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Wine aroma strongly influences wine quality, yet its composition and its evolution during
the winemaking process are poorly understood. Volatile compounds that constitute
wine aroma are traditionally divided into three classes according to their origin: grape,
fermentation, and maturation aroma. We challenge this view with meta-analysis and
review of grape and wine volatiles and their precursors from 82 profiling experiments.
We compiled a list of 141 common grape and wine volatiles and quantitatively compared
43 of them. Our work offers insight into complex relationships between biosynthesis
of aroma in grapes and the changes during the winemaking process. Monoterpenes
are one of the largest and most researched wine aroma compounds. We show that
their diversity in wines is mainly due to the oxidative metabolism of linalool in grapes.
Furthermore, we demonstrate that most of the linalool produced in grapes is converted
to these oxidized derivatives.
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INTRODUCTION

A crucial determinant of the wine quality is aroma, the composition of which is still not fully
understood, due mainly to the interactions of the genetic factors with the environment. Yet this
knowledge is necessary to ensure consistent production of high quality wines (Polášková et al.,
2008). Wine aroma is a complex mixture of volatile organic compounds. These are small, non-
polar molecules that readily enter the gas phase and reach our nasal cavity while we smell or drink
a glass of wine. Different volatile organic compounds in wine span a large range of concentrations.
While it is tempting to think that the more abundant compounds impact the aroma more than the
trace compounds, it is not necessarily the case. Human nose can perceive some of the compounds
at very low concentrations, whereas others remain undetected even at high levels. The strength of
aroma of a particular compound is expressed as an odor detection threshold, which is the lowest
concentration perceivable to the human smell. Compounds with low sensory thresholds are often
responsible for the characteristic smell of a particular food (Dunkel et al., 2014).

Wine aroma compounds differ in their origin and evolution during the winemaking process.
Many authors have classified wine aroma compounds into three categories based on their origin:
grape (or varietal) aroma, fermentation aroma and aging aroma, also called the wine bouquet (Rapp
and Mandery, 1986; Ebeler, 2001; Styger et al., 2011). However, these three classes are not so clear-
cut: ultimately most of the aroma precursors (even the simple ones) originate from grapes and are
in some way modified by the fermentation process or aging.
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The grape aroma is synthesized in grape berries by a variety
of enzymes, including terpene synthases, O-methyl transferases,
carotenoid cleavage dioxygenases, cytochromes P450 and
probably other not yet characterized enzymes. Genetic variation
in aroma biosynthesis genes cause differences in aroma between
grapevine varieties: an allelic variant of 1-deoxy-D-xylulose-
5-phosphate synthase, a terpenoid biosynthetic gene, causes
accumulation of terpenoids in Muscat and Gewurztraminer
grapes. An abundance of terpenoids gives these wines a
distinct floral aroma (Battilana et al., 2009, 2011; Duchêne
et al., 2009). In another example, differential expression of
an O-methyl transferase gene results in higher production of
methoxypyrazines, compounds evoking the typical capsicum
aroma in Sauvignon wines (Guillaumie et al., 2013). The genetic
factors underlying the aroma typicity of all other grapevine
varieties—in Europe alone over 2000 varieties have been
described (Lacombe et al., 2011)—remain unexplored.

Grape berries store most of the volatiles they produce
as glycosides (Strauss et al., 1988). Possible functions of
glycosylation are sequestration, detoxification and decrease of
volatility and reactivity (Hjelmeland and Ebeler, 2014). Since
glycosides are not volatile, they do not directly contribute to wine
aroma. They do, however, affect the aroma indirectly: they form
a precursor pool from which volatile aglycones can be released
during yeast and malolactic fermentation, during vinification by
addition of exogenous glycosidases, during wine aging owing
to its low pH (Maicas and Mateo, 2005) and, as demonstrated
recently, by enzymatic hydrolysis in the mouth, catalyzed by
the enzymes in the saliva (Mayr et al., 2014). Aroma glycosides
in grapes have either one or two sugar moieties attached to
the aglycone (forming mono- or diglycosides, respectively). The
first sugar moiety, directly attached to the aglycone, is in all
cases glucose. The majority of glycosides (at least in the case
of terpenoids) are present in the form of diglycosides, in which
a second sugar—arabinose, apiose or rhamnose—is attached to
the glucose (Maicas and Mateo, 2005). The diglycosides cannot
be hydrolyzed by a β-glucosidase, and require other glycosidase
enzymes to release the volatile aglycone (Gunata et al., 1988).

