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It is of significance to discover genes related to fiber quality and yield traits and tightly
linked markers for marker-assisted selection (MAS) in cotton breeding. In this study, 188
Fg recombinant inbred lines (RILs), derived from a intraspecific cross between HS46
and MARCABUCAG8US-1-88 were genotyped by the cotton 63K single nucleotide
polymorphism (SNP) assay. Field trials were conducted in Sanya, Hainan Province,
during the 2014-2015 cropping seasons under standard conditions. Results revealed
significant differences (P < 0.05) among RILs, environments and replications for fiber
quality and yield traits. Broad-sense heritabilities of all traits including fiber length, fiber
uniformity, micronaire, fiber elongation, fiber strength, boll weight, and lint percentage
ranged from 0.26 to 0.66. A 1784.28 cM (centimorgans) linkage map, harboring 2618
polymorphic SNP markers, was constructed, which had 0.68 cM per marker density.
Seventy-one quantitative trait locus (QTLs) for fiber quality and yield traits were detected
on 21 chromosomes, explaining 4.70~32.28% phenotypic variance, in which 16 were
identified as stable QTLs across two environments. Meanwhile, 12 certain regions were
investigated to be involved in the control of one (hotspot) or more (cluster) traits, mainly
focused on Chr05, Chr09, Chr10, Chr14, Chr19, and Chr20. Nineteen pairs of epistatic
QTLs (e-QTLs) were identified, of which two pairs involved in two additive QTLs. These
additive QTLs, e-QTLs, and QTL clusters were tightly linked to SNP markers, which
may serve as target regions for map-based cloning, gene discovery, and MAS in cotton
breeding.

Keywords: upland cotton, cotton 63K SNP array, linkage analysis, molecular marker, QTLs

INTRODUCTION

The Gossypium genus is the most important source of natural textile fiber. It consists of 50 species
approximately, including four cultivated species, G. arboreum, G. herbaceum, G. hirsutum, and
G. barbadense. G. hirsutum, accounting for 95% of overall cotton production, is characterized
by high yield, moderate fiber quality, and wide adaptability (Cai et al., 2014). In the past few
years, area under cotton cultivation has declined worldwide, mainly due to high production
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costs and strong market competition with other crops (Mei et al.,
2013). Thus, developing new cotton cultivars with superior fiber
quality and high yields are immense to meet the demand of textile
industry demand and to maintain the profitability of cotton for its
growers.

Fiber quality and yield traits are complex traits, controlled
by a multitude of quantitative trait locus (QTLs; Said et al.,
2013). There is a complicated genetic correlation between fiber
quality and yield due to different population types and parental
lines (Qin et al., 2008; Yu et al., 2013; Zhang et al., 2014; Cao
et al,, 2015; Wang et al., 2015a). Therefore, improving yield
and fiber quality, simultaneously, is a long-term challenge for
cotton breeders. Traditional breeding procedures are increasingly
difficult because of long duration and low selective efficiency
(Shen et al., 2005). Marker-assisted selection (MAS) could be
one of the more efficient approaches for breeding elite upland
cotton cultivars. To date, majority of cotton genetic maps have
been developed based on interspecific populations (Reinisch
et al., 1994; Lacape et al, 2003; Nguyen et al, 2004; Rong
et al., 2004; Guo et al., 2007; Yu et al., 2011b, 2013), which had
little usage in upland cotton breeding programs (Ulloa et al.,
2002). The intraspecific genetic maps of upland cotton have
been constructed to detect QTLs for fiber quality and yield traits
(Zhang et al,, 2003, 2009; Shen et al., 2006; Wang et al., 2006,
2015b; Qin et al., 2008; Wu et al., 2008; Sun et al.,, 2011; Liang
et al,, 2013; Tan et al., 2014; Islam et al., 2015; Zhang Z. et al,,
2015). However, due to low levels of intraspecific DNA marker
polymorphisms in upland cotton, most intraspecific maps had a
relatively low density and could not satisfy for MAS and map-
based cloning. Therefore, it is necessary to develop new type of
markers which can enable mapping upland cotton populations to
obtain high polymorphism.

In comparison with other molecular markers, single
nucleotide polymorphisms (SNPs) marker which provides the
most abundant form of genetic variations, and is characterized
by lower mutation rates, higher numbers, and higher accuracy
(Ball et al., 2010; Yu et al., 2011a). Previous research has showed
that SNPs plays role in phenotypic changes and act as functional
marker for traits in MAS, when located in a gene or promoter
region (Beales et al., 2005; Konishi et al.,, 2006). It led to the
discovery of superior high-density SNP gene-chip technology
was then developed as a superior method for linkage mapping
and QTL detection. Now, it is being used extensively to detect
QTL in bi-parental populations of many crop species (McNally
et al,, 2009; Gao et al., 2015). But only a few studies had reported
its use in intraspecific populations of upland cotton, either with
a limited number (Byers et al., 2012; Yu et al., 2012; Gore et al,,
2014; Zhu et al., 2014) or with lower density (Hulse-Kemp et al.,
2015; Wang Y. et al.,, 2015). So, there is a huge knowledge gap to
be filled by a comprehensive study.

Herein, a 63 K Illumina SNP assay was used to screen
188 recombinant inbred lines (RILs) derived from the cross of
HS46/MARCABUCAG8US-1-88, and a final map with 2618 loci
and 0.68 cM high density map was constructed. The aims of this
study were to identifying stable QTLs for fiber quality and yield
traits and their tightly linked SNP markers for MAS in upland
cotton breeding.

MATERIALS AND METHODS

Plant Materials

A RIL population of 188 individual lines was developed following
a modified single-hill procedure (bulked progeny row; Wu
et al., 2008) by crossing two upland cotton cultivars, HS46 and
MARCABUCAG8US-1-88. The former is a commercial cultivar
with good fiber qualities and higher yield, and the later, a male
parent was a germplasm with good resistance. The RILs and their
parents were kindly provided by USDA-ARS, Starkville, MS, USA
in 1999 (Liu et al., 2012).

In September 2014, the seeds of 188 RILs and two parents
were sown in Yacheng and Baogang (two different environments
were hereinafter referred to as Yc and Bg, respectively) in Sanya,
Hainan Province, China. A completely randomized block design
with two replications was applied in each location. Plot size was
one row with 7.0 m long and 0.8 m wide. Standard cultivation,
weed and insect control practices were followed throughout the
growing season.

