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Climate models predict shifts in the amount, frequency and seasonality of rainfall.
Given close links between grassland productivity and rainfall, such changes are likely
to have profound effects on the functioning of grassland ecosystems and modify
species interactions. Here, we introduce a unique, new experimental platform – DRI-
Grass (Drought and Root Herbivore Interactions in a Grassland) – that exposes a
south-eastern Australian grassland to five rainfall regimes [Ambient (AMB), increased
amount (IA, +50%), reduced amount (RA, −50%), reduced frequency (RF, single rainfall
event every 21 days, with total amount unchanged) and summer drought (SD, 12–
14 weeks without water, December–March)], and contrasting levels of root herbivory.
Incorporation of a belowground herbivore (root-feeding scarabs) addition treatment
allows novel investigation of ecological responses to the twin stresses of altered rainfall
and root herbivory. We quantified effects of permanently installed rain shelters on
microclimate by comparison with outside plots, identifying small shelter effects on
air temperature (−0.19◦C day, +0.26◦C night), soil water content (SWC; −8%) and
photosynthetically active radiation (PAR; −16%). Shelters were associated with modest
increases in net primary productivity (NPP), particularly during the cool season. Rainfall
treatments generated substantial differences in SWC, with the exception of IA; the
latter is likely due to a combination of higher transpiration rates associated with greater
plant biomass in IA and the low water-holding capacity of the well-drained, sandy soil.
Growing season NPP was strongly reduced by SD, but did not respond to the other
rainfall treatments. Addition of root herbivores did not affect plant biomass and there
were no interactions between herbivory and rainfall treatments in the 1st year of study.
Root herbivory did, however, induce foliar silicon-based defenses in Cynodon dactylon
and Eragrostis curvula. Rapid recovery of NPP following resumption of watering in
SD plots indicates high functional resilience at the site, and may reflect adaptation of
the vegetation to historically high variability in rainfall, both within- and between years.
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DRI-Grass provides a unique platform for understanding how ecological interactions will
be affected by changing rainfall regimes and, specifically, how belowground herbivory
modifies grassland resistance and resilience to climate extremes.

Keywords: climate extremes, community ecology, drought, NPP, plant-herbivore interactions, rainfall
manipulation, root herbivory

INTRODUCTION

Grasslands cover more than 40% of the Earth’s land surface
(LeCain et al., 2002). They support tremendous biodiversity,
underpin grazing and animal production, and store more than
one-third of global terrestrial carbon stocks (Trumper et al.,
2009). Given the close relationship between rainfall and both the
productivity and diversity of grasslands (Sala et al., 1988; Walter
et al., 2012), future changes in rainfall regimes are likely to have
a substantial impact on the ability of grasslands to provide these
important ecosystem services.

Climate models predict changes in the overall amount
and seasonality of rainfall, and increased intervals between
rain events (i.e., reduced rainfall frequency; Easterling et al.,
2000; Fischer et al., 2013; Intergovernmental Panel on Climate
Change [IPCC], 2013). Of particular note is the expectation
that prolonged and more intense droughts, in combination
with warmer temperatures, will combine to expose ecosystems
to more frequent extreme climates, pushing today’s ecosystems
into uncharted climate territory (Kayler et al., 2015). The
seasonality of rainfall inputs is also a crucial determinant of
grassland dynamics, with seedling establishment, productivity
and senescence all influenced by the amount and timing
of growing season rainfall (Huxman et al., 2004). Indeed,
even small increases in winter rainfall have been shown
to influence the functioning of grassland ecosystems in the
following spring (Fry et al., 2014a). Furthermore, there is a
growing body of evidence that reductions in the frequency
of rainfall events are at least as (and sometimes more)
important as reductions in the size of events, in terms of
their effects on key ecological processes (Fay et al., 2003;
Knapp et al., 2008; Heisler-White et al., 2009; Peng et al.,
2013).

Shifts in rainfall regimes are not only expected to have a
major impact on the composition and functioning of grasslands
(Fry et al., 2016), but are also likely to modify interactions
between plants and their associated herbivores (Staley et al.,
2007; Johnson et al., 2011; Lee et al., 2014). Invasive root-
feeding scarab beetles were accidentally introduced to Australia
in the first part of the 20th century (recently reviewed by
Frew et al., 2016) and, in pastures, their collective mass can
exceed that of mammals grazing aboveground (Britton, 1978).
Because root herbivory is hidden and occurs by attrition,
losses in primary productivity are less conspicuous than
those due to aboveground herbivory, but can be up to 25%
in grassland systems (Seastedt and Murray, 2008). Even
minor root herbivory can damage plants and alter their
physiology by: (i) decreasing nutrient and water uptake,
(ii) causing disproportionate resource losses by severing

roots, (iii) diverting assimilates away from shoot growth
for root re-growth, (iv) imposing leaf water deficits, and
(v) causing infection (Johnson and Murray, 2008; Zvereva
and Kozlov, 2012). The resulting effects on plant biomass
and metabolism are often larger (Meyer et al., 2009) and
differ from those caused by aboveground herbivores (Zvereva
and Kozlov, 2012). Impairment of root function via root
herbivory has parallels with water stress imposed via periods
of drought. Indeed, a recent meta-analysis has shown that
root herbivory and drought reduced plant growth to a greater
extent than any other combination of biotic and abiotic
stresses (Zvereva and Kozlov, 2012). Moreover, root herbivory
can change plant community composition in grasslands
via preferential feeding on certain plants (Schallhart et al.,
2012).