The winemaking process profoundly influences the wine
aroma development. Processes contributing are the hydrolysis of
glycosides present in the must and the production, particularly, of
alcohols and esters, by the yeast (Saccharomyces cerevisiae) itself.
Different yeast strains can produce remarkably different aroma
profiles (Romano et al., 2003). After alcoholic fermentation
wines are sometimes subjected to malolactic fermentation by
Oenococcus oeni, the principal role of which is to reduce tartness
or acidity of wine by converting malic acid to lactic acid. These
bacteria can also alter the composition of aroma by, for example,
promoting deglycosylation (Ugliano and Moio, 2006).

The evolution of wine aroma continues after the fermentation
process. In addition to above-mentioned acid hydrolysis of aroma
glycosides during wine aging, low pH can cause other important
chemical changes. Williams et al. (1980b) postulated that some
hydroxylated linalool derivatives undergo cyclisation or other
rearrangements at low pH. In addition, during storage in oak
barrels, compounds from the wood are extracted to the wine and
influence its taste and aroma.

Standardized sample preparation (Gunata et al., 1985; Voirin
et al., 1992) and analytic procedures are routinely performed
for evaluation of grape and wine volatiles and their precursors.
Grape juices or wines are extracted to a non-ionic solid phase,
free volatiles are eluted by a non-polar solvent (pentane or
a mixture of pentane and dichloromethane), and glycosylated
volatiles are eluted by a more polar solvent (ethyl acetate or
methanol). The free fraction can then be directly analyzed by gas
chromatography. The bound fraction is enzymatically hydrolyzed
before the analysis. Gas chromatography allows for simultaneous
analysis of hundreds of volatiles with good resolution of
structurally similar molecules. Furthermore, coupling to a mass
spectrometer enables reliable identification of compounds by
searching mass spectra databases even when analytical standards
are not available.

Many research laboratories used this method to investigate
how aroma is influenced by grape variety, grape ripening,
environment and different winegrowing and winemaking
techniques. While these studies have without doubt addressed
some of these important questions, a comprehensive picture of
wine aroma integrating these valuable data has not been painted
yet. We collected, curated and analyzed these data to answer the
following questions. What are the components of grape and wine
aroma? At which concentrations are they present? To what extent
are they glycosylated? We compared these parameters between
grapes and wines. We then compared these data to the existing
knowledge on the origin and evolution of aroma components
with a particular focus on their biosynthesis. This meta-analysis
adds to our understanding of wine aroma composition and
development.

MATERIALS AND METHODS

Data Collection
We collected published datasets on free and glycosylated grape
and wine volatiles. We used search term “grape aroma profiling
free glycosylated” on Google Scholar and reviewed citations
of included publications. We reviewed 104 publications that
reported profiling of grapes or wines. Foutry-five of them
were excluded because they only contained information on free
volatiles, and 8 because they only contained information on
glycosylated volatiles. To ensure the compounds were annotated
correctly, only publications that contained information of Kovats
retention index were included. Further 31 publications were
therefore excluded, which resulted in 19 selected publications
(Table 1). Publications or samples that described Vitis species
other than Vitis vinifera subsp. vinifera were excluded from all
quantitative analysis, but used for validation of retention indices.

Data Curation
Molecule names and their Kovats retention indices were
aggregated in one file and manually checked for duplicates
(synonyms), which resulted in 385 unique molecules. They were
assigned to one of the 16 classes of volatiles (aliphatic alcohol,
ketone, aldehyde, ester, or acid, monoterpene, norisoprenoid,
sulfur-containing, phenol, aromatic alcohol, ketone, aldehyde,
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TABLE 1 | Publications included in the analysis.

Reference Sample
type

Number of
samples

Genotypes/Varieties

Yilmaztekin et al., 2015 Wine 1 Karaoglan

Sánchez-Palomo et al., 2015 Wine 5 Verdejo

Selli et al., 2006 Wine 2 Narince

Toci et al., 2012 Wine 2 Negroamaro

Oliveira et al., 2008 Wine 5 Lourerio, Alvarinho

Becatti et al., 2014 Wine 1 Sangiovese

Gómez García-Carpintero et al., 2011a Wine 5 Bobal

Gómez García-Carpintero et al., 2011b Wine 5 Moravia Agria

Gómez García-Carpintero et al., 2012 Wine 3 Moravia Dulce, Rojal, Tortosi

Boido et al., 2003 Grape 1 Tannat

Ghaste et al., 2015 Grape 6 F3P30, IASMA ECO3, F3P63, Riesling, Gewürztraminer, Moscato Rosa∗

Bureau et al., 2000 Grape 2 Muscat of Frontignan

Canosa et al., 2011 Grape 5 Mencía, Espadeiro, Caíño Redondo, Pedral, Sousón

Fenoll et al., 2009 Grape 2 Muscat Hamburg

Genisheva and Oliveira, 2009 Grape 14 Alvarinho, Arinto, Avesso, Azal, Batoca, Lourerio, Trajadura