Phenotypic Measurement and Analysis

A total of 20 normally open bolls were hand-harvested from
each line. Approximately 20 g of fiber from each sample was
measured by HVI 1000 (Uster®Hvispectrum, Spinlab, USA)
under controlled environmental conditions (20°C and 65%
RH) in the Cotton Quality Supervision, Inspection and Testing
Center, Ministry of Agriculture, Anyang, Henan province, China.
The fiber quality traits include fiber length (FL, mm), fiber length
uniformity (FU, %), micronaire (MIC), fiber elongation (FE, %),
and fiber strength (FS, cN.tex™1). Yield traits consist of boll
weight (BW, g) and lint percent (LP, %).

The basic statistics for the phenotypic data of the RILs, the
significance of differences for each trait between the two parents,
and the correlation among different traits were calculated by
SPSS20.0. The variance components for fiber quality and yield
traits were estimated by QTModel'.

SNP Maker Analysis and Genotyping
Genomic DNA was extracted from young leaves of the 188 RILs
and two parents using modified CTAB method (Paterson et al.,
1993).

The 188 RILs and their parents were genotyped with cotton
63K SNP array (Hulse-Kemp et al., 2015) from Emei Tongde
Technology Development, Co. Ltd (EMTD; Beijing, China?). The
array, consisted of 63,058 SNPs, were derived from published
literatures (Van Deynze et al., 2009; Byers et al., 2012; Lacape
et al., 2012; Rai et al., 2013). Candidate SNPs suitable for further
analysis were identified as follows: (1) SNPs were filtered by
excluding those with monomorphic markers or with poor quality
data; (2) SNPs which the parental genotypes were inconsistent
with progeny genotypic ratios or parental genotypes data had
missing information were removed from the dataset; (3) SNPs of
188 RILs with missing values more than 40% were removed.

Uhttp://ibi.zju.edu.cn/software/qtmodel/index.html
Zhttp://www.emtd.com.cn/
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Candidate SNPs, obtained from the array, were further aligned
to the tetraploid upland cotton (TM-1) reference genome (Zhang
T. et al,, 2015), using BWA software (Li and Durbin, 2009). Only
SNPs with less than two mismatches based on a high quality
sequence and a mapping Q-Value > 20 were used. The retained
SNPs were sent to samtools (Li et al., 2009) and then screened
for polymorphism between the mapping parents. Polymorphic
SNPs were classified based on Illumina GenTrain score and call
frequencies across samples (Hulse-Kemp et al., 2015). Minor
allele frequencies of polymorphic markers were only used to
genotype 188 RILs.

Map Construction

Linkage maps were constructed by JoinMap 4.0 Version Software
(Van Ooijen, 2006), using a regression approach with the log
of odds (LODs) score of 3~10 and the jump threshold of
0.5. Converting recombination frequencies into map distances
were calculated using Kosambi’s mapping function (Kosambi,
1944).

The chi-square analysis was performed to test segregating
markers which deviated from 1:1 expected segregation ratio.
A segregation distorted region (SDR) was defined as region
with at least three adjacent loci showing significant segregation
distortion (P < 0.05; Yu et al., 2011b).

Based on the results of SNPs aligned to the G. hirsutum
reference genome by BWA (Li and Durbin, 2009), software
CIRCOS 0.69 was used to compare the collinearity of SNPs based
on their genetic positions and physical positions.

QTL Analysis

Fiber quality and yield traits related QTLs detection were
performed by WinQTLCart2.5 software (Wang et al., 2001),
using composite interval mapping (CIM) approach. The LOD
threshold of significant QTL was calculated by 1,000 permutation

tests with a significance level of P < 0.05, a mapping step of
1.0 cM, and five control markers. LOD score values between
2.5 and permutation test LOD threshold were used to declare
suggestive QTL. E-QTLs were detected by IciMapping ver.
4.0 software (Li et al, 2007) using multi-environment trials
(METs) function and the inclusive composite interval mapping
(ICIM) method. The e-QTLs identification was done with pre-
adjusted IciMapping parameters: Scan = 5 cM, LOD = 5.0, and
PIN = 0.0001. A graphical representation of the linkage groups
and QTLs was created by Map Chart 2.2 (Voorrips, 2002).

QTLs were named as following: q + trait abbreviation+
chromosome number+ QTL number.

RESULTS

Phenotypic Evaluation of RIL

Populations

Descriptive statistics for the fiber quality and yield traits of the
RIL population, as well as their parents across two environments
were presented in Table 1. FL, FU, BW, FS, and MIC of HS46
showed significantly higher than those of MARCABUCAG8US-
1-88 in one or both locations; however, there were no significant
differences were found for FE and LP between parental lines.
In the RIL population, all analyzed traits presented continuous
variation and transgressive segregation, and accorded with
normal distributions.

Results showed that the FL had the highest broad-sense
heritability among all traits, indicating that it could be mainly
controlled by genotype, while remaining six traits had lower
broad-sense heritability with values of 0.26 for FU, 0.27 for MIC,
0.37 for FE, 0.28 for FS, 0.31 for BW, and 0.38 for LP, suggesting
the environmental effects were important for the performance of
these traits (Table 2).

TABLE 1 | Phenotypic variation of five fiber quality traits and two yield traits for the upland cotton RILs and their parents.

Traits? Environment® Parents RILs
HS46(P1) MAR(P2) P1-P2 Mean SD Skewness Kurtosis Minimum Maximum
FL Yc 31.00 29.84 1.47** 30.49 1.15 0.18 0.35 27.26 34.12
Bg 30.47 29.17 1.31** 30.21 1.02 0.06 0.16 27.20 33.39
FU Yc 86.35 85.27 1.08** 85.57 0.83 0.28 0.17 83.60 88.50
Bg 85.92 84.90 1.02* 85.39 0.86 —0.30 —0.38 83.10 87.30
MIC Yc 412 3.77 0.36* 3.83 0.32 0.20 0.14 3.06 4.76
Bg 3.88 3.75 0.13 3.50 0.39 0.21 -0.29 2.68 4.54
FE Yc 6.43 6.52 —0.08 6.38 0.70 0.08 —0.40 4.90 8.20
Bg 5.98 6.07 —0.09 5.76 0.66 0.33 0.14 4.10 8.10
FS Yc 30.09 28.09 2.01** 29.92 1.66 0.48 0.09 26.61 35.67
Bg 29.45 28.67 0.78 29.67 1.69 0.05 0.28 25.18 34.11
BW Yc 5.43 4.91 0.51** 5.37 0.56 0.47 0.61 3.96 7.09
Bg 5.81 5.37 0.44* 5.60 0.65 —0.18 0.01 3.92 7.41
LP Yc 37.07 38.74 -1.67 37.73 1.94 0.22 0.63 31.63 43.87
Bg 39.07 39.87 —0.81 38.16 1.75 —0.47 0.71 31.69 42.15

* **Significant at P = 0.05 and P = 0.01, respectively. 8FL, fiber length; FU, fiber uniformity; MIC, micronaire; FE, fiber elongation; FS, fiber strength; BW, boll weight; LP,

lint percentage. ®Yc, Yacheng of Hainan Province; Bg, Baogang of Hainan Province.
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TABLE 2 | Analysis of variance (ANOVA) for five fiber quality traits and two yield traits in the upland cotton RIL population across two environments.

