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Dynamic regulation of stomatal aperture is essential for plants to optimize water use and

CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard

cell turgor. Among the events leading to stomatal closure by plant hormones or microbial

elicitors, three signaling components stand out as the major converging points. These

are reactive oxygen species (ROS), cytosolic free Ca2+, and ion channels. Once formed,

the ROS and free Ca2+ of guard cells regulate both downstream and upstream events.

A major influence of ROS is to increase the levels of NO and cytosolic free Ca2+ in guard

cells. Although the rise in NO is an important event during stomatal closure, the available

evidences do not support the description of NO as the point of convergence. The rise in

ROS and NO would cause an increase of free Ca2+ and modulate ion channels, through

a network of events, in such a way that the guard cells lose K+/Cl−/anions. The efflux

of these ions decreases the turgor of guard cells and leads to stomatal closure. Thus,

ROS, NO, and cytosolic free Ca2+ act as points of divergence. The other guard cell

components, which are modulated during stomatal closure are G-proteins, cytosolic pH,

phospholipids, and sphingolipids. However, the current information on the role of these

components is not convincing so as to assign them as the points of convergence or

divergence. The interrelationships and interactions of ROS, NO, cytosolic pH, and free

Ca2+ are quite complex and need further detailed examination. Our review is an attempt

to critically assess the current status of information on guard cells, while emphasizing

the convergence and divergence of signaling components during stomatal closure. The

existing gaps in our knowledge are identified to stimulate further research.

Keywords: ABA, cytosolic free Ca2+, cytosolic pH, ROS, guard cells, ion channels, nitric oxide, secondary

messengers

INTRODUCTION

Stomata are tiny pores found on the leaf surface of higher plants, which facilitate the evaporation
of H2O via transpiration and intake of CO2 for photosynthetic carbon assimilation (Acharya and
Assmann, 2009). Stomata are also major points of entry for pathogens into the plants (Melotto
et al., 2006, 2008). Therefore, the regulation of stomatal aperture is essential for limiting the loss of
H2O as well as restricting pathogen entry. The guard cells are quite sensitive to several internal
and external stimuli, including abiotic (drought, light, temperature, high CO2, humidity) or
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biotic factors (pathogens and elicitors). Plant hormones (such as
abscisic acid, ABA, methyl jasmonate, MJ) and polyamines (PAs)
induce stomatal closure. Elicitors such as salicylic acid (SA),
chitosan, and Flg22 also cause stomatal closure (Alcázar et al.,
2010; Jing et al., 2012; Gayatri et al., 2013; Ye et al., 2013; Agurla
et al., 2014). Stomata open when guard cells are turgid and close
when the guard cells are flaccid (Blatt, 2000). During stomatal
opening, guard cells accumulate osmotically active components,
such as potassium ions, anions, malate and sucrose, leading a
decrease in water potential, influx of water, and increase in turgor.
In contrast, the reversal of these events leads to flaccidity in guard
cells and stomatal closure (Vavasseur and Raghavendra, 2005;
Bright et al., 2006; Roelfsema et al., 2012).

Among several effectors, the effects of ABA (a phytohormone)
on stomatal movements have been studied in detail. ABA induced
stomatal closure is mediated by many signaling components
like cytoplasmic pH, reactive oxygen species (ROS), reactive
nitrogen species (nitric oxide, NO), cytosolic free Ca2+, G-
proteins, protein kinases, protein phosphatases, phospholipids,
phospholipases, and sphingolipids (Wang and Song, 2008;
Raghavendra et al., 2010; Umezawa et al., 2010; García-Mata
and Lamattina, 2013; Song et al., 2014). The diverse spectrum
of signaling components during stomatal closure have been
reviewed frequently (Kim et al., 2010; Joshi-Saha et al., 2011;
Gayatri et al., 2013; Agurla et al., 2014; Kollist et al., 2014; Song
et al., 2014; Murata et al., 2015; Lee et al., 2016).

There are yet questions about the sequence of the signaling
events during stomatal closure. For e.g., cytosolic free Ca2+

may act at either downstream or upstream of ROS/NO. The
changes in cytosolic pH of guard cells may be important at either
downstream or upstream of ROS or NO. The production of NO
precedes that of ROS, but NO can act as antioxidant as well.
Despite these ambiguities, it is clear that a rise in ROS or NO
triggers a rise in free Ca2+ of guard cells, modulate the ion
channels and cause an efflux of K+/Cl−/malate, leading to loss
in turgor of guard cells. We emphasize that the signaling events
during stomatal closure converge at ROS, cytosolic Ca2+, and
ion channels. Similarly, ROS, NO, and Ca2+ form the points of
divergence.

