research on function
of cell wall genes inmodel cropArabidopsis is advancing, it is now
essential to identify and characterize the cell wall related genes in
sorghum to engineer sorghum biomass for food, feed and biofuel
and bioproduct applications.

The present study focuses on mining of publically available
S. bicolor genome for identification and comprehensive analysis
of gene families involved in the biosynthesis of cell wall
biopolymers. In addition, various other gene families involved
in degradation and reassembly of cell walls have also been
analyzed. Further, phylogenetic analysis, physical mapping, and
duplication analysis of identified genes have been performed
in order to get insight into the relation among the genes
and their origin. All the identified genes were also analyzed
for the presence of SSR markers and miRNA target sites for
molecular breeding and biotechnological applications. Publically
available transcriptome datasets from various tissues were
analyzed to study the expression pattern of these genes.
Furthermore, to understand the expression pattern of cell wall
related gene families under abiotic stress condition, differential
expression analysis of exogenous abscisic acid (ABA), and
polyethylene glycol (PEG) treated tissues were also performed.
The identification and analysis of cell wall related gene families in
the present studywould help the research community in planning
effective strategies for more efficient utilization of biomass for
various applications.

MATERIALS AND METHODS

Data Retrieval and Identification of Cell
Wall Related Gene Families
Publically available sequences of gene, protein, and
chromosomes were downloaded from the Phytozome 11
database (https://phytozome.jgi.doe.gov/pz/portal.html#;
Goodstein et al., 2012) for the identification and analysis
of cell wall related gene families in sorghum. Protein
sequences from other plants were downloaded from the
Cell Wall Navigator database (Girke et al., 2004) to build the
family specific HMM profile using HMMER v3.1b1 package
(http://www.ebi.ac.uk/Tools/hmmer/). We first performed the
multiple alignment of downloaded family specific sequences
using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/)
and saved the output alignment as ∗.stockholm files. Using
the family specific ∗.stockholm alignment file as input
for hmmbuild script we built the family specific HMM
profiles (Data Sheet 1). Sorghum proteome was screened to
identify the protein sequences related to various cell wall
related families using HMMER with default parameters.
All the identified proteins were screened for presence of
their characteristic pfam domains. The successful candidate
proteins were further verified for the presence of conserved
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domains using NCBI’s Conserved Domain Database (CDD;
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi;
Marchler-Bauer et al., 2011). Additionally, Arabidopsis cell
wall related proteins were used as query to search the sorghum
genome using blastP with an e-value of 10−5 and further
validated with CDD search. The identified protein sequences
from HMMER analysis were compared to blast identified
proteins to prepare gene family specific non-redundant gene
list. The coding and amino acid sequences of all the identified
members were retrieved from sorghum genome dataset obtained
from Phytozome database and used for the further analysis.
The molecular weight and pI-values of all the identified
proteins were calculated using online tool Compute pI/Mw
(http://web.expasy.org/compute_pi/; Gasteiger et al., 2005).

Phylogeny, Physical Mapping, and
Duplication Analysis of Cell Wall Related
Genes
The protein sequences of individual families were used for
multiple sequence alignment using ClustalW program of MEGA
v6 package (Tamura et al., 2013). Individual phylogenetic tree
was constructed for the individual gene families with the MEGA
v6 using neighbor-joining method. Bootstrap test was performed
with 1000 iterations. To map physical locations of the identified
cell wall related genes on sorghum chromosomes, their genomic
coordinates along with chromosome number were retrieved
from the file (.gff ) downloaded from Phytozome database.
The physical localization of genes was performed using the
Mapchart 2.30 software (Voorrips, 2002). Furthermore, all the
identified genes were analyzed for tandem duplications within
the genome using the Plant Genome Duplication Database
(http://chibba.agtec.uga.edu/duplication/) dataset (Lee et al.,
2012).

Identification of SSR Markers in Cell Wall
Related Genes
Coding sequences of all the cell wall related genes were
used for SSRs identification using microsatellite identification
tool (MISA, http://pgrc.ipk-gatersleben.de/misa/misa.html). The
criteria for SSR search was repeat stretches having a minimum
of five repeat units for dinucleotide (DNRs), trinucleotide
(TNRs), tetranucleotide (TtNRs), pentanucleotide (PNRs), and
hexanucleotide (HNRs). Mononucleotide repeats (MNRs) were
excluded from the analysis. The maximum distance between two
markers in a compound microsatellite was set to 100.

In silico Prediction of miRNA Target Sites
on Cell Wall Related Genes
The identified cell wall related genes from individual families
were analyzed for the presence of miRNA target sites using
psRNATarget server (http://plantgrn.noble.org/psRNATarget/;
Dai and Zhao, 2011). The maximum expectation values of 3.0
with other default parameters were used to perform the analysis.

Expression Analysis of Cell Wall Related
Genes at Various Developmental Stages of
Sorghum
Publically available transcriptome datasets from different
developmental stages of sorghum (stem, 20 days old leaves,
vegetative meristem, floral meristem, spikelet, flowers, embryos,
and seeds) were downloaded from NCBI’s Short Read Archive
(SRA) database (http://www.ncbi.nlm.nih.gov/sra). All the
transcriptome datasets were mapped on cell wall related
genes using the QSeq program of DNASTAR Lasergene package
(http://www.dnastar.com/t-nextgen-qseq.aspx). For themapping
purpose, 520 gene sequences related to cell wall gene families
were exclusively used as reference. Transcript abundance was
visualized by MeV (http://www.tm4.org/mev.html) generated
hierarchical clustered heat map for individual gene families using
the self-normalized RPKM (Reads Per Kilobase per Million
reads) values calculated by the QSeq program.

Differential Gene Expression Analysis
under Various Abiotic Stress Conditions
The role of identified cell wall related sorghum genes in abiotic
stress conditions (exogenous ABA and PEG induced osmotic
stress) in root and shoot was analyzed using publically available
transcriptome datasets (Dugas et al., 2011). In brief, the published
experiments were performed by germinating the S. bicolor
BTx623 seeds and treating the seedlings on the 8th day after
germination with 20 µM ABA (dissolved in NaOH), 57.1 µM
NaOH (control for ABA), 20% PEG-8000, and Milli-Q (control
for PEG treatment). After 27 h of treatment total RNA was
extracted from the shoots and roots in three biological replicates
and sequenced using the Illumina platform. Respective data sets
of stress treated tissues along with controls were downloaded
from SRA database of NCBI (Dugas et al., 2011). The expression
pattern of cell wall genes was analyzed by using QSeq program
of DNASTAR Lasergene package with self-normalized RPKM
method. Fold change was calculated by using RPKM values of
H2O and NaOH treated root and shoot tissues as controls for
PEG and ABA, respectively. All the differentially expressed genes
were analyzed for statistical significance using the Student’s t-test
with multiple-hypothesis testing at less than 0.05. Significantly
differentially expressed genes (fold change ≥2.0, p < 0.05) from
different stress conditions were used to find commonly up or
down regulated genes from root and shoot using the online tool
Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/).