Ugliano and Moio, 2008 Grape 1 Fiano

Vrhovsek et al., 2014 Grape 5 Sauvignon Blanc, Chardonnay, Gewürztraminer, Grüner Veltliner, Sangiovese

Hellín et al., 2010 Grape 2 Superior Seedless

Lopez-Tammames et al., 1997 Grape 15 Albarinho, Listan, Treixadura, Greanche, Parellada, Tempranillo, Viura, Xarel·lo

Baek and Cadwallader, 1999 Grape (3) Vitis rotundifolia (Muscadine)∗∗

∗Non-vinifera genotypes (Nero, Isabella, Vitis arizonica and Vitis cinerea) were excluded from the quantitative analysis. ∗∗Excluded from the quantitative analysis.

ester, or acid, nitrogen-containing or other). Two hundred
and forty-four unique molecules appeared in less than three
publications and were excluded from further analysis because
of insufficient information. Kovats retention indices of the
remaining 141 compounds were compared and in the cases where
standard deviation of the retention indices exceeded 50, outliers
were excluded (annotation of a compound was considered
incorrect in this particular publication and was excluded from the
dataset).

We paid particular attention to geometric isomers of some
compounds, which elute close to each other and have similar
or identical mass spectra and are therefore often misannotated.
Such pairs of compounds are: pyranic linalool oxides, furanic
linalool oxides and 8-hydroxylinalools. In case of pyranic linalool
oxides, the two isomers were incorrectly annotated in the first
paper reporting their structure (Felix et al., 1963). This error
was identified and corrected later (Kreis et al., 1996), but some
authors continued to use the incorrect annotation. All the data
were curated so that the first eluted furanoid linalool oxide was
re-annotated as trans isomer, and the second one as cis. Similarly,
the first eluted pyranoid linalool oxide was annotated as trans and
the second one as cis (Luan et al., 2006b). Retention indices of (Z)
and (E)-8-hydroxylinalool were first reported in (Winterhalter
et al., 1986) and the author claimed the NMR spectra were
in agreement with previously published data. However, in a
subsequent publication (Chassagne et al., 1999), which is also
cited in the widely used database of volatiles Pherobase1, the
retention indices of the two compounds are inverted even if
the author received standards from the author of (Winterhalter

1http://www.pherobase.com/

et al., 1986). Recent publication (Hofer et al., 2014) confirms the
correct elution order is (Z)-, followed by (E)-8-hydroxylinalool,
as reported in the original publication (Winterhalter et al., 1986).

Statistical Analysis
Statistical analysis was performed using the R software version
3.0.2 (R Development Core Team, 2011). For quantitative
analysis 43 molecules with more than 30 data points were selected
from the pool of 141 validated compounds. Concentrations
of these compounds in free and glycoside bound forms were
then extracted from the 20 publications. If a compound
was only detected in the free fraction, it was assigned a
concentration of 0 in the glycosylated fraction, and vice versa.
Labels “not detectable”, “not quantifiable” and “trace” were all
converted to zero concentration. Concentrations of free and
bound form of each molecule were then added to get the
“total concentration”. “Fraction glycosylated” was calculated by
dividing the concentration of glycosylated compound with the
total concentration.

Concentration units were not the same in all studies.
All concentrations in wines were reported in µg L−1, some
concentrations in grapes were reported in µg L−1 and some
in µg kg−1. In addition, grape juice and wine have a different
density, so the concentrations are not directly comparable, but
since we compared them on a logarithmic scale we considered
these differences negligible and did not adjust for them.

Log-transformed concentrations were compared using a two-
sided t-test. Only molecules with 5 or more data points in
each category (grape and wine) were included. Glycosylated
fractions were compared using Mann-Whitney–Wilcoxon u
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test. Correlations were calculated on total concentrations
(free+ glycosylated) for compounds with more than 40 complete
observations. Linear models for linalool derivatives were
calculated on log total molar concentrations (free+ glycosylated)
with non-zero values. Linalool derivatives with low R2 value
(<0.45) were excluded from the graph [hotrienol, (cis)-linalool
oxide (pyranoid)]. Data, residuals normality and leverage were
visually evaluated for each model.