Points of Convergence: ROS, Cytosolic
Free Ca2+, and Ion Channels
When guard cells are exposed to signals originating from abiotic
or biotic factors the process of signal transduction is initiated.
During this process, three points can be recognized as those
of convergence: ROS, cytosolic free Ca2+, and anion channels.
For e.g., plant hormones (such as ABA or MJ) and microbial
elicitors invariably cause an increase in the levels of ROS or NO
in guard cells, leading to rise in free Ca2+ within the guard cells
(Table 1). There are excellent reviews, emphasizing the role of
ROS (Kollist et al., 2014; Song et al., 2014; Murata et al., 2015),
NO (Hancock et al., 2011; García-Mata and Lamattina, 2013;
Gayatri et al., 2013; Agurla et al., 2014), and cytosolic free Ca2+

in guard cells (Kim et al., 2010; Roelfsema and Hedrich, 2010).
Hormones and elicitors interact with different receptor entities,
but the subsequent steps converge to activate NADPH oxidase,

increase ROS, NO, and Ca2+ in guard cells (Figure 1). Although
NO in guard cells is a key signaling component, there is no
sufficient evidence to describe it as point of convergence. While
it is clear that ROS can cause an increase in NO of guard cells, no
other components that can raise NO levels has been described.

Reactive Oxygen Species (ROS)
A marked rise in ROS of guard cells is a consistent feature
of stomatal closure induced by ABA, MJ, and even microbial
elicitors (Zhang H. et al., 2009; Song et al., 2014). While the
effect of ABA on NADPH oxidase is mediated by ABA-receptors-
protein phosphatase interactions (Raghavendra et al., 2010),
the mechanism of NADPH oxidase stimulation by elicitors is
ambiguous. Certain MAP kinases activated by elicitors could in
turn activate NADPH oxidase (Zhang H. et al., 2009).

There has been overwhelming evidence that NADPH oxidase
is the major ROS source in ABA, MJ, or SA induced stomatal
closure. However, the source of ROS may not always be
NADPH oxidase, as ROS production in response to elicitors,
such as SA, yeast elicitor, and chitosan can occur through a
salicylhydroxamic acid (SHAM) sensitive peroxidase or amine
oxidases (e.g., copper amine oxidase or polyamine oxidase)
(Khokon et al., 2011; Gao et al., 2013; Murata et al., 2015).
During stomatal closure induced by methylglyoxal (MG),
isothiocyanates or thiocyanates, the rise in ROS of Arabidopsis
guard cells wasmediated by a SHAM sensitive peroxidase (Hoque
et al., 2012; Hossain et al., 2013). Activation of NADPH oxidase
can occur also by phosphatidic acid (PA) (Zhang H. et al., 2009).
Thus, the ROS of guard cells is a major point of convergence. The
ROS production by different systems, involving NADPH oxidase
or peroxidase has been reviewed recently by Murata et al. (2015).

Cytosolic Free Calcium
Calcium (Ca2+) is an important secondary messenger during
stomatal closure (McAinsh et al., 1990; Hubbard et al., 2012).
The role of Ca2+ is confirmed by monitoring of Ca2+ in guard
cells by fluorescent probes, the Ca2+ chelators, and Ca2+ channel
blockers (Pei et al., 2000; Kim et al., 2010). The rise in Ca2+,
due to influx or release from internal sources like endoplasmic
reticulum, further activates anion channels and inhibits the K+

in
channels, all leading to stomatal closure. There are suggestions
that Ca2+ may act also upstream of ROS and NO (Garcia-
Mata et al., 2003). In contrast, Zhang et al. (2011) observed that
calcium channels functioned downstream of H2O2 in G-protein
α-subunit (gpa1) mutants. In gpa1 mutants, ABA-induced ROS
production was disrupted, but Ca2+ channels were activated by
exogenous H2O2 application.

Ion Channels
The ion channels represent the last step of signal transduction,
leading to stomatal closure. The ionic status driven by the
activity of cation/anion channels determines the turgor state of
guard cells. Rise in free Ca2+ of guard cells causes the efflux of
K+/Cl−/other ions. The detailed descriptions of ion channels,
their intracellular location, encoding genes, along with mutants
are made in a few reviews (Hedrich, 2012; Roelfsema et al., 2012;
Kollist et al., 2014). Plants have several types of K+ channels,
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TABLE 1 | Major points of convergence as well as divergence during

signal transduction leading to stomatal closure by hormones or elicitors.