Factor® DF Sum of squares
FL® Fu? mic? FE® Fs2 BW? Lpa

Gen 187 803.03** 373.93** 77.42** 288.82** 1437.08** 199.49%* 1953.4**
Env 1 14.82** 6.22** 20.48** 70.59** 11.45 12.34** 38.72*%*
Gen*Env 187 82.57 1567.72 17.31 58.16 539.28 62.06 522.32
Rep 1 0.27 0.87 8.8%* 4.57* 0.36 5.64** 5.88
Residual 375 172.19 304.43 54.00 126.38 1140.54 139.02 1108.54
Broad-sense heritability 0.66 0.26 0.27 0.37 0.28 0.31 0.38

* **Significant at P = 0.05 and P = 0.01, respectively. 2FL, fiber length; FU, fiber uniformity; MIC, micronaire; FE, fiber elongation; FS, fiber strength; BW, boll weight; LP,

lint percentage. bGen, genotype, Env, environment, rep, replication.

The correlation analysis for fiber and yield traits based on
RILs data over two environments (Table 3). Results revealed
significant negative correlation of LP with FS and FU, and
significant positive correlation with MIC and FE. Similarly, BW
was significant positively correlated with MIC and FS. Among the
five fiber traits, all trait pairs presented significantly correlation
except for FU - FE, FU - MIC, and FS - FE.

Map Construction

Among 63,058 SNPs used for screening RIL population, 3120
SNP markers (4.9%) were polymorphic between the two parents.
Of those, 2618 were mapped on 26 chromosomes of upland
cotton. The total length of this map was 1784.28 ¢cM with
average marker density of 0.68 cM (Table 4; Supplementary
Table S1; and Figures 1-5). There were 101 SNPs on each
chromosome averagely, with 1198 SNPs on At subgenome and
1420 SNPs on Dt subgenome, respectively. Uneven distribution
of SNP markers on cotton chromosomes was observed. Chr14
had the highest number of SNPs (274 loci), while Chr12 had
the lowest SNPs (15 loci). The average chromosome length
was 68.63 cM, and the longest chromosome was Chr18 with
119.97 cM and the shortest one was Chr23 with 30.93 cM.
The total lengths of At and Dt subgenomes were 888.61
and 902.67 cM, respectively. There were more loci on Dt
subgenome than At subgenome. Twenty-two gaps (marker
interval > 10 cM) were found on this genetic map, in
which, 10 on At subgenome and 12 on Dt subgenome were
observed.

Segregation Distortion

Among the 2618 mapped SNPs, 13.29% (348) showed segregation
distortion and most loci (71.26%) showed a higher allelic
frequency from the female parent (Table 4; Figures 1-5). These
SNPs were unevenly distributed on the 26 cotton chromosomes
and ranged from 0 to 35 loci on each chromosome (Table 4).
As previous report (Yu et al.,, 2011b), more distorted loci were
located on the Dt subgenome than on the At subgenome
(180 versus 168). Segregation distortion was non-random
across the linkage map. Three chromosomesChrl2, Chrl7,
and Chr25, showed serious segregation distortions of 33.33,
32.20, and 41.18%, respectively. Furthermore, a total of 35
SDRs were found on 20 chromosomes with 18 SDRs on the
At subgenome and 17 SDRs on the Dt subgenome (Table 4;
Figures 1-5). Interestingly, the distorted loci in some of the
SDRs (SDRO03-2, SDR06-1, SDR20-1, and SDR25-2) skewed
toward the same allele and showed similar degree of segregation
(Figures 1-5).

Collinearity Analysis

All the mapped 2618 SNPs were aligned to the G. hirsutum
reference genome to validate the genetic map. Alignments
indicated that the genetic map constructed in the present
study had good collinearity with the physical map (Figure 6),
suggesting the high quality of the RIL map. However, several
deviation on Chr04, Chr05, and Chr10 in the At subgenome
and Chrlé, Chrl7, Chrl18, Chr21l, Chr23, and Chr25 in the
Dt subgenome were detected between the genetic map and the

TABLE 3 | Correlation coefficients among all traits involved in fiber quality and yield in the upland cotton RIL population across two environments.

Traits? FL FU MIC FE FS BW LP
FL 1

FU 0.56** 1

MIC —0.30** —0.04 1

FE —0.26** 0.00 0.41** 1

FS 0.17** 0.24** 0.15%* 0.01 1

BW -0.02 0.05 0.38** 0.03 0.17** 1

LP -0.18 —0.14** 0.09** 0.14** —0.18** -0.07 1

* **Significant at P = 0.05 and P = 0.01, respectively. 8FL, fiber length; FU, fiber uniformity; MIC, micronaire; FE, fiber elongation; FS, fiber strength; BW, boll weight; LP,

lint percentage.
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TABLE 4 | Summary of the high-density SNP map based on upland cotton RIL population.

