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In proteomic analyses of the plant secretome, the presence of putative leaderless
secretory proteins (LSPs) is difficult to confirm due to the possibility of contamination
from other sub-cellular compartments. In the absence of a plant-specific tool for
predicting LSPs, the mammalian-trained SecretomeP has been applied to plant
proteins in multiple studies to identify the most likely LSPs. This study investigates
the effectiveness of using SecretomeP on plant proteins, identifies its limitations and
provides a benchmark for its use. In the absence of experimentally verified LSPs we
exploit the common-feature hypothesis behind SecretomeP and use known classically
secreted proteins (CSPs) of plants as a proxy to evaluate its accuracy. We show
that, contrary to the common-feature hypothesis, plant CSPs are a poor proxy for
evaluating LSP detection due to variation in the SecretomeP prediction scores when
the signal peptide (SP) is modified. Removing the SP region from CSPs and comparing
the predictive performance against non-secretory proteins indicates that commonly
used threshold scores of 0.5 and 0.6 result in false-positive rates in excess of 0.3
when applied to plants proteins. Setting the false-positive rate to 0.05, consistent with
the original mammalian performance of SecretomeP, yields only a marginally higher
true positive rate compared to false positives. Therefore the use of SecretomeP on
plant proteins is not recommended. This study investigates the trade-offs of using
SecretomeP on plant proteins and provides insights into predictive features for future
development of plant-specific common-feature tools.

Keywords: protein localisation prediction, secretome, unconventional protein secretion, leaderless secretory
protein, plant cell wall, SecretomeP

INTRODUCTION

The plant cell wall, a complex extracellular matrix of carbohydrate and some protein, is one of the
defining features of plant cells. Protein accounts for up to 10% of the dry weight of the primary
cell wall (Doblin et al., 2010) yet despite being a minor component, cell wall proteins (CWPs) play
important roles in plants. CWPs can function in the plant cell’s normal growth and developmental
processes, as well as in response to biotic and abiotic stresses. They can act to modify other wall
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components thereby altering the structure and composition of
the wall in response to internal and external stimuli. Separating
individual plant cells within either a tissue or organ is an open
continuous compartment called the apoplast, which also contains
(glyco)proteins and, together with the cell wall, collectively refers
to the extracellular space. The collection of proteins found in the
extracellular space is called the secretome.

Proteins at the cell surface (plasma membrane/apoplast)
are typically glycosylated and usually trafficked via the highly
conserved eukaryotic process of classical protein secretion
involving vectorial transport through the ER and Golgi
apparatus. These classically secreted proteins (CSPs) are typically
targeted to the ER by an N-terminal signal peptide (SP) where
it is subsequently cleaved. However, not all proteins destined for
the cell surface have a SP in their sequence and those lacking
this feature are referred to as leaderless secretory proteins (LSPs;
Krause et al., 2013). These types of proteins are secreted via a
route called unconventional (i.e., non-classical) protein secretion
(UPS). UPS is a term that covers the atypical cases of LSPs but also
some secreted proteins containing a SP that are non-classically
secreted, either via intermediate organelles or vesicular bodies
(Ding et al., 2014; van de Meene et al., 2016).

In plant proteomic studies, it has been estimated that over half
the detected secreted proteins lack a classical SP (Krause et al.,
2013). However, due to the possibility of contamination either
from already lysed cells (as occurs in cell suspension cultures;
Miernyk et al., 2016) or from cells undergoing programmed cell
death (in planta) or from other sub-cellular compartments during
the protein extraction procedure, not all proteins lacking a SP
in a secretome experiment are expected to be true LSPs (Rose
and Lee, 2010; Albenne et al., 2013). Determining which plant
proteins are candidate LSPs that have undergone UPS and which
have been introduced as contamination is therefore a challenge
(Rose and Lee, 2010; Albenne et al., 2013; Krause et al., 2013).
Given the high likelihood of contamination during sub-cellular
fractionation procedures, a separate and independent assessment
is needed in order to conclude that such proteins are indeed
located in the ECS and are legitimate components of the plant
secretome. There are three broad assessment strategies that can
be implemented for an in silico approach: (1) accept all proteins

found, a strategy likely to have a high false-positive rate; (2)
include only proteins with SPs and reject others, a strategy likely
to discard most real examples of LSPs; or (3) balance true and
false positives by including proteins with SPs and filter others
based on a prediction of a protein being a LSP. Ultimately, there is
a need to adopt experimental approaches, for example immuno-
localisation to verify the in silico predictions, irrespective of their
veracity.

SignalP (Petersen et al., 2011) is often used to identify SPs, yet
bioinformatics tools to predict LSPs have only been developed
for mammals and bacteria (summarized in Table 1). None were
trained on plant proteins and the lack of plant-specific tools for
predicting LSPs using the third strategy above is a recognized
problem for filtering approaches (Agrawal et al., 2010; Ding et al.,
2012; Albenne et al., 2013). However, this has not prevented
the research community from using tools such as SecretomeP
(Bendtsen et al., 2004, 2005) as a filter in proteomics experiments
attempting to characterize the plant secretome. As the oldest and
most highly cited tool, it is perhaps unsurprising that the plant
proteomics community has adopted it when using a filtering
strategy. It has been applied to studies in various plant species,
for example Arabidopsis thaliana (e.g., Jamet et al., 2008; Ge et al.,
2011), Oryza sativa (rice) (e.g., Song et al., 2011; Wang et al.,
2012), Helianthus annuus (sunflower) (e.g., Pinedo et al., 2012)
and the moss Physcomitrella patens (e.g., Lehtonen et al., 2014).