DRI-Grass (Drought and Root Herbivore Interactions in a
Grassland Ecosystem) is a new experimental platform designed
to examine ecosystem responses to the twin stresses of altered
rainfall and root herbivory. Uniquely, DRI-Grass includes
shifts in the size, frequency and seasonality of rainfall events,
and incorporates a factorial belowground herbivore addition
treatment to investigate interactions between these abiotic and
biotic stresses. It joins a new generation of drought experiments
(sensu Thompson et al., 2013) that incorporate realism in
terms of both future rainfall scenarios (e.g., Jentsch et al.,
2007; Hoover et al., 2014; Knapp et al., 2015) and also trophic
complexity (Johnson et al., 2011, 2015; Zhu et al., 2014). Despite
the clear importance of root herbivores for the functioning
of grassland ecosystems (Frew et al., 2016), their role in
moderating grassland resistance and resilience under changing
rainfall regimes has rarely been examined in long term field-scale
experiments.

Here we introduce DRI-Grass, presenting microclimatic data
that demonstrate the impacts of shelter infrastructure on the
physical and biotic environment. We also present data on
early vegetation responses to test the hypotheses that: (1)
reduced rainfall amount and summer-long drought, will reduce
aboveground productivity to a greater degree than a shift in
rainfall frequency toward fewer, larger events (with annual
rainfall amount unchanged); and (2) root herbivory will alter
plant quantitative (e.g., ANPP) and qualitative (e.g., chemical)
responses to altered rainfall regimes. In focusing on our approach
and methodology, this paper aims to provide the methodological
detail that will assist other researchers interested in constructing
experimental platforms that incorporate both biotic and abiotic
stressors. Presentation of selected early results is intended
to provide a broad indication of the ecosystem responses
that can be measured using this multi-stressor, multi-trophic
approach.
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THE DRI-GRASS EXPERIMENTAL
PLATFORM

The study site is located in Richmond, NSW, Australia (S33
36′35, E150 44′18), at an elevation of 25 m a.s.l. Mean annual
rainfall at the site is 806 mm (Australian Government Bureau
of Meteorology, Richmond – UWS Hawkesbury Station1), with
summer being the wettest season and winter generally the
driest. Seasonal mean maximum/minimum temperatures are
29.4/18.8◦C in summer and 17.3/3.2◦C in winter. The soil is
a Blackendon Sand, with a sandy loam texture and a water
holding capacity of 20–22%. There is a mineral hardpan present
at approximately 90 cm depth. Table 1 summarizes the soil
characteristics of the site.

The experiment is situated within a former pasture grassland,
comprising a total of 62 plant species (Supplementary Table S1),
of which ∼12 species are common. The most abundant species
include the C4 grasses Axonopus fissifolius, Cynodon dactylon,
Cymbopogon refractus, Eragrostis curvula, and Paspalum
dilatatum, the C3 grasses Microlaena stipoides and Lolium
perenne, and the C3 forbs Hypochaeris radicata and Plantago
lanceolata. The site had been under grazing management until
2001; since this time grazers were removed, the site was fenced
and subsequently mown every 2–3 months, until the experiment
commenced in June 2013.

RAINOUT SHELTER DESIGN

Shelter frames are made from 25 mm galvanized steel tubing
and covered with a single sheet of clear Acrylic cast Perspex
(1.88 m× 2.49 m, Mulford Plastics, Silverwater, NSW, Australia).
Roofs are at a maximum height of 140 cm, sloping at a
20◦ angle down to a low-end height of 70 cm (Figure 1).
Shelters are orientated along a SW-NE axis, with the low end
facing into the direction of the prevailing wind. All rainfall is
intercepted and directed away from the plots. Water treatments
are applied following each rainfall event, using an irrigation
system controlled by a Campbell logger (CR1000) and a series
of 16-Channel AC/DC Relay Controller units (SDM-CD16AC
units; Campbell Scientific, Thuringowa, QLD, Australia) that
control solenoid valve opening/closure, and thus regulate delivery
of water to individual plots. To simulate rainfall patterns that
reflect actual rainfall events, the amount of water delivered is
proportionate to the amount of precipitation that has fallen
in the previous 24 h (i.e., AMB receives the same amount
of rainfall as measured at the site in the previous 24 h; IA
receives 50% more; and RA receives 50% less than the ambient
amount). Target amounts of water are set using a calibrated
flow meter. Water is delivered to each plot via a network
of polyethylene pipes and four 90◦ spray heads per plot,
mounted at a height of 30–45 cm (moveable, depending on
vegetation height) at the corners of each shelter. An impermeable
root barrier is installed within each plot, just inside the roof
footprint, to a depth of 30 cm, giving an actual plot size of

1http://www.bom.gov.au

TABLE 1 | Soil properties at the DRI-Grass field site.