Convergence Upstream component References

ROS

NADPH oxidase Kwak et al., 2003

Peroxidase Khokon et al., 2010

Copper amine oxidase An et al., 2008

G-protein alpha subunit (GPA) Zhang et al., 2011

OST1 protein kinase Mustilli et al., 2002

Cytosolic free Ca2+ Kobayashi et al., 2007

Phosphatidic acid Zhang et al., 2004

MAPK Meng and Zhang, 2013

PI3K/PI4K Park et al., 2003

S1P Ma et al., 2012

PA/ Phospholipase Dα1 Zhang Y. et al., 2009

Cytosolic pH Suhita et al., 2004

CYTOSOLIC FREE Ca2+

ROS Pei et al., 2000

NO Hossain et al., 2014

Inositol 1,4,5-trisphosphate Gilroy et al., 1990

Cyclic ADP ribose Leckie et al., 1998

Calcineurin-B like proteins Drerup et al., 2013

ION CHANNELS

Ca2+

in
channels

Ca2+ Mori et al., 2006

NO Garcia-Mata et al., 2003

Inward-rectifying K+ channels (KAT1)

PA Uraji et al., 2012

Cytosolic free Ca2+ Grabov and Blatt, 1999

NO Sokolovski and Blatt, 2004

Outward rectifying K+ channel (GORK)

pH Hosy et al., 2003

Cytosolic free Ca2+ Pei et al., 1998

NO Sokolovski and Blatt, 2004

Slow anion channel 1 (SLAC1)

MAPK9/12 Danquah et al., 2014

Cytosolic free Ca2+ Geiger et al., 2010

Slow anion channel Homolog 3 (SLAH3)

Cytosolic free Ca2+ Geiger et al., 2010

Quick anion channels (QUAC1/ALMT6)

OST1 Engineer et al., 2016

Divergence Downstream component References

ROS

NO Bright et al., 2006

MAPK9/12 Jammes et al., 2009

Cytosolic free Ca2+ Pei et al., 2000

Cytosolic pH Zhang et al., 2001

NO

PLDδ Distéfano et al., 2012

Cytosolic free Ca2+ Zhao et al., 2013

Cytosolic free Ca2+in Garcia-Mata et al., 2003

(Continued)

TABLE 1 | Continued

K+inchannels Garcia-Mata et al., 2003

K+out channels Sokolovski and Blatt, 2004

CYTOSOLIC FREE Ca2+

NADPH oxidase Kimura et al., 2012

NO Garcia-Mata and Lamattina,

2007

Cytosolic pH Islam et al., 2010

SLAC1 Laanemets et al., 2013

SLAH3 Geiger et al., 2011

The convergence is illustrated by the multiple upstream elements leading to an increase

in the given component. Similarly, the divergence occurs when multiple components are

modulated by the given signaling element. An illustration is given in Figure 1.

ROS, reactive oxygen species; NO, nitric oxide; MAPK, mitogen-activated protein kinases;

SLAC1, slow anion channel-associated 1; SLAH3, slow anion channel homolog 3; Ca2+,

calcium; H2O2, hydrogen peroxide; Kin channel, K+ inward rectifying channel; Kout

channel, K+ outward rectifying channel; PA, phosphatidic acid; OST1, open stomata 1;

QUAC1, quick anion channel 1; ALMT, aluminum activated malate transporters; PLD,

phospholipase D; S1P, sphingosine-1-phosphate.

which can allow either inward or outward movement of K+. The
K+

in channels open up, when the membrane potential becomes
hyperpolarized. In contrast, outward-rectifying K+channels
(K+

out) open when the membrane potential is depolarized.
Guard cell Ca2+-permeable cation channels are stimulated by

H2O2 and NO, whose levels are raised by ABA or MJ during
stomatal closure (Mori et al., 2006; Rienmüller et al., 2010).
Elevated free Ca2+ in guard cells can be due to the activation of
Ca2+ channels in not only plasma membrane but also vacuolar
or internal membrane network. The activation of ion channels
would promote efflux of malate and other anions make the
guard cells lose turgor and cause stomatal closure. But, there is
considerable ambiguity on the relative dominance and specificity
of different ion channels. Guard cells are known to contain
slow anion channel-associated 1 (SLAC), quick anion channel
1 (QUAC), slow anion channel homolog 3 (SLAH), and even
aluminum activated malate transporters (ALMT) (Roelfsema
et al., 2012). Further work is required to elucidate the role of each
of these different types of anion channels and their interactions.