RESULTS

Identification of Cell Wall Related Genes
from Sorghum
Cell wall related gene families have been shown to play crucial
roles in various biological processes related to plant development,
biotic and abiotic stress responses (Hamann, 2012; Lombard
et al., 2014; Le Gall et al., 2015). Lignin biosynthetic gene families
of sorghum have been analyzed elsewhere (Xu et al., 2009), hence,
the present study focused on the gene families involved in various
cell wall related processes such as polysaccharide synthesis and
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reassembly and degradation (Girke et al., 2004). Additionally,
previously unreported laccase genes that are involved in lignin
biosynthesis, were also analyzed in the present study. All 47,205
protein-coding transcripts and proteins from publically available
S. bicolor genome were downloaded and analyzed. HMMER
search identified a total of 520 genes from 20 cell wall related gene
families with an average of 26 genes per family (Table 1, Figure 1,
and Supplementary Table 1). Among the analyzed gene families,
expansin with 83 members was the largest gene family whereas
rhamnogalacturonan I lyases (CAZy ID: PL4) was the smallest
family with 6 members (Table 1 and Figure 1A). According to
the CAZy distribution, the total identified genes were classified
into glycosyl transferases (160), glycoside hydrolases (201),
pectin/pectate lyases (16), carbohydrate esterases (35), auxiliary
activity (25), and expansin (83) families (Table 1).

I. Cell Wall Polysaccharide Biosynthetic Gene

Families of Sorghum
Plant cell wall biosynthesis is a complex process involving
plethora of enzymes resulting in the biosynthesis of vast variety of
cross linked cell wall polysaccharides. Majority of these enzymes
belong to glycosyl transferases superfamily that is involved in the
synthesis of cellulose, hemicellulose, pectin and callose.

Cellulose biosynthetic genes
Genome-wide analysis of sorghum showed presence of 11 CesA
genes. In contrast to the 12 CesA genes reported in the previous
studies (Paterson et al., 2009; Yin et al., 2009), the present
study identified only 11 SbCesA genes using conserved domain
profiles based HMMER scanning of sorghum genome (Table 1
and Figure 1B). Further investigation showed, according to the
updated sorghum genome (v3.1, phytozome), the previously
predicted two CesA genes (Sb03g004310.1 and Sb03g004320.1)
are indeed a single gene (Sobic.003G049600.2). In addition,
domain analysis of these 11 CESA proteins showed the presence
of canonical cellulose synthase (CS, PF03552), zinc-binding
RING-finger (PF14569), and glycosyl transferase 2 (PF13632)
domains (Figure 1B). Majority of the CESAs (9/11) showed
presence of all canonical domains, while Sobic.003G296400.1
showed lack of ZF domain and Sobic.010G183700.1 showed lack
of ZF and GT2 domains. Eukaryotic CesA genes were first cloned
from cotton (Pear et al., 1996) and have been later reported
from Arabidopsis (10), maize (12), poplar (18), and 14 in foxtail
millet (Richmond and Somerville, 2000; Appenzeller et al., 2004;
Djerbi et al., 2005; Muthamilarasan et al., 2015). Cluster analysis
of CESA proteins found to be clustered with CSLD and CSLF
proteins (Figure 2) consistent with earlier reports (Ermawar

TABLE 1 | Details of identified cell wall related gene families in Sorghum bicolor.

Substrates Gene families Abbre CAZy ID No. of genes

POLYSACCHARIDE SYNTHESIS

Cellulose Cellulose synthases CESA GT2 11

Hemicellulose Cellulose synthase-like CSL GT2 36

Xyloglucan xylosyltransferases and galactomannan gal-transferases XXT GT34 12

Xyloglucan fucosyltransferases (MUR2) XFT GT37 19

Xyloglucan galactosyltransferases (MUR3) XGT GT47 37

Pectin Homogalacturonan α-1,4-galacturonosyltransferases GAUT GT8 33

Lignin Laccases LAC AA1 25

Callose Glucan synthase-like (Callose synthases) GSL GT48 12

REASSEMBLY AND DEGRADATION

Cell wall loosening Expansins EXP 83

Yieldins GH18 24

Xyloglucan endotransglucosylases/hydrolases XTH GH16 35

Glycoside hydrolases Endo-1,4-β-glucanases GH9 26

Endo-xylanases GH10 11

Glucan 1,3-β-glucosidases GH17 54

Polygalacturonases PGases GH28 38

β-Galactosidases BGAL GH35 13

Pectin modifying Pectate and pectin lyases PL1 10

Rhamnogalacturonan I lyases PL4 6

Pectin methyl esterases PME CE8 23

Pectin acetyl esterases PAE CE13 12

Total 20 520
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FIGURE 1 | Cell wall related gene families in sorghum. (A) Distribution of identified cell wall related genes among various gene families. (B) Family specific pfam

domains used to identify cell wall related genes using HMMER.

et al., 2015a). The clustering is due the presence of common
conserved domains among cellulose synthase and cellulose
synthase like family of proteins. Chromosomal distribution of
CesA genes showed presence of 4 and 3 genes on chromosome
2 and 1, respectively while remaining four are present on
chromosome 3 (2 genes), 9 (1 gene), and 10 (1 gene; Figure 4A).

Hemicellulose biosynthetic genes
Sorghum genome showed presence of four hemicellulose
biosynthetic enzyme families i.e., cellulose synthase like (Csl;
GT2), xyloglucan xylosyltransferases (XXT; GT34), xyloglucan
fucosyltransferases (MUR2, XFT; GT37), and xyloglucan
galactosyltransferases (MUR3, XGT; GT47). A total of 104
genes representing, Csl (36), XXT (12), MUR2 (19), and
MUR3 (37) gene families were identified (Table 1, Figure 1A,
and Supplementary Table 1). Further, domain analysis of
these genes revealed the presence of CS (PF03552) domain in
CSL, presence of GT34 (PF05637) domain in XXT, presence
of XG_Ftase (PF03254) domain in MUR2, and exostosin
(PF03016) domain in MUR3 family proteins (Figure 1B).
Phylogenetic analysis of CSL proteins with Arabidopsis CSLs
clustered them into 6 different sub-families namely, CSLA
with 8, CSLC, CSLD, and CSLE with 5 each, CSLF with 10
and CSLH with 3 members (Figure 2). Phylogenetic analysis
of other hemicellulose related gene families XXT (GT34) and
XFT (GT37) showed their uniform clustering with Arabidopsis

homologs (Figures 3A,B). Phylogenetic analysis of sorghum
XGT (GT47) members with Arabidopsis homologs further
clustered them into 5 subfamilies, A, B, C, D, and E with 13,
7, 3, 4, and 10 members, respectively (Figure 3F). Physical
mapping of Csl family genes showed its distribution over all
chromosomes except Chr. 5 (Figure 4A). Majority of the Csl
genes, almost one-third (13), were found to be present exclusively
on Chr. 2. Physical mapping of GT34 family members showed
their distribution over six chromosomes (Chr. 1, 2, 3, 4, 5,
and 8) whereas GT37 members were found to be present on
five chromosomes (Chr. 2, 4, 6, 8, and 10) with maximum
of 8 genes on Chr. 4 (Figure 4A). Another hemicellulose
specific family, GT47 members were found to be distributed
on all the chromosomes except on Chr. 5. About one-third
(12) of GT47 family members were found present on Chr. 1
(Figure 4A).