SecretomeP was trained on mammalian and bacterial proteins
and the lack of plant training data is of concern when applying
it to plants, as was noted by Agrawal et al. (2010) when they
recommend the inclusion of SecretomeP in a plant proteomic
analysis workflow. Albenne et al. (2013) clearly point out
the deficiencies of this approach given the program was not
designed for plants, and although some studies include caveats
on its suitability, the hypothesis behind SecretomeP is often
overlooked. This hypothesis assumes that secreted proteins will
share common properties, regardless of their mechanism of
secretion. This approach was taken to overcome the lack of
known mammalian LSPs available for use as a positive training
dataset, and enabled the authors to train their method using CSPs.
This also allowed for the few known LSPs to be used after training
to test the accuracy of the tool. The authors of SecretomeP

TABLE 1 | Details of non-classically secreted protein (CSP) prediction programs, as of April 2016.

Prediction tool Reference Target1 Method2 Number of predictions3 Available4 Citations5

SecretomeP (v1) Bendtsen et al., 2004 M W, D 500 (W), − (D) Yes 642

SecretomeP (v2) Bendtsen et al., 2005 B W 100 Yes 342

SecretP (v1) Yu et al., 2010b M W 1 Error 17

SecretP( v2) Yu et al., 2010a M, B W 1 Error 76

SecretP (v2.1) Yu et al., 2013 G− W 1 Error 3

SPRED Kandaswamy et al., 2010 M D − Yes 15

SRTpred Garg and Raghava, 2008 M W 1 Yes 35

Sec-GO Huang, 2012 M, B W ? No 7

NClassG+ Restrepo-Montoya et al., 2011 G+ W ? No 6

1Target: (M)ammalian, (B)acteria, (G+) Gram-positive bacteria, (G−) Gram-negative bacteria. 2Method: (W)ebserver, (D)ownload. 3Number of sequences that can
predicted in a single run, − indicating no limit. 4Available refers to web server or program availability at the published location. Error indicates where the program is
available but not operational. 5Citation counts from Google Scholar (http://scholar.google.com) as of April 2016.
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propose that common properties would be captured by removing
the SP from the sequences of CSPs to generate training sequences.
Proteins sharing these common features, but lacking a SP are then
predicted to be LSPs.

Using the mammalian version of SecretomeP as a tool for
LSPs in plants assumes that any common features are also shared
between mammalian and plant-secreted proteins. The software
programs used to capture protein features in the mammalian
versions of SecretomeP are listed in Table 2. It also implicitly
assumes that the reported threshold and accuracy metrics of
the mammalian version of SecretomeP will apply to plants.
The threshold value used to generate positive predictions is of
particular importance: SecretomeP outputs scores in a range from
0 to 1 to indicate increasing confidence that a protein is secreted.
The trade-off between true and false positives for any given
threshold is essential in applying the tool to experimental output.
The authors of SecretomeP recommended using a threshold of
0.6 when using the method on mammalian proteins, giving a
true-positive rate (TPR) of 0.40 and false-positive rate (FPR) of

TABLE 2 | Protein features used in SecretomeP and the programs it
utilizes internally to calculate them.

Protein feature Dependency Reference

Number of atoms − −

Number of positively
charged residues

− −

Low-complexity regions SEG Wootton and Federhen, 1996

Sub-cellular localisation PSORT II Nakai and Horton, 1999

Transmembrane helices TMHMM 2.0c Krogh et al., 2001

Pro-peptide prediction ProP 1.0c Duckert et al., 2004

− indicates feature calculated internally without any external dependency.

0.05 (Figure 1). This score was derived from cross-validated sub-
sets of the modified CSP training data. When applied to the 13
human LSPs at the time, 10 of these were observed to be predicted
at this threshold (Bendtsen et al., 2004).

The equivalent TPR and FPR when applied to plants has not
previously been studied, although some accuracy values have

FIGURE 1 | Estimated true positive rate (TPR) and false positive rate (FPR) for SecretomeP as published for mammalian proteins (v1) based on
internal cross-validation and bacterial proteins (v2) based on performance on classically secreted proteins (CSPs) from the SignalP 3.0 dataset. The
estimated TPR of SecretomeP on plants as stated by Cheng et al. (2009) was 0.6, with no FPR given. The random line diagonal represents equal TPR and FPR,
equivalent to random selection of classes.