Soil property Value (units)

Texture 84.4% sand

7.4% silt

9.2% clay

SOM content 2.4%

pH 6.4

Total N 0.011 mg g−1

Total P 0.0016 mg g−1

∗Exchangeable NO3 17.1 µg cm−2 90 days−1

∗Exchangeable NH4 3.6 µg cm−2 90 days−1

∗Exchangeable PO4 1.55 µg cm−2 90 days−1

Bulk density 1.66 g cm−3

C:N ratio 12.98

Water holding capacity 0.21 ml ml−1

∗Exchangeable nutrient concentrations obtained using ion exchange membranes
(Plant Root Simulators) R©; values measured at 0–10 cm depth.

1.8 m × 2.0 m (i.e., 3.6 m2). This barrier prevents incursion
of roots from outside the experimental plots and minimizes
horizontal water flow between plots and the surrounding
grassland area.

ENVIRONMENTAL MONITORING

Rainfall is measured using a tipping bucket rain sensor (0.2 mm
graduation, ICT International, Armidale, NSW, Australia) and
air temperature is measured on site every 5 min (model 107
sensor, with radiation shield, Campbell Scientific, Thuringowa,
QLD, Australia). Photosynthetically active radiation (PAR) is
recorded at 15 min intervals (Apogee sensors, model SQ-110, ICT
International, Armidale, NSW, Australia), under three shelters
and in three unsheltered (outside) plots.

Soil moisture TDR probes (CS616, Campbell Scientific,
Thuringowa, QLD, Australia) with 30 cm long prongs are
installed at an angle of 30◦, to integrate moisture readings for
the top 15 cm of the soil profile, in half of the plots (n = 3
per treatment combination). Regular (approximately every 4–
6 weeks) measurements of soil moisture are also conducted
manually in all plots, using a theta probe (Delta T Devices, UK),
to determine whether automatically logged moisture readings
from permanently sensored plots are representative of the
respective treatments.

Given the open-sided nature of the shelters and the potential
for rain ingress under windy conditions, edge effects on soil
moisture were quantified under a range of conditions, including
during dry periods and after small, medium and large rainfall
events. Soil moisture (0–10 cm depth) was measured using a
theta probe inserted in a 5 × 5 grid system, covering 25 points
per plot, evenly spaced at a distance of 40 cm from the plot
boundary and 40 cm from the next grid point. These within-plot
measurements were compared with readings taken immediately
outside of the shelters (eight replicates – two along each side of
the plot).
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FIGURE 1 | Schematic of DRI-Grass rainout shelter design.

EXPERIMENTAL DESIGN

The experiment comprises five different rainfall treatments, three
of which are crossed with a root herbivory treatment (detailed
below). All treatment combinations are replicated six times, in a
fully randomized block design [n = 48 (i.e., 8 × 6) for sheltered
plots]. There are also 12 unsheltered plots [hereinafter referred
to as “Outside Plots (OP)”] – six with herbivore additions and
six without the addition of herbivores – making a total of 60
experimental plots.

Rainfall treatments comprise: (a) sheltered control (AMB),
(b) reduced rainfall amount (RA: 50% reduction of ambient),
(c) reduced rainfall frequency (RF: ambient rainfall amount, as
a single application once every 21 days), (d) increased rainfall
amount (IA: 50% increase of ambient), and (e) summer drought
(SD: complete removal of all rainfall for a 12–14 weeks period,
December–March, with ambient rainfall thereafter). Unsheltered
(outside control) plots (OP) receiving ambient rainfall were also
included to evaluate the magnitude of shelter effects. Rainfall
treatment effects were assessed by comparing the four altered
scenarios (RA, RF, IA, and SD) to the sheltered control plots
(AMB). Rainfall treatments commenced on June 21, 2013.

Root herbivore treatment: Three of the rainfall treatments
(AMB, RA, and RF) and OP also include a belowground
herbivore addition treatment (n = 6 for each treatment
combination). To impose the herbivore addition treatment,
27 g of locally collected adult scarab beetles (Coleoptera:
Scarabaeidae) were added to the herbivore addition plots in
December 2013, and an additional 9 g of adult beetles were added
to each plot in February–March 2014. Adult beetles were added
to plots by placing them within mesh enclosures in the plots, and
allowing them to oviposit for a period of 3 days on each occasion,
before mesh enclosures were removed. In order to control for the
effects of the mesh enclosures on vegetation, identical structures
were placed on paired (herbivore-free) plots at the same time.
We verified the efficacy of herbivore treatments 18 months after

beetle additions (October 2015) via destructive, within-plot soil
excavation and associated sampling. This involved excavating
two holes (25 cm × 10 cm) per plot to a depth of 20 cm;
samples were separated into two depths: 0–10 and 10–20 cm, and
sieved. Macro and mesofauna were collected, identified under a
dissecting microscope and counted.

COORDINATED SAMPLING CAMPAIGNS

We undertake regular, coordinated sampling campaigns, both
above- and belowground, to determine treatment impacts on
plant, microbial and invertebrate communities, and associated
changes in ecosystem properties and processes. Details of these
sampling campaigns are outlined below, with selected data
presented in this methods paper; further data characterizing
above- and belowground responses will be presented in
subsequent publications.

Vegetation Monitoring
Non-destructive vegetation cover measurements are conducted
approximately every 4 months by placing a 1 m2 quadrat with 25
sub-divisions in the center of each plot and recording species level
presence/absence data in each sub-division. Since October 2013,
twice-yearly harvests (April and October) of all aboveground
plant material have been undertaken. For this, vegetation is cut
to ground level within the central 1 m2 of each plot and, in a
randomly selected subsample (20–40% of the harvested material),
live (green) material is sorted to species level and separated
from dead biomass. All plant material is oven-dried at 80◦C
for 48 h, and weighed to provide a measure of growing season
(October–April) and cool season (April–October) productivity
for all plots.