RESULTS AND DISCUSSION

Composition of Wine Aroma
Analysis of 19 publications describing grape or wine aroma
revealed 385 different volatile organic compounds. More than
half of them were only identified in one or two studies, and were
eliminated from further analysis to account for the possibility
of incorrect identification. Some of the eliminated compounds
might be important varietal compounds, but this study focuses
on the similarities, not the differences between the varieties.
The remaining 141 validated volatile compounds (Table 2) were
assigned to one of the 12 classes based on their chemical structure
and biosynthetic origin. Authors of most reviews make a clear
distinction between grape and fermentation derived wine aroma
(Ebeler, 2001; Dunlevy et al., 2009; Styger et al., 2011; Robinson
et al., 2014) and therefore use a different classification of wine
aroma components. Classes defined in this study are based on
classifications from other authors, while trying to contain all
the molecules and to minimize the overlap between classes.
The most represented classes (with respect to the number of
validated compounds) were aliphatic alcohols, aliphatic esters,
monoterpenes and volatile phenols (Figure 1).

Not all volatiles contribute to the aroma equally. Their impact
depends on their concentration, as well as aroma intensity. The
latter is usually expressed as the odor detection threshold, which
is the lowest concentration of a particular compound that can
be detected by the human smell. In a recent meta-analysis,
Dunkel et al. (2014) compiled a list of food volatiles occurring
at concentrations exceeding their odor detection threshold, and
named them key food odorants. Somehow surprisingly, a total
of only 220 key food odorants are responsible for the aroma
of most of the foods and beverages we consume, and among
those fewer than 40 contribute to aroma of an individual food
item. Another meta-analysis identified 57 key wine odorants,
which were identified as wine volatiles with concentrations above
their odor detection threshold. All but 2 of these volatiles are
also included among the 220 key food odorants. Only 60%
(N = 35) of those key wine odorants overlap with our set of
common wine volatiles, compiled from non-targeted profiling
experiments (Figure 1). We named that group “evident” key
odorants. The other 40% (N = 22) of key wine odorants
are overlooked in non-targeted volatile profiling experiments,
presumably because of their low concentrations. We named
that group of volatiles “hidden” key odorants. The two largest
groups within the hidden key odorants are sulfur-containing
volatiles and fatty acid lactones (Supplementary Table S1). Several
sulfanyl (or mercapto) alcohols were identified as important

varietal compounds in Sauvignon Blanc and many other varieties,
but their low abundance requires the use of targeted analytical
methods, such as stable isotope dilution analysis (SIDA) for their
quantification (Roland et al., 2011) and were therefore not among
the volatiles included in this study. Even among monoterpenes,
one of the largest classes in our study, two odor-active molecules
(cis-rose oxide and wine lactone) are not detected in non-
targeted volatile profiling experiments. Conversely, the high-
impact aliphatic alcohols, acids and esters, as well as phenols and
benzenoids, are apparently present in sufficient concentrations to
be easily detectable in profiling experiments. A last group of 15
common wine volatiles features on the list of key food odorants,
but not the key wine odorants. We labeled those compounds
“potential” key odorants (Supplementary Table S1). The progress
in analytical chemistry will likely permit discovery of more key
wine odorants in the future. Rotundone, the odorant conferring
the peppery character to Shiraz wines, was only discovered
recently (Wood et al., 2008) and was not included neither among
the key food odorants nor the key wine odorants.

Although odor detection threshold is commonly used to
describe an influence of a particular compound on aroma, this
value needs to be used with caution for describing complex
aroma mixtures, such as wines. Both synergistic and antagonistic
effects can occur in odor perception. Sometimes a mixture
of compounds can be perceived even if all components are
at sub-threshold concentrations. Conversely, some compounds
can mask the perception of other compounds, so they remain
undetected at supra-threshold concentrations (Dalton et al.,
2000; Ishii et al., 2008). In addition, odor detection threshold
is averaged across the population. Because of the variability in
odor receptor genes in human population, each individual has
a highly personalized odor perception (Mainland et al., 2013).
Finally, threshold values are not known for all the wine volatiles.
For these reasons we decided to include all the volatiles, not just
the key wine odorants, in our meta-analysis.

Origin and Evolution of Wine Aroma
During the winemaking process the aroma undergoes major
changes, in particular deglycosylation of aroma compounds
synthesized in grapes and biosynthesis of new compounds. To
analyze these changes quantitatively we selected 43 compounds
with sufficient number of available data points (>30) across
the 82 volatile profiling datasets. For each compound we
computed the total concentration (the sum of free and bound
concentration) and percentage that is glycosylated (bound/total
concentration), and tested for differences between these values in
grapes and wines (Figure 2). These differences in concentration
and degree of glycosylation are largely characteristic of each class
of molecules.

Aliphatic Alcohols
Aliphatic alcohols are a diverse group of compounds that
can originate both from grapes and yeast fermentation. C6-
alcohols are a common group of plant volatiles with six carbon
atoms and have a characteristic “green” aroma, reminiscent
of leaves and fresh cut grass. They are formed from the
corresponding C6-aldehydes, also important aroma compounds,
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TABLE 2 | List of grape and wine volatiles reported in at least three studies with mean retention indices.