Frontiers in Plant Science | www.frontiersin.org 3 September 2016 | Volume 7 | Article 1451

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01451 September 24, 2016 Time: 15:39 # 4

Lonsdale et al. LSP Prediction in Plants

been reported based on observation from proteomic studies.
In an investigation of plant defense responses simulated by
the application of salicylic acid, Cheng et al. (2009) stated
that 60% of Arabidopsis LSPs were predicted to be secreted
using a threshold of 0.5, based on the assumption that all the
leaderless proteins they found were genuine. This value has also
been reported in a more recent review (Agrawal et al., 2010)
and both papers include the caveat that the program outputs
should be used as indicative only due to the inconsistencies
they found with predictions on SP-containing proteins. Even
assuming no contaminants, the value only indicates how many
true positives are correctly predicted. A TPR of 0.6 seems
quite good, so its appearance in the literature could contribute
to the continued use of this non-plant based tool on plant
proteins. Interestingly, accepting at face value 0.6 as a TPR
for SecretomeP on plant proteins this would indicate that the
algorithm performs better on plant proteins than mammalian
proteins (Figure 1). Whether this score should be extrapolated
to be a measure of predictive performance on Arabidopsis
under other conditions or on other plant species, however, is
questionable. Even if all the proteins found are assumed to be
true positives and extrapolated to other plant species and/or
conditions, then it is only an estimate of the TPR and the FPR
is unknown.

Establishing an optimal threshold and determining the
performance metrics at that threshold is essential if the results
of SecretomeP on plant proteins are to be useful. Ideally,
evaluation would require positive (LSPs) and negative (non-
secretory proteins) data to investigate the TPR and FPR for a
given prediction threshold. However, since the issue is whether
SecretomeP can accurately predict if a given plant protein is a
LSP, the evidence that such a protein is unconventionally secreted
needs to be obtained by means other than the output of the
program under evaluation. There are a number of experimental
approaches to determine the sub-cellular location of a protein,
some relying on cell disruption and others on in situ microscopic
approaches, assuming the relevant probes (e.g., antibodies) are
available. The need for molecular approaches to validate putative
LSPs is acknowledged in the literature (Albenne et al., 2013;
Robinson et al., 2015; van de Meene et al., 2016) yet practically, in
order to perform such a step, candidate proteins from a secretome
will often need to be identified first. Since there are very few
known plant LSPs and only one protein with experimental
(biochemical) validation (Pinedo et al., 2012), a ‘gold standard’
to evaluate against does not currently exist. Although there are
putative lists of LSPs [e.g., Ding et al. (2012)] the uncertainty
surrounding their prediction means that their use as a training
set would be rendered invalid.

Accepting the validity of the common-feature hypothesis used
in SecretomeP provides a proxy positive data set, namely CSPs of
the plant cell wall and apoplast. If this hypothesis is correct, we
can estimate SecretomeP’s accuracy on plant LSPs by evaluating
its performance on these known secreted proteins. This study
investigates the trade-offs of using such an indirect tool on
plant proteins and provides insights into predictive features for
future development of plant-specific common-feature tools. If
SecretomeP is to be used on plant secreted proteins, then its use

needs to occur with knowledge of the true and false positive rates
involved when the method is applied to plants.

MATERIALS AND METHODS

Data Sources
Arabidopsis proteins were the focus of this study due to the
availability of large databases of proteins with curated sub-cellular
location. Protein sequences were obtained from WallProtDB
(San-Clemente and Jamet, 2015) and the Arabidopsis thaliana
sub-proteome reference (ASURE) (Hooper et al., 2014) databases.
After excluding proteins less than 40 amino acids in length due
to the SecretomeP cutoff, a total of 1983 WallProtDB and 975
ASURE proteins were included in analyses. WallProtDB proteins
were used as positive CSP data. Various sub-sets of WallProtDB
were also used as positive data to ensure conclusions from
WallProtDB are not biased by its protein composition. Five sub-
sets were made by restricting to maximum 30% sequence identity
(278), Arabidopsis only (522), excluding Arabidopsis (1461), rice
only (208) and Brachypodium distachyon only (358).

The ASURE database contains a smaller set of proteins
representing each sub-cellular compartment in the broader SUBA
database (Tanz et al., 2013) and as such is a mixture of proteins
that are examples of positive, negative, and neutral for this study.
The sub-set of CSPs labeled as Extracellular (42) was used as
positive and sub-sets of non-secretory proteins located to the
nucleus and/or cytosol (352) used as a negative. Sub-sets of
other subcellular locations were also used as comparisons such as
non-secretory proteins of the plastid (103) (Supplementary Table
S1).

Evaluation Data and Protein Sequence
Modifications
The use of CSPs as a proxy for SecretomeP prediction of LSPs
could be influenced by the components of CSPs rather than by
any shared protein features. Removing the SP, in a similar way
to the training of SecretomeP, removes this possible bias yet
introduces a departure from actual protein data that could also
influence the results. To ensure that the evaluation is based on
common features rather than a feature unique to CSP such as the
SP, the proxy data were modified in various ways to investigate
the effect of SP changes on SecretomeP prediction scores.

Under the common-feature hypothesis, modifications to
only the SP of CSPs should not influence the prediction
score of SecretomeP. Five modifications were made under this
assumption (Figure 2): (1) The SP was removed (SP Remove)
but because this results in a shorter sequence, sequences were
also modified to alter the SP without either changing the length
of the original sequence or its amino acid composition. These
modifications were (2) removing the SP from the N-terminus and
placing it at the C-terminus (SP C-term) and (3) random shuffling
the amino acids of the SP at the N-terminus (SP Random).
Further modifications that (4) reversed (Reverse) or (5) shuffled
(Random) the entire sequence were made to compare the effect
on the prediction score when the presumed common features of
plant CSPs and LSPs were purposely disrupted. Both these latter
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FIGURE 2 | After the SP region (orange) was identified using SignalP 4.1 for positive data or a fixed length of 30 amino acids for negative, five
modifications were made to each original sequence in a dataset. Reverse inverted the amino acid order of the entire sequence; SP C-term placed the SP at
the C-terminus, leaving the sequence length unchanged; SP Remove excluded the SP region and shortened the sequence length. SP Random and Random
involved random shuffling of the SP region and the entire coding sequence, respectively. The sequences were then submitted to SecretomeP. Orange, SP region;
Purple, mature protein sequence.

modifications were expected to negatively impact SecretomeP
prediction scores.