Pectin biosynthetic genes
A total of 33 genes were identified as members of
homogalacturonan α-1,4-galacturonosyltransferases (GAUT),
a GT8 family involved in pectin biosynthesis. Presence of
glycosyl_transferase_8 domain (PF01501) in pfam analysis
confirms the annotation of these genes as GT8 members
(Figure 1B). Sorghum GAUT members were further clustered
into 5 sub-families (A–E) based on phylogenetic analysis with
Arabidopsis homologs (Figure 3D). Among sub-families, D

Frontiers in Plant Science | www.frontiersin.org 6 August 2016 | Volume 7 | Article 1287

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Rai et al. Sorghum Cell Wall Gene Families

A
t5

g
6
4
7
4
0
 C

e
s
A

6

A
t5

g
0
9

8
7

0
 C

e
s
A

5

9
9

A
t2

g
2
1

7
7

0
 C

e
s
A

9
A

t4
g
3
9

3
5

0
 C

e
s
A

2

9
7

1
0

0

S
o
b
ic

.0
0
2
G

0
9
4
6
0
0
.1

S
o
b
ic

.0
0
1
G

0
2
1
5
0
0
.1

S
o
b
ic

.0
0
2
G

1
1
8
7
0
0
.2

1
0
0

1
0
0

9
5

A
t2

g
2
5
5
4
0
 C

e
sA

1
0

A
t4

g
32

41
0 

C
e
sA

1

9
9

S
ob

ic
.0

03
G

04
96

00
.2

S
ob

ic
.0

09
G

06
34

00
.1

10
0

10
0

A
t5

g1
74

20
 C

es
A
7

Sob
ic
.0

02
G

205
50

0.
1

10
0

At5
g05170 C

esA
3

Sobic.
001G045700.1

Sobic.002G075500.1

99
10062 At4g18780 CesA8

Sobic.003G296400.1

99

At5g44030 CesA4

Sobic.001G224300.1

99
73

100

Sobic.010G183700.1
89

Sobic.010G008600.1

AT3G03050 CslD3
68

Sobic.001G283400.1

99

Sobic.008G125700.1
AT1G02730 CslD5

100

53

Sobic.007G100800.1
AT4G38190 CslD4

68

Sobic.010G146000.1

AT2G33100 CslD1

61

50

54

AT1G32180 CslD6

100

59

Sobic.001G242000.1

Sobic.007G
050600.1

Sobic.002G
333900.1

S
obic.002G

334300.1

99

S
obic.002G

171200.3

S
obic.002G

334500.1

100
S

o
bic.0

02
G

3
34

4
0
0.1

93
S

o
b
ic.0

0
2
G

3
3
4
0
0
0
.1

S
o
b
ic.0

0
2
G

3
3
4
1
0
0
.1

S
o
b
ic

.0
0
2
G

3
3
4
2
0
0
.1

1
0
0

1
0
0

1
0
0

100

97

96

100

S
o
b
ic

.0
0
6
G

0
8
0
6
0
0
.2

S
o
b
ic

.0
0
6

G
0
8
0

7
0

0
.1

S
o

b
ic

.0
0
6

G
0

8
0

8
0

0
.1

1
0
0

A
T

4
G

1
5

2
9

0
 C

s
lB

5

A
T

4
G

1
5
3
2
0
 C

s
lB

6

1
0

0

A
T

2
G

3
2

5
3

0
 C

s
lB

1
A

T
2

G
3
2

5
4

0
 C

s
lB

2

1
0

0

A
T

2
G

3
2

6
1

0
 C

s
lB

3
A

T
2
G

3
2
6
2
0
 C

s
lB

4

5
7

9
6

1
0

0

9
4

A
T

4
G

2
4
0
0
0
 C

sl
G

2

A
T

4
G

2
4
0
1
0
 C

sl
G

3

8
6

A
T
4
G

2
3
9
9
0
 C

sl
G

1

1
0
0

A
T
1
G

55
85

0 
C

sl
E

1

S
ob

ic
.0

04
G

25
52

00
.1

S
ob

ic
.0

02
G

23
79

00
.1

S
ob

ic
.0

02
G

23
83

00
.1

99

86

10
0

Sobi
c.

003
G

442
50

0.
1

72

Sobic.
004G

255500.1

Sobic.
003G308100.1

Sobic.009G194200.1
99

AT4G07960 CslC12

Sobic.001G075600.1
Sobic.002G022700.1

61

99AT3G07330 CslC6 58Sobic.007G090600.1
AT3G28180 CslC4

AT2G24630 CslC8

AT4G31590 CslC5 1 0 0

68

85

100

Sobic.004G238700.1

Sobic.001G252700.2

Sobic.001G490000.1

100

Sobic.002G385800.1

87

AT5G03760 CslA9

AT5G22740 CslA2

60

Sobic.004G075900.1

Sobic.010G197300.1

54

100

Sobic.002G
139900.1

Sobic.007G
137400.1

A
T2G

35650 C
slA

7

A
T
1G

23480 C
slA

3

A
T
3G

56000 C
slA

14

91

A
T
4
G

16
59

0 C
slA

1

A
T
1
G

2
4
0
7
0
 C

slA
1
0

A
T

4
G

1
3
4
1
0
 C

slA
1
5

A
T

5
G

1
6
1
9
0
 C

s
lA

1
1

5
8

9
9

9
9

86
64

100

100

100

FIGURE 2 | Unrooted phylogenetic tree representing Cellulase synthase (CesA) and Cellulase synthase-like (Csl) gene family from S. bicolor and

A. thaliana using MEGA6. Tree was constructed using Neighbor Joining method with 1000 times bootstrap value. Same colored blocks and text represents the

genes from similar gene-subfamilies.

was the largest one with 19 members followed by C (6), A
(5), B (2), and smallest sub-family E with a single member
(Figure 3D). GT8 members were found to be distributed on all
the chromosomes with 8 members exclusively present on Chr. 1
(Figure 4A).

Lignin biosynthetic genes
Sorghum lignin biosynthetic genes were analyzed along with
other species (Xu et al., 2009) except laccase family. Here,
we analyzed the laccase gene family that is involved in
lignin biosynthesis. Laccases are among the CAZy AA1 class

of enzyme which play important role particularly in lignin
metabolism. A total of 25 sorghum genes were identified as
laccase family genes based on the presence of three copper
containing conserved domains namely Cu_oxidase (PF00394),
Cu_oxidase2 (PF07731), and Cu_oxidase_3 (PF07732) (Table 1
and Figure 1B). Phylogenetic analysis of laccase proteins showed
alignment of some of them with Arabidopsis proteins whereas
some of sorghum laccase proteins clustered in distinct clusters
(Figure 3E). Physical mapping of laccase genes showed their
presence on all the chromosomes except Chr. 2, 6, and 7 with
a maximum of 9 genes on Chr. 3 (Figure 4A).
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FIGURE 3 | Unrooted phylogenetic tree representing other cell wall related biosynthetic gene families. (A) Xyloglucan xylosyltransferases; GT34 (B)
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Other cell wall biosynthetic genes
Glucan synthase-like (Gsl) gene family, a GT48 enzyme involved
in biosynthesis of specialized polysaccharide callose, were
found to have 12 members in sorghum genome based on
the glucan_synthase (PF02364) conserved domain (Figure 1B).
Phylogenetic analysis of SbGSL proteins showed their uniform
distribution with Arabidopsis and rice homologs (Figure 3C).
Physical mapping of these genes showed their distribution
limited to Chr. 1, 3, 4, and 10 with maximum 4 genes on Chr.
3 (Figure 4A).