Invertebrate Monitoring
Immediately prior to the harvests in October 2013, April 2014,
and October 2014, aboveground invertebrates were sampled from
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each of the plots using a ‘G-Vac’ suction sampler (SH 86C,
Stihl AG & Co. KG, Germany). The device was passed over the
plots in a zigzag pattern for 20 s, with all dislodged material
and invertebrates captured in a fitted organza bag. In addition,
quarterly from October 2013 until April 2015, yellow sticky
card traps (Bugs for Bugs, Mundubbera, QLD, Australia) were
suspended from the center of each shelter roof (or at the same
height for unsheltered controls) for a period of 1 week to capture
flying invertebrates. Invertebrates from both suction samples and
sticky traps were identified to at least Order level (except for two
groups taken to Subclass only – Acari and Collembola).

To quantify belowground invertebrate responses to altered
rainfall regimes, two composite soil samples, each composed
of two soil cores (3 cm diameter, 10 cm depth) are collected
at the beginning (October) and end (April) of each growing
season for extraction of soil nematodes and microarthropods. We
focus on these two groups as they are the two most abundant
soil invertebrate groups. Nematodes and microarthropods are
extracted using standard techniques (Baermann, 1917; Tullgren,
1918). Nematodes are classified to trophic level based on
morphology under an inverted microscope, and counts converted
to individuals per kg dry soil. Microarthropods are initially sorted
into springtails, oribatid, mesostigmatid and other mites (for
more detail see Nielsen et al., 2016). More detailed analyses
will be undertaken on archived samples over the course of the
experiment. Further assessments of soil invertebrate groups that
require more destructive sampling campaigns will be undertaken
at a later stage in the experiment to avoid substantial disturbance.

Plant, Soil, and Microbial Analyses
Leaf material was sampled from three grass species (C. dactylon,
E. curvula, and M. stipoides) in November 2014 and analyzed
for silicon concentrations. Ground plant material was pressed
at 11 tons into 5 mm thick cylindrical pellets with a manual
hydraulic press using a 13 mm die (Specac, Orpington, UK). Si
concentration (% dry mass) was determined using a commercial
P-XRF analyser (Niton XL3t900 GOLDD analyser: Thermo
Scientific Winchester, UK) held in a test stand (SmartStand,
Thermo Scientific, Winchester, UK; Reidinger et al., 2012).

Since April 2014, we have carried out regular sampling
campaigns to investigate treatment effects on bulk soil properties
(e.g., chemistry, nutrient availability) and processes (e.g., enzyme
activities). Soil samples comprise 8–10 cores (0–10 cm deep,
1 cm wide) per plot. Analyses for soil chemistry, microbial
and enzyme activity are conducted using fresh soil samples;
molecular analyses (qPCR and MiSeq Illumina high-throughput
sequencing) are carried out on DNA extracted from frozen
samples, using the PowerSoil kit R© (MoBio). Results of soil and
microbial analyses will be presented in a subsequent paper.

STATISTICAL ANALYSIS

All analyses were carried out using linear models in R (Version
3.2.4, R Core Team, 2016). Shelter effects on PAR and air
temperature were evaluated for month-long periods in summer
(November 2014) and winter (August 2014), to compare

differences between AMB (sheltered) control plots and outside
(unsheltered) control plots. Data from all 48 sheltered plots
were used to evaluate rainfall treatment effects on plant biomass.
Data were first inspected for homogeneity of variances and
normality of errors and, where necessary, log, box-cox or arc-sine
transformation was carried out prior to analyses (Crawley, 2012).
Treatment effects were evaluated by first fitting the full model
(rainfall treatment, herbivore addition and their interactions) and
then model simplification was undertaken by removing non-
significant terms. When neither the interaction between rainfall
treatment and herbivore addition, nor herbivore addition on
its own were significant (i.e., P > 0.10), herbivore-added plots
were retained in the analysis to assess rainfall treatment effects.
When overall treatment effects were significant, Tukey’s HSD post
hoc tests were used to determine significance between treatment
levels; results were considered significant if P < 0.05.

Soil moisture data (November 27, 2013 to November 25, 2014)
obtained from automatic sensors were averaged per week and
the effects of rainfall treatment were evaluated with a repeated-
measures linear mixed-effects model [lme in the nlme package
(Pinheiro et al., 2016)] with plot nested within treatment as a
random effect. In order to test for the effect of root herbivore
addition, generalized linear mixed models were constructed with
the lmer() function in the lme4 package (Bates et al., 2015),
and Chi square (χ2) values between models with and without
the herbivore interaction were compared (Faraway, 2006). Post
hoc comparisons were performed with glht() in the multcomp
package with a ‘Benjamini–Hochberg’ correction (Hothorn et al.,
2008).

The effect of watering treatment on aboveground invertebrate
abundance was assessed using linear models on square-root
transformed abundance data. Watering treatment was included
in the model as an independent variable along with scaled
plot biomass, given the documented effect of underlying plant
structure on sampling efficiency (Facey and Torode, 2016).
Effects of root herbivore addition on the presence/abundance of
scarabs in the soil were analyzed with a zero-inflated-poisson
model in the pcsl package, and model significance evaluated using
a likelihood ratio (lr) test (Jackman, 2015).