Details on how these modifications were performed
via Python scripts is available online (see Prediction and
modification scripts). Briefly, the amino acids for each sequence
were treated as strings of text and for the reverse dataset the
amino acid sequence was simply reversed. For others, SignalP 4.1
(Petersen et al., 2011) was used to predict the SP of CSPs. The
predicted SP was then either automatically removed or moved
to the C-terminus to generate the SP Remove and SP C-term
datasets, respectively. Random shuffling (with 500 bootstrap
replicates) of either the amino acids of the SP (SP Random)
or the entire sequence (Random) was done using the Python
random library on the respective section of the sequence and
a mean prediction score from all bootstraps calculated. When
comparisons to negative data were required, i.e., non-secreted
proteins where no SP was predicted, the first 30 amino acids
of each sequence were modified in the same manner as the SP
of CSPs. For each sequence in a test set, this resulted in 1003
additional sequences.

Prediction and Modification Scripts
The downloadable version of SecretomeP v1 was used for all
predictions. The large number of permutations required for
the shuffling of sequences meant that parallel processing of the
prediction results was required. The downloadable version was
therefore executed on multiple virtual machines using Docker
containers1 on the NeCTAR cloud service2. The features used by
SecretomeP rely on several other programs, hence SEG (Wootton
and Federhen, 1996), PSORT II (Nakai and Horton, 1999),
TMHMM 2.0c (Krogh et al., 2001) and ProP 1.0c (Duckert et al.,
2004) was also installed on the same machines, as well as the
optional dependency of the older version 3 of SignalP.

For the generation of modified sequence data, sequences
from the data sources were modified using the steps described
above (see Evaluation Data and Protein Sequence Modifications)
on virtual machines with SignalP version 4 installed. The
modified sequences were then split into smaller subsets for
processing, and SecretomeP containers executed on these in
parallel. Each set of results was collated together for analysis.

1http://docker.com
2http://nectar.org.au

The files describing the steps for the creation of these containers,
as well as the scripts to modify sequences, are available at:
https://github.com/lonsbio/lsp_modification_analysis.

Accuracy Analysis
To quantify if changes in SecretomeP output scores were
significant, a Student’s T-test between the original scores and
each protein modification was calculated. Since the modified
sequences are dependent on the original sequences, a paired
T-test was used. Due to these multiple tests, an adjusted p-value
of ≤ 0.01 was used as the significance threshold to reject the null
hypothesis that a modification did not influence the SecretomeP
results.

Receiver operating characteristic (ROC) curves were plotted to
determine TPR and FPR for SecretomeP on plant proteins. ROC
curves are useful to evaluate and visualize classifiers (Fawcett,
2006). Given a binary classifier and both positive and negative
data, ROC curves are built by gradually reducing the threshold
for classification and plotting each point on ROC space (as in
Figure 1). ROC curves were plotted for pairs of positive and
negative datasets (as defined in Supplementary Table S1) with
the ‘scikit-learn’ package in Python. Each ROC plot represents
one data set with multiple curves, with each curve representing
either the original scores or one of the protein modifications.
Given a random selection of a positive and negative protein from
their respective datasets, the area under-the-curve (AUC) is the
probability the positive protein will be classified higher than the
negative protein (Fawcett, 2006).

RESULTS

Mean SecretomeP Prediction Scores for
Plant Classically Secreted Proteins
(CSPs) Are Higher Than for Non-secreted
Proteins
Various sets of proteins obtained from either WallProtDB or
ASURE databases were subjected to SecretomeP prediction and
the mean prediction score calculated (Supplementary Table S1).
The 1983 unmodified WallProtDB proteins (Original) that were
analyzed had an average prediction score of 0.707. Subsets of
WallProtDB proteins, selected by protein redundancy or species,

Frontiers in Plant Science | www.frontiersin.org 5 September 2016 | Volume 7 | Article 1451

http://docker.com
http://nectar.org.au
https://github.com/lonsbio/lsp_modification_analysis
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01451 September 24, 2016 Time: 15:39 # 6

Lonsdale et al. LSP Prediction in Plants

had prediction scores ranging from 0.644 to 0.746, indicating
the average scores exceeded previously used thresholds of 0.5
and 0.6. For the subsets of ASURE-derived proteins, scores were
lower in every case, including the sub-cellular locations with no
secretory pathway involvement such as the nucleus and cytosol
(0.494 and 0.446 individually, 0.479 combined). The highest
score of 0.582 was obtained for the Extracellular sub-set that
contains only secreted proteins. Since these scores are averaged
over uneven datasets they are not conclusive, however, they
do indicate that the average scores for secreted proteins are
higher than for non-secreted proteins and hence that SecretomeP
appears to distinguish between plant secreted and non-secreted
proteins.