II. Gene Families Involved in Cell Wall Reassembly

and Degradation
Apart from cell wall biosynthetic enzymes, gene families
involved in dynamic and complex cell wall extension and
reassembly processes such as controlled degradation, loosening,
and reassembly of cell wall polymers were also analyzed in the
present study. A total of 335 genes were identified from 12 gene
families that are involved in cell wall modifications.

Cell wall loosening gene families
A total of 83 and 24 genes were identified as members of
expansins and yieldins gene families which are primarily involved

in cell wall loosening (Table 1). The identification was based
on the presence of conserved domains DPBB_1 (PF03330) and
pollen_allerg_1 (PF01357) observed in the pfam domain analysis
(Figure 1B). Phylogenetic analysis of these proteins classified
them into two major clusters, Expansin-A with 40 proteins and
Expansin-B with 43 proteins (Supplementary Figure 1A). Further
physical mapping and distribution analysis of these genes showed
their presence on all the chromosomes except Chr. 5 and 8
(Figure 4B). Chromosome 1 was observed to have a maximum
number of 34 expansins genes. Pfam domain profiling of another
cell wall loosening protein family yieldins (GT18) showed
presence of glyco_hydro_18 (PF00704) conserved domain
(Figure 1B). Phylogenetic analysis of sorghum yieldins showed
more similarity with rice yieldins proteins than Arabidopsis
proteins indicating conservation of yieldins among monocots
(Supplementary Figure 1B). Further, yieldins were found
distributed on six sorghum chromosomes namely Chr. 1, 2, 3,
5, 6, and 7 with maximum of 8 genes on Chr. 5 (Figure 4B).
Xyloglucan endotransglucosylases/hydrolases (XTH), another
important cell wall loosening proteins, have dual role of
hydrolyzing and extension of existing cell wall. A total of 35
sorghum genes were identified as XTH family members based on
the observed conserved domains glyco_hydro_16 (PF00722) and
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FIGURE 4 | Map showing the chromosomal location of cell wall related genes in sorghum. (A) Cell wall biosynthetic genes. (B) Cell wall modifying genes.

Genes with name in same color represents same gene family. A scale in the left represents length of chromosome in megabases (Mb).

XET_C-term (PF06955) (Table 1 and Figure 1B). Phylogenetic
analysis of XTH proteins classified them in 3 sub-families, sub-
family A with 6 genes, B with 19 genes, and C with 10 genes
(Supplementary Figure 1C). Physical mapping of these genes
showed their distribution over six chromosomes (Chr. 1, 2, 4, 6,
7, and 10) with maximum of 7 genes were found to be present on
Chr. 10 (Figure 4B).

Glycoside hydrolases
Among the identified cell wall modifying genes families in
sorghum, there are 7 GH gene families (GH9, GH10, GH16,
GH17, GH18, GH28, and GH35) with 201 genes (Table 1). Out
of the identified 7 families, GH16 and GH18 have also been
classified as cell wall loosening proteins. Among the GH families,
GH17 (Glucan 1, 3-β-glucosidases) was the largest with 54 genes
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followed by GH28 (polygalacturonases) with 38 genes, GH9
(endo-1, 4-β-glucanases) with 26 genes, GH35 (β-galactosidases)
with 13 genes, and GH10 (endo-xylanases) with 11 genes
(Table 1). Further, Pfam domain analysis showed the presence of
conserved Glyco_hydro_9 (PF00759) in GH9, Glyco_hydro_10
(PF00331) and CBM_4_9 in GH10, Glyco_hydro_17 (PF00332)
and X8 domain (PF07983) in GH17, Glyco_hydro_28 (PF00295)
and pectate_lyase_3 (PF12708) in GH28 and Glyco_hydro_35
(PF01301) domains in GH35 (Figure 1B). Phylogenetic analysis
of these gene families showed further classification of GH17
and GH28 into 5 and 7 sub-families, respectively whereas GH9,
GH10, and GH35 showed clustering with Arabidopsis proteins
without any sub-classification (Supplementary Figures 1D–G).
GH17 has been further clustered into sub-families A with 13
genes, B with 13 genes, C with 16 genes, D with 9 genes, and
sub-family E with 3 genes (Supplementary Figure 1F). GH28
has also been showed sub-clustering into 7 sub-families namely,
A with 12 genes, C with 6 genes, D with 7 genes, E with 4
genes, F with 5 genes, and G with 2 genes (Supplementary Figure
1G) however, no sorghum proteins were found in sub-family
B. Physical distribution of these genes on the sorghum genome
showed the presence of GH9 genes on all chromosomes except
Chr. 5 and 8, GH10 genes on five chromosomes (Chr. 1, 2, 3,
4, and 6), GH17 genes on all the chromosomes, GH28 genes on
all the chromosomes except Chr. 8 and GH35 genes on all the
chromosomes except Chr. 5 and 6 (Figure 4B).

Pectin modifying enzymes
Among the identified cell wall related genes, 51 genes were
classified as members of 4 gene families (2 pectin lyases and
2 pectin esterases) involved in pectin modification. Two pectin
related lyases (PLs) namely pectate and pectin lyases (PL1) and
rhamnogalacturonan I lyases (PL4) were found to have 10 and
6 genes respectively (Table 1). Conserved domain analysis of
these proteins revealed the presence of Pec_lyase_C (PF00544)
and Rhamno_gal_lyase (PF06045) domains in the PL1 and PL4,
respectively (Figure 1B). An additional Pec_lyase_N (PF04431)
domain was found in PL1 family while CBM_like (PF14683)
and Fn3_3 (PF14686) domains were seen in PL4 family
members. Phylogenetic analysis of PL1 family members along
with Arabidopsis and rice homologs showed further clustering
into three sub-families. PL1 sub family B was the largest one
with 8 genes whereas sub family A and C was found to have
one gene each (Supplementary Figure 1I). Phylogenetic analysis
of PL4 genes showed more similarity to rice PL4 genes rather
than Arabidopsis (Supplementary Figure 1J). Chromosomal
distribution of these genes showed the presence of PL1 genes over
six chromosomes (Chr. 1, 3, 4, 6, 8, and 10) whereas PL4 genes
localization was limited to 4 chromosomes (Chr. 5, 7, 8, and 9)
(Figure 4B).