Points of Divergence: ROS, NO, and
Cytosolic Free Ca2+

The rise in levels of ROS, NO, or cytosolic free Ca2+ in guard
cells trigger multiple events downstream (Table 1). The ability to
induce diverse effects makes these three signaling components
qualified to be the points of divergence (Figure 1). The rise
in ROS of guard cells initiates several downstream events: NO
production, elevation of cytosolic free Ca2+, and rise in cytosolic
pH (Wang and Song, 2008; Song et al., 2014). Kinetic studies
indicated that ROS production was prior to the NO production
(Gonugunta et al., 2008). The positioning of the ROS was further
confirmed by using Arabidopsis mutants and hydrogen-rich
water (HRW) (Xie et al., 2014). The impaired NO synthesis and
stomatal closure in response by HRW and rescue of closure
by exogenous application of NO in rbohF mutant indicated
that ROS functioned as an upstream signaling component. The
importance of ROS in NO production was also demonstrated
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FIGURE 1 | Key points of convergence and divergence during stomatal closure in response to plant hormones and elicitors. Stomatal closure is the result

of ion efflux out of guard cells, loss of their turgor, and forms the ultimate step during signal transduction. We suggest that ROS, cytosolic free Ca2+, and ion channels

form points of convergence during stomatal closure by a variety of abiotic/abiotic factors. Similarly, ROS, NO, and cytosolic Ca2+ are identified as points of

divergence. The activation of NADPH oxidase and ROS production are among the earliest events. Similarly, the modulation of ion channels, influx of free Ca2+ along

with efflux of K+ and anions, are the final steps, leading to the loss of ions/turgor of guard cells. The binding of ABA to RCAR/PYR or Flg22 to FLS2 or SA to

S-receptor are well established, while receptors of cryptogein, chitosan, and PAs are yet to be characterized. ROS: When ABA binds to the receptor (RCAR/PYR/PYL),

PP2C becomes non-functional, leading to phosphorylation, and activation of OST1 protein kinase. The elevated kinase activity along with Ca2+, activates NADPH

oxidase, and subsequently elevates ROS production. Besides NADPH oxidase, CuAO/PAO are also involved in the increase of ROS in guard cells. The levels of ROS

can be elevated by also peroxidase, for e.g., upon salicylic acid binding to its receptor. Further, G-protein alpha subunit induces the ROS production through the

activation of NADPH oxidase. Modulation of ROS levels by NO, cytosolic Ca2+, cytosolic pH can occur by direct or indirect mechanisms but these reactions need to

be established. Cytosolic free Ca2+: the rise in the levels of ROS and NO, can increase the levels of cytosolic free Ca2+, by either release of Ca2+from internal stores

or influx of external Ca2+ through plasma membrane Ca2+in channels. Ca2+ also activates SLAH3 and SLAC1 ion channels, while inhibiting K+in ion channels. Ion

channels: the modulation of cation/anion channels results in the net efflux of K+/Cl−/ malate and influx of Ca2+, making guard cells to lose turgor and causing

stomatal closure. NO: NR, nitrate reductase; NOA, nitric oxide associated 1 are the sources of NO. Although there are suggestions that ROS, cytosolic Ca2+ or

cytosolic pH can elevate NO levels, the mechanism is not known. The rise in NO leads to divergent actions, namely the rise in cytosolic Ca2+, activation of PLD, and

subsequently NADPH oxidase. Further, NO activates K+out ion channels, inhibits K+ channels, and activates Ca2+in ion channels. Other components: The role of

cytosolic pH is not completely understood. The available evidence suggests that the cytosolic pH may act parallely with the events involving ROS/NO/cytosolic free

Ca2+. Similarly, G-proteins, phospholipids, phospholipases, phosphatidyl inositol kinases, sphingolipids, and MAP kinases also act in such a way to cause the loss of

turgor in guard cells and stomatal closure. Solid arrows represent the events which are documented, while broken arrows represent the possible effects/suggestions.

in mutants deficient in G-proteins and nitrate reductase (Bright
et al., 2006; He et al., 2013).