Compound RI Compound RI Compound RI

Aliphatic alcohols

Methanol 879 2-heptanol 1318 (E)-2-hexen-1-ol 1408

1-propanol 1045 4-methyl-1-pentanol 1319 (Z)-2-hexen-1-ol 1414

2-methyl-propanol (isobutanol) 1085 (Z)-2-penten-1-ol 1321 1-octen-3-ol 1452

1-butanol 1146 3-methyl-1-pentanol 1326 1-heptanol 1460

2-methyl-1-butanol 1212 1-hexanol 1357 2-ethyl-1-hexanol 1497

3-methyl-1-butanol (isoamyl
alcohol)

1213 (E)-3-hexen-1-ol 1371 2,3-butanediol 1547

1-pentanol 1249 3-ethoxy-1-propanol 1377 1-octanol 1561

3-methyl-3-buten-1-ol 1252 (Z)-3-hexen-1-ol 1387

Aliphatic ketones

3-hydroxy-2-butanone (acetoin) 1284

Aliphatic aldehydes

Hexanal 1095 (E)-2-hexenal 1223

Aliphatic esters

Ethyl acetate 836 Ethyl lactate 1336 Diethyl succinate 1688

Isobutyl acetate 1012 Ethyl octanoate 1437 Ethyl methyl succinate 1743

Ethyl butanoate 1055 2-hydroxy 2-methylpropyl butyrate 1461 Methyl 4-hydroxybutyrate 1783

Ethyl 3-methylbutanoate 1070 Ethyl 3-hydroxybutanoate 1509 Ethyl 4-hydroxybutyrate 1822

Butyl acetate 1070 Ethyl lactate 1336 Ethyl dodecanoate 1852

Isoamyl acetate 1134 Diethyl malonate 1597 Diethyl malate 2057

Ethyl hexanoate 1218 Methyl decanoate 1629 Ethyl succinate 2359

Hexyl acetate 1285 Ethyl decanoate 1650 Ethyl 4-hydroxybutyrate 1822

Aliphatic acids

Acetic acid 1440 Pentanoic acid 1705 Decanoic acid 2293

Propanoic acid 1524 Hexanoic acid 1835 Dodecanoic acid 2447

2-methylpropanoic acid (isobutyric
acid)

1579 (E)-2-hexenoic acid 1942 Tetradecanoic acid (myristic acid) 2669

Butanoic acid (butyric acid) 1617 Octanoic acid 2055

Isovaleric acid 1659 Nonanoic acid 2142

Monoterpenes

Limonene 1202 Citral/ (E)-geranial 1743 6-hydroxylinalool (diendiol II) 2152

trans-linalool oxide (F) 1447 Citronellol 1764 8-hydroxy-6,7-dihydrolinalool 2217

cis-linalool oxide (F) 1476 cis-linalool oxide (P) 1766 (Z)-8-hydroxylinalool 2274

Linalool 1547 Nerol 1811 (E)-8-hydroxylinalool 2304

Terpinen-4-ol 1599 Geraniol 1846 Geranic acid 2317

Hotrienol 1624 exo-2-hydroxy-1,8-cineole 1851 p-menth-1-ene-7,8-diol 2502

alpha-terpineol 1697 7-hydroxylinalool (diendiol I) 1950

trans-linalool oxide (P) 1727 7-hydroxy-6,7-dihydrolinalool 1988

Norisoprenoids

4-oxo-isophorone 1703 3,4-dihydro-3-oxo-actinidol II 2420 3-hydroxy-7,8-dihydro-beta-ionol 2684

β-damascenone 1804 3-hydroxy-β-damascone 2553 3-hydroxy-7,8-dehydro-β-ionol 2732

3,4-dihydro-3-oxo-actinidol I 2382 Dehydrovomifoliol 2554 Vomifoliol 3148

3,4-dihydro-3-oxo-actinidol III 2412 3-oxo-alpha-ionol 2617

Sulfur-containing volatiles

3(2H)-2-methyldihydro-thiophenone 1505 3-methylthiopropanoic acid 1757 1,2-benzothiazole

3-(methylthio)-1-propanol
(methionol)

1719

Volatile phenols

Methyl salicylate 1779 Syringol (2,6-dimethoxyphenol) 2243 Ethyl vanillate 2676

Guaiacol (2-methoxyphenol) 1869 Isoeugenol 2302 3,4-dimethoxyphenol 2756

Phenol 1982 Methyl salicylate 1779 Zingerone 2796

4-ethylguaiacol 2055 Guaiacol (2-methoxyphenol) 1869 Tyrosol 3008

4-methyl phenol (p-cresol) 2087 4-methoxyphenylethyl alcohol 2302 Methyl vanillyl eter 3030