Pectin esterases are another class of enzymes, which are
involved in the cell wall reassembly. A total of 23 genes
were identified as PME (CE8) homologs based on conserved
pectin esterase (PF01095) domain whereas 12 genes were
identified as PAE (CE13) family members based on pectin acetyl
esterase domain (PF03283), respectively (Table 1 and Figure 1B).
Phylogenetic analysis of PME protein from sorghum showed

their even distribution with Arabidopsis PME proteins whereas
sorghum PAE proteins showed more similarity to rice PAEs
compared to Arabidopsis PAE’s as expected (Supplementary
Figures 1K,L). PME genes were distributed on all the 10 sorghum
chromosomes with amaximum of 5 genes on Chr. 3 whereas PAE
family members were limited to 6 chromosomes (Chr. 1, 2, 3, 4,
6, and 9) with a maximum of 7 genes on Chr. 3 (Figure 4B).

Chromosomal Localization and Duplication
Analysis
Chromosomal localization of identified cell wall related genes
were performed on the 10 sorghum chromosomes using
Mapchart 2.30 mapping software (Figures 4A,B). Approximately
65% (336) of cell wall related genes were present on 4
chromosomes namely, chromosome 1 with 22.3% (116),
chromosome 3 with ∼16% (83), chromosome 2 with 13.2%
(69), and chromosome 4 with 13.1% (68). Remaining genes
were found to be distributed on remaining six chromosomes
with a minimum of 15 genes on chromosome 8 (Figure 4).
Further, all the cell wall related families were analyzed for
tandem duplication within the respective gene families to study
their expansion. Out of 20 gene families analyzed, 56 tandem
duplication events involving 169 genes were observed in 17
families (Figures 4A,B). No tandemly duplicated genes were
observed in CesA, glucan synthase, and β-galactosidase gene
families. Expansins gene family was observed to have highest
number of tandem duplication events (14) involving 51 genes.
Among other gene families, MUR3 (5 events/15 genes), XTH (5
events/13 genes), MUR2 (4 events/15 genes), GH28 (4 events/9
genes), yieldins (4 events/14 genes), laccases (4 events/10 genes),
GH17 (3 events/10 genes), PAE (2 events/5 genes), and XXT with
3 events involving 6 genes were observed with significant number
of duplications. Apart from this, Csl gene family was also found to
have 2 duplication events involving 9 genes. Chromosome 1 was
found to have a maximum number (14) of tandem duplications
of the cell wall gene families, followed by chromosome 3 (9
duplications), 4 (8 duplications), and 2 with 6 duplications.
Only one tandem duplication event among cell wall genes was
observed on chromosome 8.

Cell Wall Related Genes with SSR Markers
in Sorghum
Microsatellites or SSR markers are short tandem DNA repeats
which belongs to comparatively most efficient class of molecular
markers with its genome wide distribution and high level of
polymorphism. Expressed or coding sequence derived SSRs
(ESSRs) have been reported to be comparatively more conserved
than the genomic derived SSRs (Guo et al., 2006) which makes
ESSRs as an important tool for marker assisted selection for
various plant breeding programs. Considering the importance
of cell wall related genes in developing sorghum mutants for
biofuel applications, we analyzed all of the identified cell wall
related genes for the presence of SSR markers. Out of 520
genes, 112 genes were identified with 137 SSRs (125 Simple and
6 compounds; Figure 5A, Supplementary Tables 2, 3). Among
the identified SSRs, tri-nucleotide repeats (TNRs) were most
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FIGURE 5 | Details of identified SSR markers (137) in 520 cell wall related genes of sorghum. (A) Marker distribution based on number and type of repeat

motifs. (B) Gene family wise distribution of identified SSRs markers.

abundant with 111 occurrences followed by 24 DNRs. The
identified SSRs were found to be present in all the 20 families
analyzed with highest representation in Csl (16) and xyloglucan
galactosyltransferases (16) gene families (Figure 5B).

Cell Wall Related Genes with Putative
miRNA Target Sites in Sorghum
MicroRNAs (miRNAs) are small and conserved non-coding
RNAmolecules which are known to regulate the gene expression
at transcriptional and post-transcriptional levels. To understand
the potential roles of miRNAs in regulating the cell wall
related gene expression, all the 520 cell wall genes from various
families were analyzed for the presence of miRNA target sites.
A total of 10 genes were identified to have miRNA target
sites out of which 6 belong to laccase (Sobic.001G422300.1,

Sobic.003G352700.1, Sobic.003G352800.1, Sobic.003G353200.1,
Sobic.005G198500.1, and Sobic.009G162800.1), 2 belong to
Gsl (GT48) (Sobic.003G298900.1 and Sobic.004G107800.1)
and one each to CesA (Sobic.003G049600.2) and Csl
(Sobic.008G125700.1) (Supplementary Table 4). Six different
miRNA families (miR156, miR164, miR397, miR528, miR5566,
and miR6230) were identified to target these cell wall related
genes.

Expression Profile of Cell Wall Related
Genes in Different Organs of Sorghum
Plant
The availability of whole transcriptome data online presented
an excellent opportunity to identify candidate genes that play
key roles in specific organs during sorghum development. The
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information on candidate genes can be further used to engineer
cell walls in a cell/tissue specific manner to meet various
industrial needs particularly in biofuel/feed industry. Publically
available whole transcriptome datasets (Supplementary Table
5) were used to analyze spatial expression of the cell wall
related genes in 8 different organs (leaves, embryo, seed, stem,
spike, flower, vegetative as well as floral meristem) using RPKM
values. The relative expression data was represented family wise
using individual heat maps in order to better analyze the role
of genes from each family (Figures 6, 7, Supplementary Table
6). In case of CesA genes, 7 out of 11 genes were observed
to have high expression in all analyzed organs, whereas, 3
genes were highly expressed in stem, flowers and spikes with
moderate expression in leaves, seeds, and vegetative meristem
(VM; Figure 6A). One CesA gene (Sobic.010G183700) found
to be expressed exclusively in leaves. A mixed pattern of
expression was observed in Csl gene family with 11 genes
showing high expression and 3 genes with very low expression
in all the 8 tissues analyzed (Figure 6B). Among hemicellulose

biosynthetic genes, 12 xyloglucan xylosyltransferases genes were
clustered in two main clusters, first with 5 genes having
medium to high expression in all the 8 tissues, whereas
second cluster of 7 genes with tissue specific expression
mainly in leaves (Figure 6C). Xyloglucan fucosyltransferases
gene family members, other than 3 genes (Sobic.004G308200,
Sobic.004G308400, Sobic.004G308600) that showed higher
expression in all the 8 tissues, expression of remaining genes was
mostly limited to leaves (Figure 6D). Half (19) of the xyloglucan
galactosyltransferases gene family, showed a higher expression
level in all the tissues, whereas the other half (18) showed
moderate to low expression in various tissues (Figure 6E). In
homogalacturonan α-1,4-galacturonosyltransferase gene family,
25 out of 33 genes showed high expression in all the tissues
whereas remaining 8 genes showed tissue specific expression
(Figure 6F). Lignin biosynthetic related laccase genes showed
high expression in selective tissues like leaves, seeds, stem flower,
and spikes (Figure 6G). Other than few laccase genes, most of the
laccases were not expressed in embryo and meristematic tissues.