Chromosome Size (cM) Mean distance (cM) No SNP Gap > 10 cM Distortion ratio (%)? SDRP
Chr01 52.90 0.40 133 0 15.79 2
Chr02 95.22 0.84 114 1 11.40 1
Chr03 116.96 1.72 68 3 27.94 3
Chr04 34.26 1.14 30 0 3.33 0
Chr05 69.80 0.52 135 0 7.41 0
Chr06 56.76 1.77 32 0 15.63 1
Chr07 67.03 0.96 70 0 15.71 1
Chr08 56.77 0.52 109 1 18.35 3
Chr09 99.90 0.62 162 1 9.26 1
Chr10 69.07 1.82 38 2 21.05 1
Chri1 41.46 0.86 48 0 18.75 1
Chr12 52.71 3.51 15 2 33.33 1
Chr13 68.76 0.28 244 0 12.70 3
At subgenome 881.61 0.74 1198 10 14.02 18
Chr14 86.01 0.31 274 0 1.46 0
Chr15 47.63 0.68 70 0 0.00 0
Chr16 74.37 0.43 172 1 10.47 2
Chr17 59.04 1.00 59 0 32.20 2
Chr18 119.97 1.02 118 2 23.73 2
Chr19 62.99 0.52 121 0 9.92 0
Chr20 80.10 0.90 89 2 21.35 3
Chr21 72.88 1.46 50 4 12.00 0
Chr22 50.24 0.72 70 0 8.57 1
Chr23 30.93 1.00 31 1 19.35 1
Chr24 73.43 0.34 219 0 7.76 2
Chr25 79.85 0.94 85 1 41.18 3
Chr26 65.21 1.05 62 1 16.13 1
Dt subgenome 902.67 0.64 1420 12 12.68 17
Total 1784.28 0.68 2618 22 13.29 35

aThe percentage of distortion loci account for the total loci each chromosome. PSDR, segregation distorted region.

physical map. The Dt subgenome showed good coverage of
the physical map, representing 96.81% of the genome assembly
length, while the At subgenome showed a lower coverage of
88.33% (Supplementary Table S2; Figure 6).

QTL Analysis of Fiber and Yield Traits

A total of 71 QTLs for fiber quality and yield traits with
4.70~32.28% of the total explained phenotypic variance (PV)
were identified by CIM analysis (Supplementary Table S3;
Figures 1-5). In these QTLs, 35 were positive additive
indicating HS46 contributed alleles leading to an increase in
relevant traits, while 36 were negative additive which meant
MARCABUCAGS8US-1-88 contributed alleles to increase fiber
quality and vyield traits. These QTLs were detected on 21
chromosomes, except Chr02, Chr06, Chr08, Chrl3, and Chr26.
Sixteen QTLs explaining 5.35~32.28% of the PV were detected
in both locations (Table 5). Among them, three were three QTLs
each for FL, FU, MIC, FE, and LP, and one for BW.

Fiber Length
Twelve QTLs were detected, explaining 5.28~17.98% of the
PV, and located on Chr05, Chr09, Chrl0, Chrl2, Chrl4,

Chrl5, and Chrl9 (Supplementary Table S3; Figures1-5).
Alleles that increased FL at 10 loci were derived from
MARCABUCAG8US-1-88, whereas two positive alleles were
contributed by HS46. Across both environments, qFL-Chr10-
1, qFL-Chr14-3, and qFL-Chrl5-1 were stably identified at
marker intervals of i11502Gh-i33011Gh, i15340Gh-i40518Gh,
and i02955Gh-i02315Gh, explaining 6.27~6.30, 6.21~15.05, and
8.38~11.12% of the PV, respectively (Table 5).

Fiber Uniformity

A total of eight QTLs were mapped on Chr01, Chr05, Chr09, and
Chr19 (Supplementary Table S3; Figures 1-5), which explained
5.28~17.98% of the PV. Notably, all of the loci showed negative
effects originating from MARCABUCAGS8US-1-88. The details
of three stable QTLs detected in all environments were as follows:
qFU-Chr09-1, flanked by markers i50203Gb and 117373Gh, and
explained 7.73~10.94% of PV; qFU-Chr09-2, between markers
i41596Gh and i26827Gh, accounting for 5.58~5.97% of the
FU variance; qFU-Chr09-3 located in the intervals between
markers i06281Gh and 107773Gh, explaining 6.31~7.48% of the
PV. Interestingly, all these three stable QTLs were on Chr09
(Table 5).
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FIGURE 1 | Genetic maps of Chr01/Chr15, Chr02/Chr14, and

Chr03/Chr17 homoeologous chromosomes and QTL detection for

fiber quality and yield traits in RIL population. Map distances were given

in centimorgans (cM). Markers showing segregation distortion are underlined

and indicated by red color and asterisks (*P < 0.05; **P < 0.01). Number

sign (#) markers represent skewing toward the HS46 allele, ampersand (&)

markers represent skewing toward the MARCABUCAG8US-1-88 allele.

Segregation distortion regions (SDRs) are named as ‘Chromosome + No.
(Continued)

Micronaire

Ten QTLs were identified and located on 8 chromosomes
(Chr01, Chr05, Chr07, Chr10, Chrl4, Chrl6, Chrl7, and
Chr24), explaining 5.52~18.24% of the PV (Supplementary
Table S3; Figures 1-5). Alleles for increasing MIC at nine loci
were contributed by HS46, and one loci was contributed by
MARCABUCAGS8US-1-88. gMIC-Chr14-1, gMIC-Chr16-1, and
gMIC-Chr16-2, detected in both environments, were located
in the intervals between 115345Gh and i34657Gh, i46435Gh
and i62679Gt, and i21384Gh and i22249Gh, respectively. They
explained 5.52~5.64, 5.77~6.53, and 7.35~9.20% of the PV,
accordingly (Table 5).

Fiber Elongation

Nine QTLs were mapped on Chrll, Chrl4, Chrl6, Chrl7,
Chr18, Chr20, and Chr24, explaining 5.65~32.28% of the PV
(Supplementary Table S3; Figures 1-5). All favorable QTL effects
were contributed by HS46. Stable detection of qFE-Chr14-1, qFE-
Chr20-1, and qFE-Chr24-1 flanked by SNP markers i15343Gh
and i21369Gh, i47006Gh and 147439Gh, 104503Gh and i04704Gh
were in both environments, explained15.15~17.53, 7.40~32.28,
and 5.35~5.78% of the FE variance, respectively (Table 5).
Three major QTLs, qFE-Chr14-1, qFE-Chr14-3, and qFE-Chr20-
1, explained more than 10% of variation.

Fiber Strength

Eight QTLs, explaining 5.14~9.96% of the total PV, were detected
on Chr05, Chr14, Chrl9, and Chr20 (Supplementary Table S3;
Figures 1-5). Alleles for increasing FS on Chr05 and Chrl19
were contributed by HS46, and positive alleles on Chr14 and
Chr20 came from MARCABUCAG8US-1-88. All of these eight
QTLs were detected in single environment, indicating that the
environmental effects were important for the performance of FS.