(Continued)
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TABLE 2 | Continued

Compound RI Compound RI Compound RI

3-methyl phenol (m-cresol) 2119 4-vinylphenol 2388 3,4,5-trimethoxyphenol 3032

Eugenol 2181 (E)-4-allylsyringol 2424 4-methoxyphenylethyl alcohol 2302

4-ethylphenol 2187 Vanillin 2550 4-vinylphenol 2388

p-vinylguaiacol 2200 Methyl vanillate 2568

4-hydroxy-2-methyl acetophenone 2212 Acetovanillone (Apocynin) 2654

Benzenoids

Benzaldehyde 1519 Ethyl benzene acetate 1782 Ethyl cinnamate 2286

Phenylacetaldehyde 1639 2-phenyl ethyl acetate 1809 Benzoic acid 2391

Acetophenone 1667 Benzyl alcohol 1883 Benzylacetic acid 2502

Ethylbenzaldehyde 1728 2-phenylethanol 1913 Cinnamic acid 3045

Benzyl acetate 1735 Benzenepropanol 2037

Nitrogen-containing volatiles

N-ethyl-benzamine 1750 N-(2-phenylethyl)-acetamide 2563

Other volatiles

gamma-butyrolactone 1628 Furaneol 2023 2,3-dihydrobenzofuran 2377

by alcohol dehydrogenase enzymes. C6-aldehydes are products of
hydroxyperoxide lyase (CYP74) enzymes (Matsui, 2006), which
were recently characterized in grapevine (Zhu et al., 2012). C6
alcohols can be consumed by the yeast during fermentation
(Mauricio et al., 1997), which may explain why concentration of
(E)-2-hexen-1-ol is lower in wines compared to grapes.

High levels of short chain alcohols, also known as fusel
alcohols, can negatively impact wine aroma (Ebeler and
Thorngate, 2009). They are formed by the yeast during
fermentation from amino acid catabolism (Mauricio et al., 1997).
A typical example is isoamyl alcohol, the concentration of which
is much higher in wines compared to grapes and is also the most
abundant compound in this study (Figure 2).

Aliphatic alcohols also contribute to the aroma as precursors
of esters, which are discussed below.

Aliphatic Acids
The yeast produces aliphatic acids during fermentation (Styger
et al., 2011) from primary metabolites: long aliphatic acids (C6
and above) are derived from fatty acids, short and branched
aliphatic acids are derived from amino acids and acetic acid is
derived from sugar. Aroma of volatile fatty acids is generally
unpleasant, ranging from sweaty and cheesy to goaty and rancid.
Although all aliphatic acids included in this study were detected
in both grapes and wines, their concentration was significantly
higher in wines (Figure 2), confirming they are predominantly a
fermentation product.

Longer aliphatic acids (C8 and C10) in grapes are glycosylated
at least to some extent, which is unexpected because they lack
a hydroxyl group to which the sugar moiety is usually attached.
Instead, they are probably stored as glucose esters, a less common
type of glycoconjugate, where sugar and aglycone are connected
via an ester bond. Fatty acid glucose esters have been described
in other plants (Dembitsky, 2004), but their role as wine aroma
precursors has not yet been extensively studied.

Aliphatic acids can be transformed to more pleasant smelling
compounds, such as esters (described below) and lactones.

Five fatty acid derived lactones (γ-nonalactone, γ-decalactone,
γ-dodecalactone, γ-(Z)-6-dodecenolactone and (Z)-oak lactone,
also known as whisky lactone), are among the “hidden” key wine
odorants, presumably because of their low concentration in wines
(Francis and Newton, 2005).

Aliphatic Esters
Esters are a group of volatiles that contribute to fruity notes
of wine and other fermented beverages. They are produced
during fermentation from alcohol and acyl-CoA by yeast alcohol
acyltransferase enzymes, which explains why their concentrations
in grapes are negligible (Figure 2).

The two major groups of esters in wine are ethyl esters and
acetate esters. The concentration of ethyl esters of medium-
chain fatty acids depends on the concentration of the fatty
acid precursor (Saerens et al., 2008). Our data confirms
this observation: concentrations of ethyl hexanoate and ethyl
octanoate are strongly positively correlated to concentrations
of their precursors, hexanoic and octanoic acids, respectively
(Figure 3). Similar relationship was recently found for C9 and,
to a lesser extent, C12 ethyl esters (Boss et al., 2015). While
hexanoic acid is predominantly a fermentation product, non-
negligible amounts are present in grapes as well. The biosynthesis
of hexanoic acid in grapes could thus influence the concentration
of a typical fermentation product, ethyl hexanoate, in wine.