D Xyloglucan fucosyltransferases  

E Xyloglucan galactosyltransferases  

A CesA 

B Csl 

C Xyloglucan xylosyltransferases  

F Homogalacturonan -1,4-

galacturonosyltransferase 

H Glucan synthase-like  

G  Laccases 

FIGURE 6 | Heat map showing hierarchical clustering of the sorghum’s cell wall related biosynthetic gene families in various developmental stages.

(A) CesA, (B) Csl, (C) Xyloglucan xylosyltransferases, (D) Xyloglucan fucosyltransferases, (E) Xyloglucan galactosyltransferases, (F) Homogalacturonan

α-1,4-galacturonosyltransferase, (G) Laccases, (H) Glucan synthase-like. RNA-seq data from various developmental stages viz. stem (St), 20 days old leaves (Lv),

vegetative meristem (VM), floral meristem (FM), spikelet (Sp), flowers (FL), embryos (Em), and seeds (Sd) were mapped on gene sequences related to above gene

families. The respective RPKM values were used to construct heatmap with scale bar on the top showing expression of the genes. Red colors represent high

expression whereas green represents low expression.
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All the 12 genes of glucan synthase gene family showed high
expression across all the tissue analyzed (Figure 6H).

Apart from polysaccharide biosynthetic gene families, the
spatial expression of 12 gene families involved in degradation and
reassembly was also analyzed. Among expansin genes, 16 genes
from 2 clusters were observed with medium to high expression
in all the tissues (Figure 7A). Remaining expansin genes mostly
showed expression in flower, spike, leaves, seeds, and/or stem.
Yieldins were observed to express consistently in leaves, whereas
some of them showed high expression in all the other tissues
(Figure 7B). Most of the XTH gene family showed moderate to
high expression in almost all the tissues analyzed other than a
cluster with no expression in embryo and meristematic tissues
(Figure 7C). The five GH family genes (endo-xylanases, endo-
1, 4-β-glucanases, glucan 1, 3-β-glucosidases, polygalacturonases
and β-galactosidases) were highly expressed in leaves, stem, seed,
flowers, and spikes apart from the clusters with high expression
in all tissues (Figures 7D,E,G,H,J, respectively). Other than β-
galactosidases, a significant proportion of genes from these
families were not expressed in the embryo and meristematic

tissues. Among the 10 genes encoding pectate lyases, 3 showed
expression in all the tissues whereas expression of remaining
genes were limited to flower, spike, and seeds (Figure 7F).
In the other pectin related rhamnogalacturonan I lyases gene
family, only one gene showed consistent expression in all the
tissues whereas remaining genes showed leaf specific expression
(Figure 7I). Among the two families of esterases, gene encoding
PMEs were majorly clustered into two clusters based on
expression, first with moderate to high expression in almost
all the tissues analyzed whereas second cluster with expression
limited to tissues other than embryo and meristem (Figure 7K).
All the PAE family genes showed medium to high expression in
almost all the tissues analyzed (Figure 7L).

Differential Expression Analysis of Cell
Wall Related Genes under Different Abiotic
Stress Conditions
Differential expression analysis of cell wall related genes under
two abiotic stress treatments (ABA and osmotic stress) was

A  Expansins 

B Yieldins 

C  XTH 

D  Endo-xylanases 

E   Endo-1,4- -glucanases 

G   Glucan 1,3- -glucosidases 

H Polygalacturonases 

J -Galactosidases 

F  Pectate and pectin lyases 

K  Pectin methyl esterases 

L  Pectin acetyl esterases 

I Rhamnogalacturonan I lyases 

FIGURE 7 | Heat map showing hierarchical clustering of the sorghum’s cell wall related gene families involved in reassembly and degradation in

various developmental stages. (A) Expansins, (B) Yieldins, (C) XTH, (D) Endo-xylanases, (E) Endo-1, 4-β-glucanases, (F) Pectate and pectin lyases, (G) Glucan 1,

3-β-glucosidases, (H) Polygalacturonases, (I) Rhamnogalacturonan I lyases, (J) β-Galactosidases, (K) Pectin methyl esterases, (L) Pectin acetyl esterases. RNA-seq

data from various developmental stages viz. stem (St), 20 days old leaves (Lv), vegetative meristem (VM), floral meristem (FM), spikelet (Sp), flowers (FL), embryos

(Em), and seeds (Sd) were mapped on gene sequences related to above gene families. The respective RPKM values were used to construct heatmap with scale bar

on the top showing expression of the genes. Red colors represent high expression whereas green represents low expression.
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performed to analyze their response in seedling root and shoots.
A total of 19 and 29 genes were found to be significantly
up-regulated (FC ≥ 2.0 and p < 0.05) in the sorghum shoots
whereas 34 and 67 genes were found significantly up-regulated
in the roots subjected to ABA and PEG treatment, respectively
(Figures 8A,B, Supplementary Table 7, Supplementary Figures
2A,C, 3A,C). Similarly, 53 and 25 genes were significantly
down-regulated in shoot whereas 133 and 14 genes were found
down-regulated in root treated with ABA and PEG, respectively
(Figures 8A,C, Supplementary Table 7, Supplementary Figures
2B,D, 3B,D). Relatively higher number of genes was down-
regulated in the ABA treated shoot and root than PEG treatment.
Comparative analysis of differentially expressed genes in root and
shoot subjected to ABA and PEG treatment showed common up-
regulation of 1 gene (Figure 8B) whereas no gene was found to be
down-regulated in common (Figure 8C).

The ABA treated shoots showed up-regulation of
polygalacturonases (4) whereas down-regulation of expansins
(12), laccases (9), glucan 1,3-β-glucosidases (8), and
polygalacturonases (5) (Supplementary Figures 2A,B). The ABA
treated roots showed up-regulation of glucan 1,3-β-glucosidases
(5), homogalacturonan α-1,4-galacturonosyltransferases (4),
laccases (3), and xyloglucan galactosyltransferases (3) whereas
down-regulation of expansins (38), glucan 1,3-β-glucosidases
(18), laccases (11), Csls (11), and XTHs (9) (Supplementary
Figures 3A,B). Large number of expansins showed down-
regulation in ABA treated shoots as well as roots. Glucan
1,3-β-glucosidases was the second most down-regulated family
in ABA treated shoot as well as root. Similarly, most of the
up-regulated genes in PEG treated roots mainly belong to
expansins (21), XTHs (10), and glucan 1,3-β-glucosidases (6)
families whereas in PEG treated roots the down-regulated genes
mainly belong to yieldins (3) and Csls (3) (Supplementary
Figures 3C,D). The major up-regulated cell wall related gene

families in PEG-treated shoots were expansins (6), glucan 1,
3-β-glucosidases (4), and XTHs (4). Similar to PEG-treated
roots, yieldins were the most down-regulated gene family in PEG
treated shoots (Supplementary Figures 2C,D).