RESULTS AND DISCUSSION

Shelter Effects on Microclimate
Differences in air temperature between unsheltered and sheltered
plots varied diurnally and between seasons (Table 2). On
average (24 h mean), sheltered plots were 0.04◦C warmer
than unsheltered ones, representing non-significant daytime
cooling and nighttime warming associated with shelter roofs;
this phenomenon is well known from previous studies using
permanently installed shelter infrastructure (Fay et al., 2000; Beier
et al., 2004; Vogel et al., 2013). Whilst temperature was only
minimally affected by the presence of shelter roofs, effects on PAR
were more substantial. On average, PAR was significantly lower
under shelters than in OPs (−15.9%; F1,2 = 145.3, P < 0.01).
Interception losses averaged 17.4% during summer months
(F1,2 = 139.5, P < 0.01) and 13.1% in winter (F1,2 = 198.9,
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TABLE 2 | Shelter effects on canopy air temperature and photosynthetically active radiation (PAR).

Air temperature (◦C) PAR (mean daily mol m−2)

Outside Shelter Diff (◦C) Outside Shelter Diff (%)

Overall 24 h 15.73 15.77 +0.04 − − −

Daylight hours 19.43 19.24 −0.19 34.98 29.43 −15.9%

Night time 12.04 12.30 +0.26 − − −

Summer (November) 24 h 20.46 20.48 +0.02 − − −

Daylight hours 23.70 23.55 −0.15 41.54 34.30 −17.4%

Night time 17.23 17.42 +0.19 − − −

Winter (August) 24 h 11.15 11.21 +0.06 − − −

Daylight hours 15.30 15.08 −0.22 27.41 23.80 −13.1%

Night time 7.01 7.35 +0.34 − − −

TABLE 3 | Mean seasonal and annual volumetric soil water content (SWC, %) and seasonal rainfall (mm), 2013–2014.

Treatment Winter Spring Summer Autumn Annual

Ambient (sheltered) 14.0 (0.49)a 10.3 (0.45)a 10.0 (0.32)a 13.0 (0.34)a 11.8 (0.22)a

Reduced amount 12.2 (0.46)b 9.2 (0.48)a 8.6 (0.20)a 10.0 (0.23)b 9.9 (0.19)b

Increased amount 13.0 (0.51)a 10.2 (0.55)a 9.8 (0.43)a 13.0 (0.43)a 11.4 (0.25)ab

Reduced frequency 11.1 (0.43)b 7.7 (0.40)a 8.6 (0.45)a 12.5 (0.40)a 10.0 (0.23)ab

Summer drought 13.8 (0.50)a 10.9 (0.51)a 8.7 (0.30)a 7.3 (0.03)b 10.0 (0.22)ab

Treatment effects (df = 1,4) χ2
= 23.5,

P = 0.0001

χ2
= 7.85,

P = 0.097

χ2
= 8.06,

P = 0.089

χ2
= 21.4,

P = 0.0003

χ2
= 15.3,

P = 0.009

Outside plots (unsheltered) 14.3 (0.55) 11.4 (0.55) 10.5 (0.36) 15.3 (0.45) 12.8 (0.26)

Ambient rainfall (mm)

06/2013–05/2014 80.4 230.9 124.7 160.6 596.7

30-years mean 137.6 182.4 280.7 205.6 806.3

30-years CoV 77.3% 41.4% 43.4% 60.8% 26.1%

Values in brackets represent±1 SE. Rainfall treatment effects on SWC are evaluated for all sheltered plots (i.e., excluding unsheltered control plots). Ambient rainfall means
and coefficients of variation (CoV) also summarized by season, for the past 30 years (1982–2012). Different letters indicate significant differences between treatments.

P < 0.01). This is directly comparable to light interception values
reported for similar studies in Germany (15%, Vogel et al., 2013)
and the USA (21%, Fay et al., 2000) where, like ours, shelter
roofs cover the entire plot area. Lower levels of PAR interception
have been associated with shelter infrastructure where roofs cover
a smaller proportion of the plot area. For example, Gherardi
and Sala (2013) report reductions of just 3 and 6% for shelters
covering 50 and 80% of the plots, respectively, while Yahdjian and
Sala (2002) found a 10% reduction in PAR associated with roofs
covering 80% of the plot area.

Light interception is an unavoidable artifact of field
experiments involving fixed roofs. Unless within-shelter
PAR is above light-saturation levels for much of the growing
season (e.g., Fay et al., 2000), shelter-induced reductions in PAR
are likely to have implications for photosynthesis and, depending
on other resource constraints, potentially also productivity.
Whilst we only measured PAR, it is worth noting that other
shelter-associated changes in spectral characteristics can also
influence other photosensitive ecosystem processes. For example,
Vogel et al. (2013) attributed differences in litter decomposition
rates and plant metabolic profiles to contrasting levels of UV
radiation associated with shelter roofs in a recent rainfall
manipulation experiment, advocating for the need to include
roofed controls in shelter-based studies.