Conversely, precursor concentration does not determine the
concentration of acetate esters. The limiting factor in the
production of acetate esters by S. cerevisiae is expression of the
alcohol acetyltransferase gene in yeast (Verstrepen et al., 2003).
Indeed, isoamyl acetate and hexyl acetate do not correlate to the
concentrations of their precursors (Figure 3).

Monoterpenes
Monoterpenes are a large class of plant specialized metabolites.
They are built from two isoprenoid units, which constitute a
backbone of 10 carbon atoms. These compounds give many
fruits, flowers, herbs, and spices their characteristic aroma. Most
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FIGURE 1 | Classes of grape and wine volatile compounds evaluated
in this study. (A) Classes of volatiles with examples. (B) Number of different
molecules from each class that were included in this study. (C) Euler diagram
of wine volatiles included in this study and key food and wine odorants,
identified in two other meta-analyses. Two other meta-analyses identified
volatile compounds with the strongest impact on aroma of food (Dunkel et al.,
2014) and wine (Francis and Newton, 2005). While the overlap between the
three studies is sizeable, many key odorants are not detected in volatile
profiling experiments. Each tile represents one volatile molecule and its color
corresponds to the molecular class.

of the wine monoterpenes contribute toward floral and citrusy
notes. For example, monoterpenols and their derivatives give
the characteristic aroma to Muscat (Ribéreau-Gayon et al., 1975)
and Gewurztraminer (Guth, 1997) wines. High monoterpenol
concentration in these cultivars results from a mutation in
an early terpenoid biosynthesis gene deoxy-D-xylulose synthase
(Battilana et al., 2009, 2011; Duchêne et al., 2009). Our data
show that monoterpenols span a large concentration range in
grapes and wines (Figure 2) which points to their role as
varietal aroma compounds in some grapevine varieties. Unlike
other classes of volatiles described here their concentrations
in grapes and wines are similar, as expected for grape-derived
compounds. Conversely, the glycosylated percentage of many
terpene compounds is lower in wines compared to grapes,
suggesting fermentation nonetheless affects the monoterpene
content in wine by releasing volatile monoterpenes from their
glycosylated precursors.

Monoterpenes are products of terpene synthase enzymes. The
terpene synthase gene family has expanded in grapevine, which
underlines the importance of terpenoids in this species (Martin
et al., 2010). More than half of the terpene synthase genes
have been functionally characterized (Martin et al., 2010) and
were found to produce a large number of different mono- and
sesquiterpene backbones in vitro. Interestingly, this variability is
not reflected in the volatile profiles of grapes and wines in our
selected studies.

Sesquiterpenes do not appear in our dataset of 141 validated
volatiles. However, a labeling study revealed production of 14
sesquiterpenes in grape skins of two different varieties, suggesting
the sesquiterpene metabolism in grapes is nonetheless active
(May et al., 2013). The concentrations of sesquiterpenes in grapes
and wines are probably too low to be detected in non-targeted
profiling experiments, but they do contribute to wine aroma of
at least some varieties: rotundone, an oxygenated sesquiterpene,
is responsible for the peppery aroma of Shiraz wines (Wood
et al., 2008). Recent reports suggest higher concentrations of
rotundone in Shiraz are due to mutations in one of the
sesquiterpene synthase genes (Drew et al., 2016) in this cultivar.
These mutations change the activity of the enzyme and cause
production of α-guaiene, which is subsequently oxidized by a
cytochrome P450 enzyme CYP71BE5 (Takase et al., 2016).

Monoterpenes, on the other hand, are one of the largest
molecular classes in our study, with 22 different molecules
identified in grapes or wines (Figure 1). Interestingly, this large
chemical variability among wine monoterpenes does not result
from the variability of different backbones synthesized by terpene
synthases. Half of the validated monoterpenes in this study are
derivatives of the same monoterpene: linalool. Seemingly the
variability of monoterpenes in grapes arises from the enzymes
that oxygenate linalool at different positions.

Elaborate oxidative linalool metabolism in grapevine
was previously demonstrated by feeding experiments (Luan
et al., 2006a). All of the described linalool derivatives, with
the exception of nerol oxide, 6,7-epoxylinalool and 6,7-
dihydroxylinalool are also present on our list of validated
volatiles. Common metabolic origin of monoterpenes, in
particular linalool derivatives, is also apparent from the
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FIGURE 2 | Comparison of the total concentration (left) and percentage of glycosylation (right) of selected grape and wine volatile organic
compounds. “Total concentration” is the sum of “free” and “bound” concentration and “percentage glycosylated” is “bound concentration” divided by “total
concentration.” Each point represents one grape or wine sample from one of the 19 publications included in the study. Non-detected compounds (concentration
zero) were assigned a concentration 0.01 µg L−1 to allow their representation on a logarithmic scale. Gray dots on the right indicate significant difference between
grapes and wines and their size is proportional to the p-value of the statistical test. Student’s t-test was used on log-transformed concentrations and Wilcoxon rank
sum test was used on glycosylated fraction.