SecretomeP Prediction Scores Are
Influenced by the Presence of a Signal
Peptide
Additional protein datasets were created through modifications
to each original protein to explore the possible influence of
the SP, a protein feature unique to CSPs (see Materials and
Methods, Evaluation Data and Protein Sequence Modifications),
and SecretomeP was applied to each modified protein dataset.
It was expected that modifications to the SP only (SP Remove,
SP C-term and SP Random) should not impact SecretomeP
output scores whereas modifications to the entire sequence
(Reverse/Random) should as protein features common to both
CSPs and LSPs would be disrupted. For the full WallProtDB
dataset, the mean SecretomeP output scores were lower for
each modification from the Original (0.707) to: 0.522 (Reverse),
0.568 (SP Remove), 0.541 (SP C-term), 0.603 (Random), and
0.648 (SP Random). For significance, rather than compare
the difference between mean scores of the entire set, the
changes in scores were tested via a paired Student’s T-test
(p ≤ 0.01) between original scores and the modifications
(Supplementary Table S1) due to the dependence between the
original and modified protein. Every modification to WallProtDB
was significant, indicating that the modifications reduced
the confidence with which the method assigned “secreted”
status.

In contrast, the equivalent modifications to the non-secreted
proteins using the nucleus and/or cytosol dataset as the exemplar,
produced no substantial change in the Secretome P scores
with means of 0.479 (Original), 0.483 (Reverse), 0.486 (SP
Remove), 0.460 (SP C-term), 0.545 (Random), and 0.482 (SP
Random) (Supplementary Table S1). None of the changes were
significant, with the exception of some randomized sequences,
which also resulted in higher average prediction scores for these
non-secreted proteins. Modifications affecting the N-terminal
region (where a SP is located in CSPs) significantly changed
the prediction score for CSPs only, suggesting that a portion
of the high predictive score for these proteins is attributable to
properties of the SP, rather than any general common-feature in
the mature protein.

Since the mean score of predictions is a summary statistic
and susceptible to outliers, the distribution of scores was plotted
to visualize the effect of protein modifications. A kernel density

estimation (KDE) plot was used for all original proteins in
each dataset, with the distribution of each modification overlaid.
The curve represents the smoothed Gaussian distributions of
scores. The rug plot marks along the x-axis indicating the
original scores for each protein. As suggested by the significant
lowering of the SecretomeP output scores, a change in the
score distribution was seen in KDE plots for each protein
modification compared to the original WallProtDB dataset
(Figure 3A). Protein modifications that were both expected and
not expected to alter scores did so. Sub-sets of WallProtDB,
based on either plant species or maximum sequence identity
threshold, exhibit the same shifts showing that this observation
is not due to the composition of WallProtDB (Supplementary
Figure S1).

The KDE plot of the modified WallProtDB dataset is distinct
from the original sequences. The SP Remove, Reverse and SP
C-term modifications all appear to shift the distribution toward
the left, i.e., a higher density of lower scores (Figure 3A). Random
shuffling of the SP region has the least change compared to other
modifications. Given that it is the least disruptive modification
to the sequence (altering the order of amino acids in only a
small region of the protein that over 500 bootstraps could often
resemble the original sequence), and yet it still results in a
significant drop in scores, is further evidence that high prediction
scores of SecretomeP are reliant on the SP. The density plot of
the completely shuffled sequences (Random) were narrower with
a high density of scores between 0.5 and 0.6 in all datasets. As a
modification expected to alter the prediction score, this illustrates
that disruption of the entire sequence does result in a change in
scores, although as each score is an average of 500 bootstraps
the exact range of these scores may not be informative. A more
detailed investigation of the effect of SP sequence randomization
and full sequence randomization on scores shows that the average
value from bootstraps can hide some interesting variations
(Supplementary Figure S2) but ultimately support the conclusion
that the SP region can have a strong effect on SecretomeP output
scores. For the ASURE dataset, the KDE plots of the secretory
extracellular protein sub-set (Figure 4A) exhibit a similar pattern
with a shift to lower scores. The mean scores did not quite reach a
p-value to reject the common-feature hypothesis (Supplementary
Table S1), likely due to the smaller sample size, however, these
data suggest the same reliance of output scores on the SP as seen
in the full WallProtDB dataset.

This effect of a shift when the SP region is altered is not
seen for the non-secretory sub-sets of ASURE (nucleus, cytosol,
nucleus and/or cytosol, plastid) proteins (Supplementary Table
S1). Apart from the Random modification, each modification
has a similar distribution to the original scores (Figures 4C–E)
even though the equivalent to the SP region of the sequence
was altered in the same way. The ASURE sub-sets defined as
neutral also showed the same change in Random modification
scores (Figures 4B,F). This contrast between the positive and
negative datasets, and together with the significance tests and
changes in mean scores demonstrate the influence of the SP
on SecretomeP output scores and diminishes the likelihood
that LSPs lacking this feature will be accurately predicted as
“secreted.”
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FIGURE 3 | (A) The kernel density estimation (KDE) distributions of SecretomeP scores (v1.0) for original and modified sequences of the entire WallProtDB dataset.
(Individual KDE distribution plots for sub-sets of WallProtDB are provided in Supplementary Figure S1). Rug plot marks along the x-axis indicate position of original
scores. Vertical dashed lines at 0.5 and 0.6 represent the most common cutoff scores used in plant studies. (B) Correlation plots between original scores (x-axis)
and modified scores (y-axis). Spearman correlation values are indicated for each modification.