Outside plots had slightly higher soil water content (SWC)
compared to sheltered AMB plots (Table 3), although differences
were not statistically significant (χ2

= 0.254, df = 1, p = 0.614).
Given the link between canopy transpiration rates and SWC
(Patrick et al., 2007), these differences may be due to
slightly higher transpirational water loss associated with greater
vegetation biomass in AMB compared to OP (see below).
A second possible explanation for these differences could be
the method for water delivery to plots. The relatively small
droplet size of water applied via sprinklers increases the chance
of both spray drift and higher levels of canopy interception
(and subsequent evaporation; Moss and Green, 1983), both of
which could result in lower SWC for a given water application,
compared to natural rainfall.

Soil water content within 25 cm of the edge of RA, RF, and SD
plots was typically 0–0.5% higher than in the center of the plot.
Immediately after heavy ambient rainfall episodes, differences of
up to 2.8% were noted, but overall differences in SWC between
the center and outside 25 cm of the plot area were small. The
biggest differences were observed in SD plots, following a large
rainfall event during the period of total rainfall exclusion, when
within-plot SWC was particularly low. At this time, average SWC
was 23.9% outside of these shelters, while values within SD plots
ranged from 2.5% in the plot center, to 3.3 and 6.3% at distances
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of 50 and 25 cm from the outer edge of the plots, respectively.
In the context of ambient rainfall incursion, we estimate the size
of the edge effect to be approximately 25 cm. This is directly
comparable with values reported for similar shelters elsewhere
(e.g., 20 cm; Gherardi and Sala, 2013), and confirms that the
combination of roof interception, impermeable root barrier and
a well-drained, sandy soil provide effective hydrological isolation
of our experimental plots under all but the wettest/windiest
conditions.

Shelter Effects on Plant Productivity
The differences in SWC, air temperature and PAR between
AMB and OP were associated with modest differences in ANPP.
Growing season ANPP was 10.8% higher, and cool season ANPP
was 29.7% higher in AMB compared to OP (Figure 2), although
neither of these differences were statistically significant. The
larger shelter effects on cool season productivity were driven by
a significantly greater accumulation of dead plant material in
AMB plots (+51%; F1,22 = 7.87, P < 0.001). Although shelter
impacts on ANPP were not statistically significant, the biological
relevance of 10–30% differences in productivity is arguably
high and emphasises the need to compare treatment effects to
sheltered controls (AMB). The importance of controlling for
shelter artifacts has been raised in rainfall manipulation studies
elsewhere, with shelter infrastructure associated with altered net
primary productivity (NPP), decomposition and carbon fluxes
(Fay et al., 2000; Vogel et al., 2013). Based on information on how
shelters modify the microclimate in our study, and associated
biological responses, all rainfall and herbivore treatment effects
are evaluated against sheltered AMB plots, with unsheltered plots
used to provide a context for interpreting these effects.

Treatment Effects and Seasonal Patterns
in Soil Water Content
Ambient rainfall at the site for the 12-months period from June
2013 to May 2014 was 597 mm, lower than the 30 years mean of
806 mm. During the 1st year of the experiment, summer rainfall
was particularly low, with less than half the long-term seasonal
average falling in the local area. Temporal trends in SWC are
illustrated in Figure 3. Treatment differences reflect both the
timing of ambient rainfall and that of imposed treatments with,
for example, the 3-weekly periodicity of the RF treatment, and
the summer-long water withholding in the SD treatments, clearly
reflected in soil moisture patterns.

Table 3 summarizes overall and seasonal treatment effects
on SWC for the first 12 months of the experiment. The biggest
differences were seen during the summer (December–February),
corresponding to the period of maximum plant growth and the
timing of the SD treatment. There was a significant overall effect
of rainfall treatment on SWC but no effects of herbivore addition,
nor an interaction between the two treatments. Post hoc analyses
revealed that moisture levels were higher in AMB compared to
RA plots; RF experienced greater variation in soil moisture, with
periods where SWC was higher and others where it was lower
than the other treatments, during the 21-day watering cycle.
The lowest seasonal mean SWCs were associated with different

treatments in different seasons; in winter and spring RF plots had
the driest soils, while in autumn SD had the lowest SWC.

Annual mean SWC was consistent between all reduced rainfall
treatments (RA, RF, and SD) and clearly demonstrates that
contrasting rainfall regimes can result in similar long-term
mean SWC, despite highly contrasting patterns both within- and
between- seasons. Increasing rainfall variability (i.e., longer inter-
pulse intervals) has been associated with increased (or decreased)
mean SWC, depending on background climatic conditions and
soil type (Zeppel et al., 2014). Under mesic conditions, reducing
the frequency of rainfall events (with no change in total rainfall
amount) has been found to lower mean SWC (Harper et al.,
2005; Fay et al., 2011), but in arid systems similar reductions
in frequency can actually increase mean SWC, particularly in
deeper soil horizons (Heisler-White et al., 2008, 2009). With a
long-term mean rainfall of 806 mm for the local area, SWC in
the RF treatment in our study parallels that at other mesic sites
and highlights the importance of changes in the pattern, as well
as the amount of rainfall for ecosystem hydrology under climate
change.