Boll Weight

For BW, among eight identified QTLs, seven were located on
six chromosomes (Chr10, Chrl6, Chrl8, Chr23, Chr24, and
Chr25) and the remaining two on Chr09 (Supplementary Table
S3; Figures 1-5). Alleles for increasing BW at the loci on
Chr09, Chr10, Chr18, Chr23, and Chr24, were contributed by
HS46, and on Chrl6 was from MARCABUCAGS8US-1-88. All
other seven QTLs were identified only in one environment
(Table 5), with the exception of qBW-Chrl0-1 which was
identified in both environments. Four major QTLs, gBW-Chr09-
2, gBW-Chr10-1, gBW-Chr18-1, and gBW-Chr23-1, explaining
10.62%, 24.73%/27.96% (detected in two environments), 12.28,
and 23.55% of the PV, respectively, were important in the
improvement of BW.

Lint Percent
Fifteen QTLs were detected on Chr03, Chr04, Chr05, Chrl0,
Chr12, Chrl4, Chrl6, Chrl7, Chr20, Chr21, and Chr22
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FIGURE 2 | Genetic maps of Chr04/Chr22, Chr05/Chr19 and Chr06/Chr25 homoeologous chromosomes and QTL detection for fiber quality and yield
traits in RIL population. All legends are same as described for Figure 1.
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(Supplementary Table S3; Figures 1-5). Among the 15 non-over
lapping QTLs, qLP-Chr04-1, qLP-Chr10-1, and qLP-Chrl2-1
were detected in both environments. Four major QTLs,

qLP-Chr10-1, qLP-Chrl12-1, qLP-Chrl4-1, and qLP-Chrl7-1,
explained more than 10% of variation. Among them, alleles
increasing LP at Chr10, Chrl4, and Chrl7 came from
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FIGURE 3 | Genetic maps of Chr07/Chr16, Chr08/Chr24, and Chr09/Chr23 homoeologous chromosomes and QTL detection for fiber quality and yield
traits in RIL population. All legends are same as described for Figure 1.
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FIGURE 4 | Genetic maps of Chr10/Chr20, Chr11/Chr21, and Chr12/Chr26 homoeologous chromosomes and QTL detection for fiber quality and yield

0.0 ——i40974Gh i00879Gh
i38824Gh#* i08691Gh
i07737Gh#™ o i08692Gh
i00170Gh o i19528Gh
i00171Gh#** <3 i32452Gh
i22660Gh 3 i08062Gh
i07540Gh » i33827Gh
i07547Gh = i25834Gh
i20988Gh i38136Gh

Jri07424Gh#* s i25512Gh
e B R iy
1
o7714Gh WS o ia7251Gh
ey L 2 Hoa1aah
i47711Gh P i01105Gh
i07558Gh i08516Gh
i07515Gh 116462Gh
i16082Gh i08628Gh
i34161Gh i08543Gh
i38542Gh i08567Gh
i19359Gh i08562Gh
i00284Gh 479 i08075Gh i49188Gh
i07446Gh 489 i08275Gh i22673Gh
i16079Gh 50.2 i16368Gh i37166Gh
i31481Gh 50.7 i08337Gh i35973Gh

[ i34296Gh 51.1 i32252Gh i44581Gh
i07474Gh 51.3\| [l i33566Ghs&* - i08451Gh
i07470Gh [/ |108322Gh#™ = i28715Gh
i2064s56h £ o o Vo li42s2oGns~ BOR  § 21900Gh
i35971Gh > : i37838Gh#* [ 12-1 ma 3y i08510Gh
i47631Gh =2 i25040Gh#"™ o i08508Gh
i22400Gh X 520 i46260Gh S i08559Gh
i23301Gh 5 524 i36891Gh i16463Gh
i31768Gh 527 i52799Gb i14139Gh

i33529Gh
43642Gh

i36765Gh&**

123175Gh

i39683Gh#** )SDR26-1

73C|
16424Gh#**
i27141Gh&*

FL
FU
MIC
FE
FS
BW
LP

MARCABUCAGS8US-1-88, whereas the one on Chrl2 was
derived from HS46.

QTL Clusters and Hotspots

Quantitative trait locus were not randomly distributed across
chromosomes and chromosomal regions. Some QTLs were
identified as “cluster” and “hotspot,” where clusters and hotspots
were defined to contain multiple QTLs within 20 ¢cM regions,
approximately, for different and same traits, respectively (Guo
etal.,, 2007; Rong et al., 2007; Said et al., 2013).

In the current study, there were two QTL clusters on Chr05
which contained three and five QTLs, respectively (Table 6).
The Chr05-cluster-1, which possessed three QTLs, was found at
11~13 cM for FL, MIC, and LP and Chr05-cluster-2 with five
QTLs was located at 40~55 cM for FL, FU, and FS. The FL
hotspot, Chr05-hotspot-1, carrying three QTLs, was located at
40~53 cM. It should be noted that the position of the hotspot
coincided with the second identified cluster.

Chr09 contained one cluster and one hotspot (Table 6). The
Chr09-cluster-1, identified at 46~62 cM, carried four QTLs for
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FIGURE 5 | Genetic maps of Chr13/Chr18 homoeologous
chromosomes and QTL detection for fiber quality and yield traits in
RIL population. All legends are same as described for Figure 1.

FU and BW while Chr09-hotspot-1, identified at 47~62 cM,
carried three QTLs of FU and overlapped the cluster Chr09-
cluster-1.

Chrl0 contained one cluster (Chrl0-cluster-1) pertaining to
FL, BW, and LP QTLs (Table 6). This cluster was located at
32~45 cM, containing four QTLs.

Chrl4 contained one cluster and three hotspots (Table 6).
The Chrl4-cluster-1 was located at 6~26 cM and carried eight
QTLs for FL, FS, MIC, and FE. The two hotspots, Chrl4-
hotspot-1 and Chrl4-hotspot-2, identified fell into the range
of the Chrl4-cluster-1, and were FL and FS related hotspots,
respectively. Furthermore, the three hotspots Chrl4-hotspot-1,
Chrl4-hotspot-2, and Chrl4-hotspot-3 for FE, FS, and FL
overlapped at 1~17, 6~22, and 14~26 cM, respectively,
indicating a possible fiber quality hotspot cluster in the region.