Correlation between Modified and
Original Sequences Differs between
Secreted and Non-Secreted Proteins
To explore whether high-scoring proteins remain high-scoring
after sequence modification, the Spearman correlation coefficient
was calculated between the SecretomeP scores obtained from the
unmodified data and the scores following sequence modification.
The correlation between original score and each modification
of the WallProtDB dataset is shown in Figure 3B. Shuffling the
SP (SP Random) was least divergent at ρ = 0.84. The most
divergent change was reversing the sequence, which showed
a weak negative correlation. The deviation from the diagonal
shows that some modifications largely dropped scores (bottom-
right of correlation plot), although some improved the prediction
score from low to high (top-left of correlation plot). Of note is
the relatively high correlation for the SP Remove modification.

The sub-sets of WallProtDB overall show consistent results with
similar levels of correlation indicating conclusions drawn from
these correlations holds across the plant species included in
WallProtDB (Supplementary Table S2).

Correlations for the ASURE subsets are also informative
(Figure 5). The relative positive correlation value for each
modification is maintained from the WallProtDB analysis,
though mostly higher values were obtained (compare Figure 5
with Figure 3B, Supplementary Table S2). The exception was
the Reverse modifications, which showed a small positive
correlation, particularly for nucleus, cytosol and the combined
sets, and a negative correlation for the WallProtDB and ASURE
(Extracellular) sub-sets. This modification does not rely on a
substitute SP region, and the difference in scores between positive
and negative data suggests that the weak negative correlation
found in WallProtDB and ASURE (Extracellular) is a feature of
SP-containing proteins.
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FIGURE 4 | The KDE distributions of SecretomeP scores (as described in Figure 3A) for protein sub-sets of ASURE. Extracellular (A), plasma membrane
(B), nucleus (C), cytosol (D), nucleus and/or cytosol (E), and plastid (F), respectively.

Taking into account the combination of different SecretomeP
output score means, shifted distributions and correlation patterns
across WallProtDB and ASURE sub-cellular organelle protein
sub-sets, it is reasonable to conclude that: (1) the scores of plant
CSPs from SecretomeP are influenced by the presence of a SP;

(2) unmodified SP sequences are a poor proxy for LSPs; and
(3) the SP Remove modification has the highest correlation with
original scores (except for those involving any random shuffling)
across both positive and negative data and largely produces a
lower score than the original sequence, thereby making it the
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FIGURE 5 | The correlation scores (as described in Figure 3B) for protein sub-sets of ASURE. Extracellular (A), plasma membrane (B), nucleus (C), cytosol
(D), nucleus and/or cytosol (E), and plastid (F), respectively.

most suitable proxy to use when comparing the performance of
SecretomeP.

SecretomeP Performs Marginally Better
Than Chance on Plant Proteins
WallProtDB contains many similar sequences. Therefore, to be
able to compare against the Arabidopsis negative data in an
unbiased manner, we used the Arabidopsis WallProtDB proteins
and the ASURE (nucleus and/or cytosol) sub-set to create ROC
curves comparing modified positive to modified negative datasets
(Figure 6). The SP Remove modification is used to infer the TPR
and FPR scores, although the results from other modifications are
also shown.

The path of the SP Remove ROC curve shows the TPR and
FPR are similar and near to the rate equivalent of “luck/chance.”
The stark difference between the ROC curve based on the original
sequences (dark blue) and protein sequences where the SP has
been removed (SP Remove; red) confirms that the ability of
SecretomeP to distinguish between secretory and non-secretory
plant proteins is largely influenced by the presence of the SP in

CSPs. Therefore, the curve for the SP Remove sequences is the
more accurate for evaluating the use of SecretomeP to predict
LSPs.

Three points of interest on the SP Remove curve are annotated
with dotted lines in Figure 6. Each corresponds with the nearest
discrete points on the ROC curve corresponding to where values
of either the FPR or cut-off threshold are fixed, the exact values
of which are shown for all modifications in Supplementary Table
S3. Firstly, the threshold and subsequent TPR are identified when
the FPR is set to be ≤0.05 (Supplementary Table S3A). For SP
Remove this results in a threshold of 0.860 which leads to a TPR
of 0.029 for a FPR of 0.048, indicating more false predictions than
true.

Secondly, we note the TPR and FPR for thresholds around
0.5–0.6, which are the most commonly used thresholds for plant
proteins (Supplementary Table S3B). These two points have
higher TPR at the cost of higher FPR: the threshold near 0.6
would improve the TPR to 0.341, however, at the cost of 0.264
FPR. Further reduction to a 0.5 cut-off results in a TPR of 0.598
with a 0.469 FPR (Figure 6).
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FIGURE 6 | Receiver operating characteristic (ROC) curves for positive
WallProtDB Arabidopsis proteins vs. the negative class of ASURE
proteins from the nucleus and/or cytosol. Area Under Curve (AUC) values
are shown for each protein modification. The AUC for random (pure
chance/luck) is 0.5. As the threshold for classification is reduced, the true
positive (TPR) and false positive (FPR) rates are mapped to the axes, giving
visual insight into how the classifier balances true and false positives and
which thresholds might be considered most appropriate. The preferred path
of an ROC is toward the upper left hand corner signifying a high true positive
rate and low false positive rate. Three points on the SP Remove curve are
annotated corresponding to when either the FPR is <0.05 or threshold is set
to 0.5 or 0.6. The exact values are listed in Supplementary Table S3.