Nitric oxide (NO) is a small, gaseous molecule involved
in growth, development and even disease resistance of
plants (Domingos et al., 2015). Studies using modulators

(scavengers/inhibitors/donors) of NO production emphasized
the importance of NO during stomatal closure (Gayatri et al.,
2013; Agurla et al., 2014). NO production in guard cells of
Arabidopsis and Vicia faba is essential for stomatal closure by SA
and yeast elicitor (Sun et al., 2010; Khokon et al., 2011). Real time
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monitoring studies suggested that NO acted as a downstream
signaling component to the ROS as well as pH (Gonugunta et al.,
2008; Srivastava et al., 2009). Nitric oxide synthase (NOS) is the
source of NO in animal cells, but the presence/operation of NOS
in plant cells is quite uncertain. Both nitrate reductase (NR) and
NOA1 (nitric oxide associated) are shown to be the sources of
NO in guard cells of V. faba and Arabidopsis (Hao et al., 2010;
Gao et al., 2013).

The interaction of NO with the other signaling components
is quite crucial (Gayatri et al., 2013). In guard cells, NO can
cause multiple effects, namely rise in internal Ca2+, cytosolic
alkalization, and activation of K+

out channels (Gonugunta et al.,
2008; Jing et al., 2010). NO is also essential for the elevation of the
signaling components, like PLDα1 and PLDδ, during PA induced
stomatal closure (Distéfano et al., 2008, 2010; Uraji et al., 2012).

The components of downstream signaling by Ca2+ in guard
cells are quite intriguing. The changes in Ca2+ are sensed
and mediated by the different types of intracellular calcium
binding proteins like calmodulins, calcium dependent protein
kinases (CDPKs, particularly, CPK3, and CPK6) and calcium
sensing receptors (CAS) (Mori et al., 2006). Ca2+-dependent
CPK6, CPK21, and CPK23 activate SLAC1 in oocytes (Geiger
et al., 2010; Brandt et al., 2012). In contrast, Ca2+-independent
protein kinases like OST1 are involved in ABA activation of
intracellular calcium channels (Murata et al., 2015). Ca2+-
independent SnRK2 protein kinases such as OST1, have been
shown to activate SLAC1 in Xenopus leavis oocytes (Geiger et al.,
2009; Lee et al., 2009; Brandt et al., 2012). Such Ca2+ activation
of S-type anion currents is an early and essential step during
stomatal closure (Siegel et al., 2009; Chen et al., 2010).

Other Components
Cytosolic pH
Cytoplasmic pH is a signaling component in developmental
processes, such as root growth (Scott and Allen, 1999). A marked
rise in cytoplasmic pH is a common feature during stomatal
closure by ABA, MJ, elicitors, and even S1P (Suhita et al., 2004;
Gonugunta et al., 2008). Cytosolic alkalization and production
of NO in the guard cells and stomatal closure were observed on
exposure to ethephon (source of ethylene) and pyrabactin (Jing
et al., 2010; Puli and Raghavendra, 2012). Similarly, darkness
or ultraviolet B (UV-B) exogenous Ca2+ induced stomatal
closure was also accompanied by the increase in cytoplasmic
pH and ROS (Ma et al., 2013; Zhu et al., 2014). In a reverse
of the situation, fusicoccin (a fungal phytotoxin, produced by
Fusicoccum amygdale) induced stomatal opening, by causing
cytoplasmic acidification, and lowering of NO levels, even in
presence of ABA (Huang et al., 2013).

Among the upstream components leading to the alkalization
of cytoplasm in guard cells are the elevated ROS, PA/PLD, NO,
and S1P/phytoS1P. However, the exact trigger of guard cell
alkalization on exposure to ABA or MJ or elicitors and the
downstream events of cytoplasmic pH change are not clear. A
possibility is that on cytoplasmic alkalization, the K+

out channels
are activated, triggering K+ efflux and collapse of turgor in guard
cells (Blatt and Armstrong, 1993). Cytosolic alkalization needs to
coordinate with the increase in cytosolic free Ca2+ during ABA

or MJ induced stomatal closure (Islam et al., 2010). Unlike the
role of ROS, NO, and cytosolic Ca2+as points of convergence
and divergence, the action of cytoplasmic pH seems to be
parallel. Further experiments are needed to make cytoplasmic pH
qualified to be called as a point of convergence.