Chrl9 contained one cluster, Chr19-cluster-1, which ranged
from 20~28 cM, and carried four QTLs for FL, FU, and FS
(Table 6).

Chr20 had one cluster Chr20-cluster-1, which was identified
at 41~60 cM and carried three QTLs related to FE and FS
(Table 6).

Identification of the Epistatic and

QTL x Environment Interactions Loci
Nineteen e-QTLs were identified by the MET analysis of the
multi-environment phenotypic values (Supplementary Table S4;
Figure 7). Fifteen of them had both an epistatic main effect
and minor epistasis x environment interaction effect while
remaining four had the former effect only. The explained PV
by each QTL ranged from 3.89 to 6.22%, while that by each
QTL x environment interaction only ranged from 0.0 to 0.67%.
Among them, the highest number of e-QTLs (9) was detected
for FL, three for MIC, two for FE, two for FS, one for BW,
and two for LP. No e-QTL was detected for FU. For FL,
there were two loci i38186Gh-i11502Gh and i15345Gh-i18849Gh
overlapped with two additive QTLs, qFL-Chr10-1 and qFL-
Chr14-2, indicating both additive and epistatic value of these two
loci had played important role in FL. One pair of interacting
marker intervals, i08786Gh-i00558Gh and 109371Gh-109643Gh,
was detected for FL on the same chromosome of Chr19, whereas
other interacted loci were located on different chromosomes.
In addition, some marker intervals had interactions with
other multiple marker intervals to control same or different
traits. The marker interval, i22642Gh-i41613Gh on Chr21, had
interaction with two marker intervals, 135903Gh-i20966Gh on
Chr03 and i44474Gh-103341Gh on Chrl17, for FL. The marker
interval 116566Gh-108941Gh on Chrl9 interacted with two
marker intervals, i114920Gh-i51624Gb on Chr17 and i08832Gh-
i09452Gh on Chrl9, for MIC. The marker interval i10502Gh-
i36496Gh on Chr04 had interactions with two marker intervals,
i08933Gh-i28797Gh on Chr19 and i05035Gh-i22015Gh on
Chr14, to control two traits, FL and FS, respectively. The marker
interval i32883Gh-i13851Gh on Chrl8 had interactions with
two marker intervals including i38186Gh-111502Gh on Chrl0
and i02298Gh-i42430Gh on Chr01 pertaining to FL and FE,
respectively.
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FIGURE 6 | Collinearity between the genetic map (blue) and the physical map (orange). (A) Collinearity of the At subgenome between the genetic map and
the physical map. (B) Collinearity of the Dt subgenome between the genetic map and the physical map.

DISCUSSION

SNP Discovery and Map Construction

With the development of theoretical and applied genetic breeding
research, high-density genetic maps are becoming more and
more important. SNPs were proved to be the most abundant form
of genetic variation, providing a rich source of DNA markers
(Agarwal et al., 2008). Recently, SNP arrays for many crops
had been developed and utilized in MAS breeding (Fang et al.,
2013; Gao et al.,, 2015; Wang X. et al,, 2015). In present work,
2618 polymorphic SNP markers from a 63K SNP assay (Hulse-
Kemp et al.,, 2015) were used to construct a relative high-density
genetic map for 188 RILs derived from the combination of
HS46/MARCABUCAG8US-1-88.

The total length of the linkage map was 1784.28 cM, far
longer than previously map lengths reported with the same
cross (Shappley et al.,, 1998; Wu et al., 2008). The interval of
the map was 0.68 cM/marker, increasing the density of the
previous linkage map to the thickest linkage map in upland
cotton and representing a considerable advance over previously
map researches based on RFLP, SSR, AFLP, ITIS], SRAPetc
(Shappley et al, 1998; Ulloa et al., 2002; Shen et al., 2005,
2006; Zhang et al, 2005, 2009; Wu et al., 2008; Tan et al,
2014; Liu et al., 2015). The collinearity analysis showed that
the constructed map had good collinearity with the G. hirsutum
reference genome, indicating the high quality and accuracy of the
map. One main reason for the lower coverage of At subgenome
than Dt subgenome was that two linkage groups, Chrl2 and
Chr10, only represent 10.91 and 70.34% of the corresponding
chromosomes, respectively.

Consistent with previous studies (Tan et al., 2014; Cao et al.,
2015; Hulse-Kemp et al., 2015), more markers were found on Dt
subgenome (54.24%) than At subgenome (45.76%) in the present
map, which was attributed to the lower level of polymorphism
in At subgenome of upland cotton. The Dt subgenome was
longer than At subgenome in this map, duo to Dt subgenome
with more loci experienced a higher frequency of recombination
(Guo et al., 2007). Although the average density was high, there
were still some gaps in several chromosomes. Moreover, like
previous maps (Shen et al.,, 2006; Tan et al., 2014; Cao et al,
2015), although the markers of our map distributed evenly on
the entire genome, there were still some chromosomes anchored
more markers than others, which might be attributed to the
non-random distribution of markers and the lack of marker
polymorphism between mapping parents on some chromosomes
because of relative narrow range of genetic diversity in upland
cotton.

Segregation distortion, regarded as the important source of
plant evolution, widely exists in plant populations. The species,
population types, crosses, and marker types of plants will lead
to significant variance in segregation distortion with different
origin, genetic effects, and degree (Xu et al., 1997). The reports
from intraspecific population of upland cotton indicated that
the ratio of segregation distortion enhanced with the increase
of divergence level of the parents (Shappley et al., 1998; Ulloa
et al., 2002; Shen et al., 2005, 2006), and the ratio of segregation
distortion in the RIL population was higher than that in the F,
population, which might mainly result from genetic drift (Shen
et al,, 2006). In present study, 13.29% of the total loci showed
segregation distortion (P < 0.05), which was similar to previous
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TABLE 5 | Stable quantitative trait locus (QTLs) for fiber quality and yield identified in the upland cotton RIL population.