If the maximum area under the curve (AUC) of 0.788 and
upper-left curve trajectory of the Original scores represented a
realistic evaluation, then performance on plant proteins would
be fair. However, the shift of the curve back toward the diagonal
as soon as the SP is removed shows how dependent this
predictive power is on the SP, as the AUC decreases to 0.584, and
performance is poor at higher thresholds. There is no reasonable
trade-off between error rates; regardless of where the threshold
is drawn, the true positive and false positive rates are roughly
equivalent, indicating prediction is effectively equal to random
chance.

DISCUSSION

Common-Features between CSPs and
LSPs in Plants Are Not Captured in
SecretomeP
It is difficult to assess the accuracy of a prediction tool without
both positive and negative examples of the prediction target of
interest. In order to evaluate how well an in silico method predicts
LSPs, the best kind of positive data would be experimentally
confirmed LSPs, but unfortunately there are very few known
plant LSPs and only one protein with biochemical validation

(Pinedo et al., 2012). If we accept the common feature hypothesis
that underlies SecretomeP prediction, then CSPs are the next
best option. For LSPs in plant studies, SecretomeP has previously
been estimated to have a 0.6 TPR by assuming all proteins found
in a study are positive examples, without considering negative
examples. Therefore in this current study, we attempted to
overcome this difficulty of assessment by virtue of the common-
feature hypothesis behind SecretomeP and the expectation that
performance for CSPs is informative if the hypothesis is true.
Since modifications intended to disturb the SP of a sequence have
a significant effect on the prediction output of positive data and
not on negative data (Supplementary Table S1), we concluded
that modified sequences were required to evaluate predictions
based on these common features. This evaluation revealed that
performance, when the FPR is limited to 0.05, resulted in true
positive predictions that were not better than chance alone.
Previous suggestions that SecretomeP is not well suited to plants
(Agrawal et al., 2010; Ding et al., 2012; Albenne et al., 2013)
were confirmed, and the estimated accuracy is so low that its use
should be avoided for plant proteins. Furthermore, previous use
of SecretomeP to predict putative LSPs on plant proteins must be
re-evaluated in light of our findings.

Effects of Hydrophobic Regions
WallProtDB includes some proteins from the plasma membrane
involved in cell wall metabolism, such as cellulose synthase
(CESA). Under the common-feature hypothesis, it is reasonable
to include these in the positive dataset given the adjacency
to the extracellular space, since plasma membrane-associated
proteins should have some features suitable to or related to the
extracellular space and would be expected to traffic through the
ER/Golgi compartments. We do not consider their inclusion in
WallProtDB to alter the conclusions, since the ROC results for
the balanced ASURE tests are consistent with poor performance
on other data.

Transmembrane domains were also excluded from the
mammalian training set of SecretomeP, although the output of
the TMHMM predictor was included as a candidate feature and
found to be amongst the most predictive when the features
were selected. Because of the ‘black box’ nature of SecretomeP’s
internal workings, the exact interpretation of TMHMM outputs
in determining mammalian LSPs is unknown. As noted when
published, TMHMM misclassifies about 20% of SPs as helices in
eukaryotes (Krogh et al., 2001). The original training set featured
no SPs or transmembrane helices and so from the influence
of SPs on plant CSP scores, we suggest that the presence of
an amino acid sequence with similar hydrophobic properties
is taken as a positive predictor of secretion. This reliance on
TMHMM to identify such regions could be one of the causes for
the difference in prediction scores between CSPs and truncated
versions without the SP region. The inclusion of other general
tools, such as PSORT II may also detect these features of CSPs
and boost the prediction scores.

Choice of Threshold
Our conclusions are drawn directly from the available data in
WallProtDB and ASURE, and the selection of which sub-sets
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of both datasets to use for ROC analysis. As such the choice
of data determines the precise TPR, FPR and threshold results.
Modifications were made to both positive and negative data
to create ROC curves (Figure 6), though comparisons between
modified positive data to unmodified negative data produce
similar results (Supplementary Figure S3). The Arabidopsis sub-
set of WallProtDB and ASURE (nucleus and/or cytosol) were
selected due to their size and clear exclusion from the secretory
pathway and extracellular destination. Broadly, however, the
results hold even if a more balanced yet smaller set, such as
using ASURE for both positive and negative data is selected or
additional sub-cellular locations are included as negative data
(Supplementary Figures S4 and S5). The trend of the ROC curve
of partial sequences toward random continues, and although
the AUC is higher, there are only 42 positive proteins in the
ASURE (Extracellular) sub-set as comparison, and thus it lacks
power. Although the results are specific to Arabidopsis, the use of
a general mammalian tool on plant proteins pre-supposes that
the features are shared between all mammals and plants. Poor
performance on Arabidopsis does not rule out better performance
on other plant proteins, but it would require that the conserved
features are poor on Arabidopsis only which is unlikely given the
high degree of conservation of proteins across species.