Unlike field-based rainfall manipulations elsewhere (Fay et al.,
2000; Gherardi and Sala, 2013), differences in seasonal means
(Table 3) and temporal patterns (Figure 3) in SWC between AMB
and IA treatments at our site were minimal. This likely reflects
greater transpirational water loss associated with higher plant
biomass in IA, and the high drainage capacity and relatively low
soil water-holding capacity (Atwell et al., 1999) of our sandy soils,
compared to other studies (e.g., silty clay loam; Fay et al., 2000).
It also emphasizes that impacts of future shifts in rainfall regime
will be contingent not only on the nature of the change, but will
also depend on the climate context and soil conditions at a given
site.

Early Vegetation Responses to Rainfall
and Root Herbivore Treatments
Total ANPP in the first growing season (October 13–April 14)
was significantly affected by rainfall treatment (F4,43 = 7.70,
P = 9.03e−05), but there was no effect of herbivore addition,
nor interactions between rainfall and herbivore treatments at
this time. Post hoc comparisons reveal that rainfall effects on
ANPP were driven primarily by a significant reduction (−62.3%,
P = 0.0004) in biomass in SD plots (168.4 ± 46.2 g m−2)
compared to AMB (446.6 ± 49.4 g m−2, Figure 4A). ANPP
in IA and RA treatments were not significantly different from
AMB, but there was a clear gradient in productivity, increasing
from 370.9 (±35.8) g m−2 in RA to 556.3 (±74.7) g m−2 in
IA. This represents a positive linear relationship between ANPP
and water inputs for these treatments, despite the absence of
a clear relationship with mean SWC. ANPP in RF plots was
similar to AMB, despite a somewhat higher mean SWC in RF
plots.

Treatment effects on live (green) harvested biomass in April
were very similar to those for total aboveground productivity,
with a significant overall effect of rainfall (F4,43 = 6.20,
P= 0.0005) but not herbivore addition, nor interactions between
the two treatments (Figure 4B). The amount of dead plant
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FIGURE 2 | Harvested plant biomass in sheltered ambient and outside (unsheltered) plots in (A) April 2014 (growing season) and (B) October 2014
(cool season).

FIGURE 3 | Temporal trends in soil water content, by treatment, from November 2013 to November 2014.
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FIGURE 4 | Rainfall treatment effects on growing season biomass (April 2014 harvest). (A) Aboveground NPP (October–April), (B) live biomass, (C) dead
biomass, (D) live:dead biomass ratio. Values are means ±1SE.

material harvested at the end of the growing season was fairly
consistent across plots, with no significant treatment effects
(Figure 4C). However, the ratio of live to dead material differed
significantly (F4,43 = 3.76, P = 0.0104) between contrasting
rainfall regimes, with dead material representing 17.8% of total
aboveground biomass in AMB plots, but 58.8% in SD plots
(Figure 4D).

Taken together, these early data indicate that the total amount
of growing season rainfall is a more important determinant
of vegetation productivity at our site than the frequency of
those inputs. Close relationships between rainfall amount and
plant growth are well established (Sala et al., 1988; Hsu et al.,
2012; Southon et al., 2012). However, the lack of biomass
response to altered rainfall frequency contrasts with recent
studies that report negative impacts on species productivity,
cover and nutritional quality (Walter et al., 2012; Jones et al.,
2016), as well as greater impacts on ecosystem processes, than

reducing total rainfall amount in both mesic (Heisler-White et al.,
2009; Fay et al., 2011) and (semi-) arid grasslands (Heisler-
White et al., 2008; de Dios Miranda et al., 2009). In our study,
plant community resistance to altered rainfall frequency may
reflect the high variability in rainfall; coefficients of variation in
seasonal rainfall are naturally high (particularly during spring)
at our site compared to other sites (e.g., Walter et al., 2012)
and it is likely that the vegetation has adapted to historically
high levels of rainfall variability. The potential for changes in
plant community composition to buffer changes in ecosystem
functioning under more variable rainfall conditions (Fry et al.,
2013, 2014b; Gherardi and Sala, 2015) may also explain the lack
of biomass response to RF treatment in our study, and will be a
subject for future investigation.

Cool-season (April–October) ANPP and live biomass were
not affected by either rainfall or herbivore addition treatments,
or their interactions (Figure 5). Treatment effects on dead
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FIGURE 5 | Rainfall treatment effects on cool season biomass (October 2014 harvest). (A) Aboveground NPP (April–October), (B) live biomass, (C) dead
biomass, (D) live:dead biomass ratio. Values are means ±1SE.

biomass were only significant for rainfall (F4,43 = 3.329,
P = 0.018), with more dead plant material in RF (+32.1%,
P = 0.017) than AMB at this time. Although not statistically
significant, there was nearly twice as much live plant material
in SD plots in the October harvest as in AMB (P = 0.096),
demonstrating very rapid vegetation recovery once the summer-
long drought was released. This, together with levels of cool-
season productivity in all water-manipulated treatments that
were higher than AMB plots, implies a high degree of climate
resilience at our site. The ability for water-stressed ecosystems
to recover is likely associated with rapid recovery of formerly
dominant species, or compensatory growth by other (previously
sub-ordinate or newly recruited) species within these plots.
Previous rainfall manipulation studies have shown contrasting
rates of recovery, with evidence of both rapid return to pre-
drought levels of ANPP (Hoover et al., 2014) and legacy
effects persisting for many years (Haddad et al., 2002; Sala
et al., 2012). Shifts in plant community composition represent
a key mechanism by which physiologically driven decline
in NPP under drought can be offset (Hoover et al., 2014;
Gherardi and Sala, 2015). Compositional change will, therefore,
be closely monitored at our site over the next 3–5 years
to establish the relationship between diversity, community-
weighted functional traits and both resistance and resilience to
rainfall change.