Traits? QTL Environment® Flanking markers Position® Lopd Additive® R2(%)f
FL qFL-Chr10-1 Yc i11502Gh and i33011Gh 44.51 2.65 0.29 6.30
Bg i11502Gh and i33011Gh 44.51 2.68 0.26 6.27
gFL-Chr14-3 Yc i15340Gh and i34657Gh 23.31 7.71 —0.46 15.05
Bg i34657Gh and i40518Gh 25.71 2.50 -0.27 6.21
gFL-Chr15-1 Yc i02955Gh and i02314Gh 13.11 3.69 —-0.36 8.38
Bg i02955Gh and i02315Gh 12.31 5.21 —0.38 11.12
FU qFU-Chr09-1 Yc i50203Gb and i17373Gh 3.81 3.33 -0.24 7.73
Bg i50203Gb and i17373Gh 3.81 417 —-0.29 10.94
qFU-Chr09-2 Yc i41596Gh and i26826Gh 4711 3.12 —-0.24 5.97
Bg i41596Gh and i26826Gh 4711 2.68 -0.24 5.58
qFU-Chr09-3 Yc i06281Gh and i07773Gh 52.61 3.63 0.30 7.48
Bg i18943Gh and i07773Gh 52.61 2.76 0.29 6.31
MIC gMIC-Chr14-1 Yc i15340Gh and i34657Gh 23.31 2.51 0.08 5.62
Bg i15345Gh and i00465Gh 20.91 2.52 0.11 5.64
gMIC-Chr16-1 Yc i46435Gh and i62679Gt 51.01 2.89 0.08 6.53
Bg i01613Gh and i58367Gb 49.31 2.54 0.09 5.77
gMIC-Chr16-2 Yc i21384Gh and i22249Gh 57.01 3.36 0.09 7.35
Bg i44137Gh and i18258Gh 57.41 4.23 0.15 9.20
FE gFE-Chr14-1 Yc i15343Gh and i21369Gh 16.81 7.80 0.30 17.53
Bg i15343Gh and i21369Gh 15.71 7.42 0.26 15.15
qFE-Chr20-1 Yc i47006Gh and i17500Gh 41.51 3.28 0.20 7.40
Bg i17500Gh and i47439Gh 4711 6.19 0.44 32.28
qFE-Chr24-1 Yc i04503Gh and i04704Gh 73.31 2.62 0.75 5.78
Bg i04503Gh and i04704Gh 73.31 2.49 0.62 5.35
BW qBW-Chr10-1 Yc i25267Gh and i30274Gh 32.21 2.82 0.61 27.96
Bg i25267Gh and i30274Gh 32.21 2.69 0.60 24.73
LP gLP-Chr04-1 Yc i20890Gh and i24786Gh 11.41 3.50 0.57 8.20
Bg i44575Gh and i24758Gh 11.11 3.28 0.56 7.49
gLP-Chr10-1 Yc i38146Gh and i22401Gh 35.11 4.20 —2.32 8.86
Bg i25267Gh and i30274Gh 33.21 2.68 -2.27 20.71
gLP-Chri12-1 Yc i40974Gh and i48211Gh 4,01 3.38 0.66 10.42
Bg i40974Gh and i48211Gh 4,01 2.81 0.64 11.79

aFL, fiber length; FU, fiber uniformity; MIC, micronaire; FE, fiber elongation; FS, fiber strength; BW, boll weight; LF, lint percentage. bye, Yacheng of Hainan Province;
Bg, Baogang of Hainan Province. °Position of QTL located on chromosome: as cM distance from the top of each chromosome. 9A LOD threshold of 2.5 was used for
declaration of QTL, based on 1000 permutations at a significance level of 0.01. ®Positive “additive effect” indicates an increasing effect from HS46; negative “additive
effect” indicates an increasing effect fromMARCABUCAG8US-1-88. fPhenotypic variance explained by QTL.

TABLE 6 | Quantitative trait locus Cluster/Hotspot for fiber quality and yield in the upland cotton RIL population across two environments.

Cluster/Hotspot? Location® QTL

Chr05-cluster-1 11-13cM gFL-Chr05-3, gLP-Chr05-1, gMIC-Chr05-1

Chr05-cluster-2 40-55 cM gFL-Chr05-4, gFL-Chr05-1, gFU-Chr05-1, qFL-Chr05-2, gFS-Chr05-1
Chr05-hotspot-1 40-53 cM qFL-Chr05-4, qFL-Chr05-1, gFL-Chr05-2

Chr09-cluster-1 46-62 cM gBW-Chr09-1, gFU-Chr09-2, gFU-Chr09-3, gFU-Chr09-4
Chr09-hotspot-1 47-62 cM gFU-Chr09-2, gFU-Chr09-3, gFU-Chr09-4

Chr10-cluster-1 32-45 cM gBW-Chr10-1, gLP-Chr10-1, gLP-Chr10-2, gFL-Chr10-1
Chr14-cluster-1 6-26 cM gFS-Chr14-1, gFL-Chr14-1, gFS-Chr14-2, gFE-Chr14-1, gFL-Chr14-2, gFS-Chr14-3, gFL-Chr14-3, gMIC-Chr14-1
Chr14-hotspot-1 14-26 cM gFL-Chr14-1, gFL-Chr14-2, gFL-Chr14-3

Chr14-hotspot-2 6-22 cM gFS-Chr14-1, gFS-Chr14-2, gFS-Chr14-3

Chr14-hotspot-3 1-17 cM gFE-Chr14-2, gFE-Chr14-3, gFE-Chr14-1

Chr19-cluster-1 20-28 cM gFU-Chr19-1, gFL-Chr19-1, gFS-Chr19-1, gFS-Chr19-2
Chr20-cluster-1 41-60 cM gFE-Chr20-1, gFS-Chr20-1, gFS-Chr20-2

aCluster, a number of QTLs for different traits within approximately 20 cM regions; Hotspot, a multiple QTLs for the same traits within a 20 cM region. Position of QTL
Cluster/Hotspot located on chromosome: as cM distance from the top of each chromosome.
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FIGURE 7 | Epistatic and QE interaction loci for fiber quality and yield of RILs across two environments by IciMapping. The solid bars with different
colors represent different chromosomes and the dotted line with different colors indicates different chromosomes, for which the legend is given at the side of figure.
FL, fiber length; FU, fiber uniformity; MIC, micronaire; FE, fiber elongation; FS, fiber strength; BW, boll weight; LP, lint percentage.
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maps of upland cotton (16.6~36.7%; Tan et al., 2014; Cao et al,,
2015; Liu et al., 2015). Most distorted loci skewed to HS46 alleles,
which might be the result of chromosomal elements markers
diverged via female drive in the meiosis (Fishman and Willis,
2005). Furthermore, most segregation distortion loci occurred
in the clusters, like previously reported for interspecific and
intraspecific populations (Guo et al., 2007; Zhang et al., 2009; Yu
et al,, 2011b; Tan et al., 2014; Liu et al., 2015). The loci clustering
on the same chromosome or within the same SDR skewed to the
same allele suggested that genetic hitchhiking effects existed in
upland cotton (Yu et al., 2011b).