DISCUSSION

Cell wall biogenesis is a dynamic process that involves synergistic
action of multiple gene families that are involved in the
biosynthesis as well as controlled degradation and reassembly of
cell wall polymers. Broadly, glycosyl transferases are the major
class of enzymes involved in cell wall polysaccharide biosynthesis
while substrate specific glycoside hydrolases, pectin related
lyases, various esterases together with cell wall loosening enzymes
are responsible for cell wall extension. Among these families,
cellulose synthase and cellulose synthase like genes are among
the most studied in model, tree, and crop plants (Richmond
and Somerville, 2000; Appenzeller et al., 2004; Djerbi et al.,
2005; Muthamilarasan et al., 2015). Successful production of
renewable biofuels and bioproducts from lignocellulose requires
a comprehensive understanding on the genes involved in the
biosynthesis of plant lignocellulosic material. A comprehensive
report on cell wall related genes was missing in sorghum,
which is an important food, fiber, bioproduct, and biofuel
crop. Understanding the presence and distribution of cell wall
related genes in sorghum would augment the plant breeding
and biotechnological approaches to develop sorghum plants with
altered cell wall composition for various industrial applications
apart from crop improvement. In the present study, 520 genes
from 20 cell wall related gene families have been identified
and characterized in silico. Gene expression analysis of the
identified genes was performed in different organs under normal
and abiotic stress treated conditions to understand their role

B  Up-regulated genes C  Down-regulated genes A  Differentially expressed genes 

Genes Shoot Root 

ABA PEG ABA PEG 

Up-regulated  
 (Total) 175 291 151 313 

Up-regulated  
(FC 2) 46 98 47 111 

Up-regulated  
(FC 2, p-value<0.05) 19 29 34 67 

Down-regulated  
(Total) 281 152 333 172 

Down-regulated 
(FC 2) 98 28 206 22 

Down-regulated  
(FC 2, p-value<0.05) 53 25 133  14 

FIGURE 8 | Differential expression analysis (DEG) of sorghum cell wall related genes in ABA and PEG treated shoot and root. (A) Details of differentially

expressed genes (Fold change ≥ 2.0 and p < 0.05) during stress. (B) Venn diagram representing up-regulated genes during stress. (C) Venn diagram representing

down-regulated genes during stress.
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in cell wall development and abiotic stress of sorghum. These
candidate genes can be putative targets of reverse genetics for
crop improvement apart from value addition to sorghum.

Lignocellulosic material deconstruction is important for
bioethanol production from plant biomass. Current technology
of bioethanol production involves separation of lignin from
the lignocellulosic material, saccharification of sugars from
wall polysaccharides and fermentation. Lignocellulosic based
bioethanol production is technically and economically not
competitive compared to fossil based gasoline with the existing
conversion technologies. Further, the cost of bioethanol from
plant biomass is higher ($1.5/gal) than starch based ($0.9/gal)
bioethanol (http://www.nrel.gov/docs/fy01osti/28893.pdf).
Improving the efficiency of the lignocellulosic biomass
deconstruction, particularly separation of lignin from other
wall polymers is essential to make bioethanol production
economically feasible. Altering the biomass composition is
essential to reduce biomass recalcitrance and improve the
conversion technologies. Understanding the composition
of lignocellulosic biomass and the genes involved in the
lignocellulosic biomass facilitates the biomass engineering to
improve the conversion efficiency.

Lignocellulosic material is mainly composed of cellulose,
hemicellulose, lignin, and pectin. Cellulose is a linear
homopolymer of β-1–4 linked glucose molecules occupying
30–40% of cell wall weight. CesA genes were first identified in
bacteria and later in cotton followed by other plants (Saxena
et al., 1990; Pear et al., 1996). The cellulose is synthesized by
plasma membrane localized cellulose synthase complexes (CSCs)
composed of multiple CESA proteins that produce individual
glucan chains (Persson et al., 2007; Kumar and Turner, 2015).
The individual glucan chains form a cellulose microfibrils and
several microfibrils form a cellulose fiber hence the number of
cellulose synthases present in individual species is important
to understand the cellulose biosynthetic process. Moreover,
cellulose synthases serve specific roles in plant development as
they have cell, tissue, and developmental specific roles (Taylor
et al., 2000; Mendu et al., 2011a). Hence there are multiple CesAs
in each species and the number of genes varies based on the
plant species; Arabidopsis (10), maize (12), poplar (18), and
foxtail millet (14) (Richmond and Somerville, 2000; Appenzeller
et al., 2004; Djerbi et al., 2005; Muthamilarasan et al., 2015). In
the present study we identified 11 CesA genes in contrast to
the reports of 12 CesA genes in sorghum, which is due to the
removal of errors in the updated sorghum genome assemblies
(Table 1, Figure 1). Though the number of CesAs present in
sorghum is known, it is important to study the role of individual
CesAs in primary and secondary cell wall biosynthesis to modify
the biomass composition in specific organ or tissue.

Hemicellulose composition and biosynthesis is complex as
they are composed of branched polysaccharides compared to
homopolymeric cellulose. Hemicelluloses play an important
role in cell wall polymer cross-linking and help in maintaining
the cell wall integrity and strength. The hemicellulose content
and composition is different in monocot and dicot plants. The
cell walls of monocots such as sorghum contain 20–50% of
hemicelluloses that makes it an attractive source for pentose

sugars (Welker et al., 2015). Bioethanol production from pentose
sugars apart from hexoses is currently being heavily investigated
(Unrean and Srienc, 2010). Understanding the hemicellulose
biosynthesis and genes involved in the biosynthetic process will
help to alter the biomass composition for easy deconstruction
as well as to improve hexose to pentose ratio. The hemicellulose
biosynthesis genes have not been studied very well other than
cellulose synthase like genes. In the present investigation, the
large family of sorghum Csls has been classified into 8 different
groups (CslA to H) based on the phylogenetic studies (Ermawar
et al., 2015a; Figure 2). Particularly, two clusters, CslF and
CslH were observed be unique to sorghum with no Arabidopsis
homologs, which is in agreement with the previous reports of
these clusters as grass specific (Paterson et al., 2009; Ermawar
et al., 2015a) while no sorghum Csl genes were clustered in
Clusters CslB and CslG (Figure 2). Similar clustering of SbCsl
genes has been reported previously in the sorghum draft genome
report (Paterson et al., 2009). Apart from Csls, we also identified
additional three hemicellulose gene families including xyloglucan
xylosyltransferases (GT34), xyloglucan fucosyltransferases
(GT37), and xyloglucan galactosyltransferases (GT47).
Homogalacturonan α-1,4-galacturonosyltransferases (GT8),
a pectin biosynthesis related gene family was also observed as
one of the sorghum’s big cell wall biosynthetic gene families
(Table 1, Figure 1). Pectin molecules play an important role
in cell adhesion and contributes for biomass recalcitrance due
to extensive interlinks with other cell wall polymers. Overall,
information on cell wall biosynthetic genes will help to design
customized biomass production for economical production
of biofuels and bioproducts from sorghum. Apart from easier
deconstruction and saccharification, enhancing the total sugars
in the walls will help to improve the cost effectiveness of
bioethanol production from sorghum biomass.