The previous thresholds used for SecretomeP in the plant
literature vary. Albenne et al. (2013) indicate a small number of
Arabidopsis proteins exceed the threshold, but don’t equivocally
state what threshold they used. Jamet et al. (2008) use 0.6, yet
Cheng et al. (2009) use 0.5 in their finding of 0.6 TPR based on
37 LSPs they assumed were genuine. This TPR drops to 0.3 when
using a more stringent 0.6 threshold (Supplementary Table S4).
The output of the web server version for SecretomeP3 previously
indicated 0.5 should be used as a cutoff (accessed August 2015)
which matches the more recent bacterial version. Currently
(accessed April 2016) the server indicates both 0.5 and 0.6
thresholds for bacterial and mammalian proteins, respectively,
in line with the published results. This change could contribute
to the multiple values used, however, since SecretomeP is not
explicitly listed as a tool for plant proteins, which threshold score
to use to match the expected sensitivity and specificity it provides
when applied to plant proteins is lacking. The pervasiveness of
a precise value in the literature, however, indicates that it may
be useful to use the thresholds in Supplementary Table S3 to
recommend a different value with a known FPR, which could be
preferable to the status quo.

The original cross-validation estimate of SecretomeP
sensitivity (TPR) was 0.4 when FPR is 0.05 and it was
acknowledged that this would not classify all LSP proteins
without using a much lower threshold, thereby incurring
a high cost of false positives (Bendtsen et al., 2004). From
Supplementary Table S3, the upper bound of unmodified
sequences would indicate that the TPR around 0.276 occurs for a
threshold of 0.794, and that estimates of the effect of the SP will
only reduce this. Given our results showing the reliance on the
SP when using CSPs as proxy, and based on the performance of
SecretomeP on modified CSPs with the SP Removed, controlling

3http://www.cbs.dtu.dk/services/SecretomeP/

the FPR to match the mammalian version at below 0.05 requires
the threshold to be 0.86 and the subsequent TPR is 0.029
(Supplementary Table S3A). These values represent the values at
which we estimate SecretomeP can predict based on conserved
features with some degree of certainty and therefore the use
of SecretomeP on plants does not appear justified. Although it
would represent an improvement over current usage and match
the FPR of the original program, excluding proteins on this basis
would mean losing the vast majority of true positives from any
proteome; the expectation would be that more false-positives
would still be identified than true secreted proteins.

Upper and Lower Limits on Performance
The discrepancy between scores for original and truncated CSPs
are evidence against common features of plant proteins being
recognized. The theory behind SecretomeP is that the mechanism
of secretion should not be captured, and that other shared aspects
of proteins that make it suitable for secretion are what predictions
are based on.

There remains the possibility, however, that shared features
in plants between CSPs and LSPs could also resemble the SP
mechanism (e.g., the similar hydrophobic properties between SPs
and GPI anchor regions) and that performance on true LSPs may
be similar to the original sequence results seen in this study, if
such features are highly predictive. Under this scenario, the ROC
curve for the original sequence could represent an approximate
upper bound on the accuracy, and the SP Remove the lower. This
would still not make SecretomeP suitable for plant proteins, as the
predictions would not be consistent with its original hypothesis
based on common-features between CSPs and LSPs, but rather on
similarities between the SP mechanism and LSP specific features.
This scenario would also not account for reduced scores for CSPs,
as these features should exist in addition to the SP region if they
are truly conserved.

This illustrates one difficulty with the mammalian trained
common-feature hypothesis being transferred to plants. This
work shows that in plants the secretion mechanism is influential
to the prediction score, but masks the true performance value,
which is likely to be somewhere between the Original and SP
Removed sequence curves (Figure 6). Future work using the
common-feature hypothesis in plants should take these types of
protein regions into account, namely if sequences are modified
for training a tool, then during development they must be
checked to ensure both modified and unmodified sequences have
a similar accuracy so that common-features are captured rather
than secretion mechanisms.

New Prediction Tools and Approaches
Are Required
SecretomeP was not trained on plant proteins. There is no
claim made in either the original publication or in the currently
available web service that SecretomeP has any applicability to
plants. Although version 1.0 could be considered ‘eukaryotic’ by
inference from the text available on the archived website4, the

4http://www.cbs.dtu.dk/services/SecretomeP-1.0/
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abstract clearly states the method is for mammalian secretory
proteins. The current version offers modes of operation for
mammals and bacteria only. Applying SecretomeP to plant
protein data implies a chain of assumptions that the features
shared between mammalian CSPs and LSPs are conserved
and also shared with plant CSPs and LSPs. Our results show
that these assumptions do not hold, and that observations of
the accuracy in the literature are not supported. While it is
tempting to reduce a large dataset into something manageable
for further analysis the current study has shown that the
predictive power of SecretomeP on plant proteins is such that
true-positives will be found at a rate close to the false-positive
rate, with marginal improvement over random selection of
classes.

Instead of SecretomeP being ‘better than nothing,’ we propose
that it is actually ‘worse than nothing’ so it is better to do nothing
than to use it on plant proteins. Independent experimental lines
of evidence (biochemical/cell biological) are required confirm
possible LSPs, but in plants, SecretomeP should not be used to
identify putative LSPs. Depending on the consequences of either
false positives or false negatives in a proteomic study, strategies to
accept all proteins found, or reject those without a SP, are advised.
A filtering strategy should not be used until a plant-specific tool
is developed.
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