Significance and Potential Application of
QTL Mapping

The genotypic value for HS46 was greater (P < 0.05) than
that for MARCABUCAGS8US-1-88 with respect to FL, FU, BW,
FS, and MIC. Similar to the same cross used by Wu et al.
(2008), no significant difference between the two parents was
detected for FE and LP. Even though the two parents were
phenotypically similar regarding these two traits, due to genetic
dissimilarities between the two parents, significant differences
in this RIL population existed. In the present research, FS had
a low heritability and easily affected by environment. Similar

results could be found in previous literatures about a four-
way cross population in upland cotton (Qin et al.,, 2008). The
obvious difference indicated FS was highly influenced by the
experimental environment and difficult in genetic improvement.
Wang et al. (2015a) suggested FS was a moderate heritability
trait and that all the fiber quality and yield component
traits presented significant environmental effects. Moreover, in
the research based on same population, FS did not show a
higher heritability in all the measured traits but a significant
VGE/VP instead (Wu et al., 2008). Therefore, the heritability
of FS was not stable and affected by different population and
environment.

Similarly, BW was highly influenced by environments.
Furthermore, BW was significantly and positively correlated
with MIC and FS. Consequently, it is feasible to improve
BW by selecting these correlated traits, having more accurate
repeatability across environments in breeding. Stable QTLs such
as qFL-Chr14-3, qFL-Chr15-1, qFU-Chr09-1, qFE-Chr14-1 qFE-
Chr20-1, gBW-Chr10-1, qLP-Chr10-1, and qLP-Chr12-1 could
be used in breeding. It was more likely that these QTLs could be
used to identify candidate genes for these related traits because of
the availability of high-density SNP markers. In such case, they
will be the potential candidates for fine mapping and ultimate
candidate gene discovery.
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Although there were many differences in parental lines,
mapping populations, and markers type, our results were
comparable with earlier identified QTLs. Searching for QTLs
of upland cotton in a CottonQTLdb database® developed by
Said et al. (2015) and statistical data on cotton QTL previously,
there were seven QTLs for FL, two QTLs for FU, two QTLs
for MIC, four QTLs for FE, two QTLs for FS, and five QTLs
for LP in present work, sharing same genetic position (spacing
distance < 5 cM) and physical position with earlier reports
(Wu et al.,, 2008; Tan et al., 2014; Liu et al., 2015; Zhang Z.
et al., 2015). In addition, five QTLs for FL, six QTLs for FU,
eight QTLs for MIC, four QTLs for FE, seven QTLs for FS,
six QTLs for BW, and seven QTLs for LP had been mapped
on the same chromosomes but not on the same position as
reported in the previous researches. These inconsistencies might
be due to different genetic backgrounds and DNA markers
(Shappley et al, 1998; Wu et al, 2008; Said et al, 2015).
Remaining nine additive QTLs (qFE-Chrl7-1, qBW-Chr09-
1, gBW-Chr09-2, gBW-Chr23-1, gBW-Chr24-1, gBW-Chr25-1,
qLP-Chr20-1, qLP-Chr21-1, and qLP-Chr21-2) might be novel
loci, due to unavailability of any reports for these traits on those
chromosomes. As the number of identified QTLs for fiber quality
and yield traits increased, the genetic control of fiber quality and
yield will be better understood.

Molecular Mechanism of Trait

Correlation and Linkage Drag

Co-localization of QTLs on chromosomes, referred to as
“QTL cluster/hotspot,” has previously been reported in cotton
(Shappley et al., 1998; Qin et al., 2008; Said et al., 2013) and
many other species (Gonzalez et al.,, 2015; Li et al.,, 2015). In
the present study, 12 certain genomic regions, especially, Chr05,
Chr09, Chr10, Chrl14, Chrl19, and Chr20, were investigated for
their involvement in controlling one (hotspot) or more (clusters)
fiber quality or yield traits, the similar result was also reported in
the publications (Qin et al., 2008; Sun et al., 2011; Said et al., 2013;
Yu et al., 2013). The existence of QTL clusters explained why so
many traits were highly interrelated.

Based on the comprehensive analysis of clusters and hotspots
in this study, breeding programs targeting fiber quality or yield
traits can focus on hotspot clustering regions and select around
the region. Notably, almost all the hotspots overlapped QTL
clusters. The presence of QTL clusters and hotspots proved that
genes related to certain traits were more heavily concentrated in
certain regions of genome than others (Said et al., 2013). The
discovery of cluster and hotspot may be useful in MAS breeding
program and may help breeders to select the traits of interests
and find novel QTLs once the markers have anchored these
regions.

Interaction between Loci within and

Across Chromosomes
It was successful to identify e-QTLs with both additive and
epistatic effects, e-QTL pairs and epistasis x environment

Shttp://www.cottonqtldb.org

interactions in the present work, which were often neglected in
some complex trait studies. Generally, if the proportion of PV
explained by the identified additive QTL is close to broad-sense
heritability, epistasis is less important (Li et al., 2007). However,
for FL, the total PV explained by additive QTLs were much lower
than the broad-sense heritability (66%, Table 2), indicating that
there were epistatic interactions in these loci. Finally, nine pairs
of e-QTLs for FL were detected in our work, of which there
were two loci, 138186Gh-111502Gh on Chrl0 and i15345Gh-
i18849Gh on Chrl4, locating on the same position with two
additive QTLs (qFL-Chr10-1 and qFL-Chr14-2), suggesting that
both addictive and epistatic effects had played important roles
in genetic control of FL. In fact, interactions among loci or
QTL x environmental factors contributed a substantial effect
to complex trait phenotypic variation (Carlborg and Haley,
2004). Several novel QTLs and specific trait relationships between
loci, within and across chromosomes, could be considered
as the interactions between loci (Grosse-Brinkhaus et al,
2010).

CONCLUSION

A high-density linkage map was constructed in the upland
cotton RIL population using the 63K cotton SNP array. Nine
novel QTLs, seven pleiotropic QTL clusters, five hotspots, and
19 e-QTLs for fiber quality and yield traits were identified
with tightly linked SNP markers. These QTLs could serve as
target regions for map-based gene cloning and MAS in cotton
breeding.
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