The absence of effects of root herbivore addition on plant
productivity responses is not surprising, given the timing
of additions (December 2013 and February/March 2014) in
relation to the first growing season (October 2013–April 2014).
Furthermore, given scarab preferences for grazing on more
nutritious grass species (e.g., C3 species; Johnson et al., 2014),
shifts in community composition may be more likely than
impacts on plot-level productivity. Other studies (e.g., Schallhart
et al., 2012) report root herbivore-associated plant community
change, and this may become more apparent in our study over
time.

Invertebrate Responses
Root herbivore treated plots contained significantly higher
abundances of root-feeding insects (mostly scarabs) than those
that were not inoculated [23.3 m−2

± 9.9(0−20 cm depth) and
5.6 m−2

± 2.7(0−20 cm depth), respectively] (Log-likelihood5
=−39.6, P = 0.0052).

Preliminary results from the aboveground invertebrate
sampling campaigns found that invertebrate abundance was
not significantly influenced by the imposed rainfall regime
(Table 4). However, this lack of response in the invertebrate
community regimes is not surprising after only four months of
treatments and may change as more data become available from
subsequent sampling campaigns. In particular, we may expect
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TABLE 4 | Mean total aboveground invertebrate abundances (individuals)
from the first sampling campaign (October 2013).

Mean total aboveground invertebrate abundance

Rainfall treatment Sticky traps Vacuum samples

Ambient 216.8 (20.2) 133.8 (36.8)

Increased amount 209.3 (18.9) 225.5 (61.9)

Reduced amount 233.4 (19.0) 165.8 (43.4)

Reduced frequency 227.8 (15.2) 396.5 (143.0)

Summer drought 237.5 (27.0) 230.0 (59.7)

Rainfall F (4,42) = 0.391 F (4,42) = 0.962

P = 0.814 P = 0.438

Values in brackets represent ±1 SE.

invertebrate abundance aboveground to be negatively affected by
the reductions in plant material occurring when the SD treatment
is imposed (December–March).

No effects of altered precipitation were observed in terms
of the abundances of nematodes, nematode trophic group or
microarthropods after more than 1.5 years’ climate manipulation
(i.e., April 2015; Nielsen et al., 2016). However, there were subtle,
significant changes in nematode feeding guild composition and
diversity in SD plots, suggesting that nematodes are sensitive
to extreme events in this grassland (Nielsen et al., 2016).
Similar results have been observed in other studies (e.g.,
Cesarz et al., 2015). These responses will be investigated in
depth later in the experiment, to determine if belowground
invertebrate responses are amplified or ameliorated over
time.

A number of plant chemical characteristics have been
measured, but here we focus on silicon (Si) concentrations
because grasses typically accumulate high levels of Si and this
has been shown to increase their resistance to both abiotic (e.g.,
drought) and biotic (e.g., herbivory) stress (Epstein, 1999; Cooke
and Leishman, 2011). In particular, Si has been demonstrated to
be an inducible defense against aboveground herbivores (Massey
et al., 2007). We found similar patterns of induction in two of our
three sampled grasses, C. dactylon and E. curvula, in response to
belowground herbivore addition (Figure 6). To our knowledge,
this is the first example of belowground herbivores inducing this
defense in grasses. Future work will report whether this effect
persists and whether rainfall treatments moderate the induction
of this important plant defense.

CONCLUSION

This paper introduces a new experimental platform that,
uniquely, combines multi-level rainfall manipulation with
contrasting levels of root herbivory. Early data clearly identify
the importance of shelter controls in rainfall manipulation
experiments of this type, in order to assess potential shelter
artifacts that may otherwise obscure treatment effects. This
SE Australian grassland exhibited relatively high resistance
of NPP to changes in the size and frequency of rainfall
inputs, except under extreme SD. The rapid recovery of

FIGURE 6 | Effects of root herbivore addition treatment on foliar silicon
concentrations in Cynodon dactylon and Eragrostis curvula.

NPP in SD plots after ambient rainfall inputs were resumed
indicates that low ecosystem resistance to climate extremes
is not necessarily associated with low functional resilience.
This may reflect adaptation of the plant community to the
naturally high variability in rainfall that can occur both between-
and within- years in Australia, with annual inputs at our
site varying by as much as 66% below and 114% above
the long-term mean. The absence of a productivity response
to herbivore addition may be a consequence of the timing
of this treatment in relation to the first growing season,
compensatory growth by affected plant species and/or changes
in plant community composition. This research platform will
allow ongoing monitoring of ecological responses to novel
combinations of abiotic and biotic stresses, and identification
of mechanisms underlying observed above- and belowground
responses.

One of the biggest challenges in ecosystem ecology today
is to improve our understanding of the mechanisms by which
plant physiological and morphological responses to climate
change affect interactions within- and between- trophic levels,
and ecological feedbacks (Van der Putten et al., 2010). The
DRI-Grass experimental platform provides the opportunity to
gain important new insight into how ecological interactions
are affected by changing rainfall regimes and, specifically,
how belowground herbivory modifies grassland resistance and
resilience to climate extremes.
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