Cell wall biosynthesis is dynamic; it allows cell elongation
while maintaining the wall integrity to withstand the internal
turgor pressure. The degradation/assembly mechanism plays
important roles in the cell wall building process, wall strength
and integrity. Altering the process of wall degradation/assembly
process will influence the cell wall deconstruction/digestibility
hence identification and characterization of genes involved
in cell wall degradation/assembly is important. The
degradation/assembly related genes identified in this study
has been distributed in to 3 cell wall loosening related gene
families, 6 family of glycoside hydrolases, 2 pectin related lyases
as well as 2 pectin related esterase gene families. The conserved
domain analysis of the cell wall related gene families (Figure 1)
along with clusters obtained from phylogenetic analysis
with Arabidopsis and rice proteins suggests the evolutionary
conserved nature of these proteins (Supplementary Figure 1).
Physical mapping revealed presence of approximately 65% of
cell wall related genes mainly confined to chromosomes 1–4
(1 with 22.3%, chromosome 3 with ∼16%, chromosome 2 with
13.2%, and chromosome 4 with 13.1%; Figure 4, Supplementary
Table 1). These chromosomes with hotspot of cell wall genes
can be targeted in breeding and crop improvement programs to
alter the cell wall composition. Further, 56 tandem duplication
events observed in these genes were found to be distributed
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across all the 10 chromosomes with maximum duplication
observed on first 4 chromosomes. The excessive duplications
observed on the chromosomes 1–4 could be the possible
reason of presence of ∼65% genes on these chromosomes.
Further, a total of 137 SSR markers were found on ∼22% cell
wall related genes with highest representation in Csl (16) and
xyloglucan galactosyltransferases (16) gene families (Figure 5,
Supplementary Tables 2, 3). Among these, TNRs with ∼81%
share are the most abundant SSRs which are in agreement
with the previous reports of TNRs abundance in plants. These
molecular markers will help the breeding programs for selection
of genes in a breeding population or introgression of a specific
cell wall related genes. Further, in silico analysis for the presence
of miRNA targets revealed presence of miR156, miR164, miR397,
miR528, miR5566, and miR6230 target sites in 10 independent
cell wall related genes (Supplementary Table 4). Three of these
miRNA families viz. miR156, miR164, and miR528 have been
reported to be differentially expressed in stem and leaves during
sugar accumulation in sweet sorghum (Yu et al., 2015). Further,
Yu et al. (2015) reported miR164 and miR528 as stem specific
miRNA whereas miR156 was up-regulated in the leaves at
dough stage. Over-expressed miR156 has been reported to
cause the Corngrass1 (Cg1) phenotype in maize (Chuck et al.,
2007). Further, four of the six sorghum laccase family genes
found to have target site of miR397 and showed differential
expression during the drought stress conditions (Hamza et al.,
2016) indicating a potential change in the sorghum cell wall
composition under stress.

The cell wall composition and gene expression varies among
different tissues of the plant (stem, root, leaves, etc.) and
among the cell types within a tissue (i.e., epidermal, xylem,
phloem, fiber cells, etc.; Hatfield et al., 1999; McKinley et al.,
2016). Expression analysis across different tissues will provide
important insight into the role of cell wall related genes in that
particular tissue. In the present study, we found a differential
expression of genes among different tissues (Figures 6, 7).
This analysis provides information on the tissue specific target
genes for bioengineering purposes. A recent study of sorghum
gene expression in pre- and post-anthesis stages of stem
internodes showed differential expression of genes involved in
growth, cell wall development and stem sugar accumulation
(McKinley et al., 2016). CesA, Csls, callose synthases, XTHs,
glucuroarabinoxylan biosynthetic genes, expansins, glucosyl
hydrolases, pectin lyases/esterases, and lignin biosynthetic genes
were among the major differentially expressed cell wall related
genes (McKinley et al., 2016). In the present study, expression
analysis of sorghum cell wall related genes showed that most
of the genes from CesA, xyloglucan galactosyltransferases,
homogalacturonan α-1,4-galacturonosyltransferase, glucan
synthase-like, glucan 1,3-β-glucosidases, polygalacturonases,
β-Galactosidases, and pectin acetyl esterases families expressed
in all the stages studied. Remaining cell wall gene families showed
genes with either stage specific to ubiquitously expressed genes
or both.

Environmental conditions including temperature, drought,
osmotic, and salinity, etc., have been shown to affect the gene
expression and crop productivity (Tenhaken, 2014; Wang et al.,

2016). With the fast changing environmental conditions across
the globe, studying the effect of stress on plants is important.
In addition, to avoid food/fuel competition, the biofuel crops
were advocated to be grown on marginal lands with limited
irrigation and minimal input. Upon exposure to these adverse
environmental conditions, the plants alter their gene expression
and biochemical metabolism to survive in these conditions
including cell wall composition. Most important component of
the cell wall that adds enormous cost of bioethanol production
is lignin. It has been reported that abiotic stress results in
increased lignin content in plants (Moura et al., 2010). This
results in increased cost of bioethanol production hence there is
a need to develop bioenergy crops that do not accumulate higher
lignin when grown in marginal lands with limited irrigation
and low inputs. A better understanding of the cell wall gene
expression under abiotic stress is important to design strategies
to produce crops in marginal lands with less lignin accumulation.
Analysis of sorghum transcriptome under abiotic stress showed
differential expression of significant number of cell wall related
genes (Figure 8). Comparatively, root was observed to have
more altered expression of cell wall genes compared to shoot.
Among the differentially expressed gene families, expansins,
laccases, and glucan 1, 3-β-glucosidases showed down-regulation
in ABA treated root and shoot (Supplementary Figures 2B,
3B). Similarly, following PEG treatment, expansins, and XTHs
were among up-regulated genes in root as well as shoot
whereas yieldins were among the highly down-regulated genes
in both the tissues (Supplementary Figures 2C,D, 3C,D). Since
most of the cell wall related gene families are with multiple
genes and each with either specific or redundant function,
there is a need to characterize function of individual genes
in order to develop a fine annotation of their function in
normal growth and development as well as under abiotic stress
conditions.

CONCLUSIONS

Comprehensive information on cell wall related genes would
facilitate biosynthetic pathway engineering for enhanced
biomass production as well as efficient deconstruction and
saccharification. Lignin content and cellulose crystallinity
contribute to the poor separation and saccharification, which are
the biggest hurdles in the cost efficient utilization of sorghum
biomass for biofuel production. Here we have identified various
cell wall related gene families and analyzed the gene expression
pattern but the functional role of the individual genes is still not
known. Cell wall related gene mutations in sorghum showed
higher saccharification efficiency and are being used for animal
feed hence further analysis and functional characterization
will lead to development of more efficient sorghum lines for
animal feed, biofuel and bioproduct industries. Apart from
this, analyzing the cell wall composition of sorghum under
abiotic stress conditions and their correlation with differentially
expressed genes will also shed light on the mechanism involved
in regulation of cell wall biosynthesis and degradation. The
present study analyzed the gene expression of sorghum seedlings
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exposed to abiotic stress, which provides valuable information,
however a detailed study at different developmental stages
that are critical for biomass harvest will provide information
necessary to manipulate the biomass through plant breeding and
genetic engineering. Overall, the comprehensive information
developed in the present study can be used in expanding target
genes as well as developing better strategies for the future
sorghum crop improvement programs.
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