G-Proteins
Although the modulation of heterotrimeric G proteins is known
to be an important component leading to stomatal closure, the
exact mode of G-protein action is ambiguous. Ge et al. (2015)
suggested that ethylene induced stomatal closure was mediated
through Gα induced ROS production in Arabidopsis thaliana. In
similar case, Arabidopsis gpa1 mutants, deficient in G-protein
α subunit, are impaired in Ca2+-channel activation, and ROS
production, in response to ABA (Zhang et al., 2011). G-proteins
were essential for the production of ROS as well as NO during the
effects of UV-B irradiation or external Ca2+ (Li et al., 2009; Zhang
et al., 2012; He et al., 2013). Most of these evidences suggest that
G-proteins induce an increase in the levels of ROS in guard cells.
It is not clear if ROS production is due to or independent of
NADPH oxidase.

Phospho- and Sphingolipids
Phosphatidic acid (PA), the product of phospholipase C/D
(PLC/PLD) induced stomatal closure by inhibiting K+

inchannel
in the guard cells, besides interacting with ABI1 and activating
NADPH oxidase (Jacob et al., 1999; Zhang et al., 2004). NO
induced stomatal closure was restricted by PLC/PLD inhibitors
(Distéfano et al., 2008), suggesting that PA acts downstream
of the NO during stomatal closure in V. faba. Furthermore,
ABA-induced NO production was impaired in pldα1 mutant
guard cells (Distéfano et al., 2008). Phosphoshingolipids such
as sphingosine-1-phosphate (S1P) and phytosphingosine-1-
phosphate (phytoS1P) regulate multiple functions in plants
besides stomatal closure (Ng et al., 2001; Coursol et al., 2005;
Puli et al., 2016). ABA activates sphingosine kinases (SHPKs),
leading to the production of S1P. However, our knowledge of
downstream signaling components of S1P is limited (Coursol
et al., 2003).

Interactions among Signaling Components
and with Environmental Factors
Signaling components, particularly ROS and NO, play an
important role in not only stomatal closure but also in integrating
stimuli from abiotic or biotic stress (Song et al., 2014; Saxena
et al., 2016). The marked interactions between ROS, NO, Ca2+,
and pH are pointed out (Zhang et al., 2001; Gonugunta et al.,
2009; Song et al., 2014). ROS and NO interact with each other
and can increase cytosolic Ca2+ and modulate ion channels.
However, the feedback relationship between NO and ROS is
obscure. Similarly, cytoplasmic pH may act directly on ion
channels, particularly K+

out or indirectly by modulating ROS
and/or NO, yet the mechanism of such action is not completely
clear. Further, Ca2+ also can interact with NO and pH (Wang
et al., 2011; Gayatri et al., 2013). It is likely that ABA plays a key
role in these interactions. Endogenous ABA is involved during
MJ-induced stomatal closure (Munemasa et al., 2007, 2011; Ye
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et al., 2013). Both the Ca2+-dependent and Ca2+-independent
signaling pathways are considered to function during stomatal
closure (Kim et al., 2010; Roelfsema et al., 2012). However,
the interrelationships of such Ca2+-dependent and independent
pathways during guard cell signal transduction are yet to be
elucidated.

Interactions of guard cell signaling components with
environmental factors are not only interesting but are essential
for adaptation. Drought raises the levels of ROS and ABA
levels in plant tissues, with both these phenomena leading to
stomatal closure (Saxena et al., 2016). The effects of CO2 induced
stomatal closure can also be mediated by ABA (Chater et al.,
2015). Further experiments are needed to identify the exact link
between CO2 and ABA. An increase in ROS due to elevated CO2
in guard cells (Kolla et al., 2007) could raise the endogenous
ABA levels and amplify the signaling events leading to stomatal
closure. Similar involvement and interactions of ROS, NO, and
pH are reported during UV-B induced stomatal closure (He
et al., 2013; Zhu et al., 2014).

CONCLUDING REMARKS

The patterns and action sequence of signaling components
during stomatal closure have been worked out using different
triggers, such as ABA, MJ, and chitosan (Gonugunta et al., 2009).
Both plant hormones or microbial elicitors cause an increase
in ROS, NO, pH, and free Ca2+ of guard cells, modulate ion
channels, and cause an efflux of K+/Cl−/malate from guard cells,

leading to stomatal closure. We emphasize that ROS, cytosolic
Ca2+,and ion channels are the points of convergence (Figure 1).
The cytosolic pH, G-proteins, and phospho-/sphingolipids are
also important components during stomatal closure but they
may be acting in parallel. Further work required to elucidate the
perception of signals, such as methyl jasmonate or elicitors and
how they activate NADPH oxidase leading to ROS production.
Several of the unresolved questions make the stomatal guard cells
an ideal system for studying signal transduction mechanism in
plant cells.
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