Frontiers in Plant Science | www.frontiersin.org 8 September 2016 | Volume 7 | Article 1472

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01472 September 28, 2016 Time: 15:55 # 9

Ilc et al. Grape and Wine Aroma Components

FIGURE 3 | Relationships between the concentrations of esters and their precursors in wines. (A) Concentration of ethyl hexanoate is correlated to
concentration of hexanoic acid (R = 0.780, p-value < 0.001) and (B) concentration of ethyl butanoate is correlated to concentration of octanoic acid (R = 0.830,
p-value < 0.001). Concentrations of isoamyl acetate (C) and hexyl acetate (D) are not correlated to the concentration of their alcohol precursor (α = 0.01).

correlation matrix of grape and wine volatiles (Figure 4).
Linalool is positively correlated to all the monoterpenes included
in the study, which supports its role as a central monoterpene
metabolite in grapes. Enzymes catalyzing linalool oxidation
in grapes have not yet been identified but, in other plants,
enzymes from the cytochrome P450 superfamily were shown to
oxidize monoterpenes (reviewed in Ilc et al., 2016), including
linalool (Ginglinger et al., 2013; Hofer et al., 2014; Boachon
et al., 2015). Hydroxylated linalool derivatives were discovered
in grapes in early 1980s (Williams et al., 1980a; Strauss et al.,
1988). These compounds have a very weak odor so they are
unlikely to contribute to the wine aroma directly, but they
may nonetheless contribute to the aroma indirectly. They
were found to spontaneously transform to compounds with
strong aroma in conditions mimicking wine maturation. In
acidic conditions they undergo spontaneous elimination of
water and rearrangement to either linear (hotrienol) or cyclic
compounds (linalool oxides; Williams et al., 1980b). Although
low concentrations of hotrienol were also detected in grapes,
its concentration in wines is significantly higher (Figure 2),
which supports the hypothesis of acid-catalyzed formation from
7-hydroxylinalool during winemaking and wine maturation.
In addition, concentrations of 7-hydroxylinalool and hotrienol
are strongly correlated (Figure 4). We do not, however, find
the same evidence for non-enzymatic formation of linalool
oxides from 6,7-dihydroxylinalool or 6,7-epoxylinalool. Not
only these two putative linalool oxide precursors were not

detected in any of the experiments, but the concentrations of
linalool oxides were also comparable in wines and grapes. In
addition linalool oxides are glycosylated to a very high degree
in grapes, which suggests they are formed in metabolically
active grape berries, as demonstrated previously in the feeding
study (Luan et al., 2006a). Formation through acid-catalyzed
cyclisation during wine maturation is therefore probably of lesser
significance.

From a single profiling experiment, it is difficult to estimate
what proportion of the total linalool pool is transformed to
oxygenated derivatives, mainly because not all derivatives
are quantified in all the experiments. Strong correlation
between concentrations of monoterpenes in the studies
included in this meta-analysis (Figure 4) allowed us to
describe relationships between concentrations of linalool
and its oxygenated derivatives with a set of linear models
(Supplementary Table S2). In the investigated concentration
range (0.001–10 µM) most of linalool is oxygenated (Figure 5).
At low concentrations virtually all linalool (97%) is oxygenated
and the main linalool derivative is (E)-8-hydroxylinalool. At
high concentrations, oxygenated derivatives represent 52% of
the complete linalool pool, and the most abundant derivative
is 7-hydroxylinalool. 6-hydroxylinalool and linalool oxides
represent a minor part of the linalool derivatives. The total
fraction of oxygenated linalool derivatives in the linalool pool is
underestimated since not all linalool derivatives were included in
the calculation.
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FIGURE 4 | Correlation matrix of selected volatile compounds in wines and grapes. Total concentrations were log-transformed prior to calculation of
correlation. Only the compounds with more than 40 data points were included in the calculation. Color (see color scale) and dot size are proportional to the
correlation coefficient. Only coefficients with p-value < 0.001 are displayed. Nor., norisoprenoids; Benz., benzenoids.

Monoterpenes in grapes are predominantly glycosylated,
although variation between the samples is high (Figure 2).
Since only free compounds can impact the wine aroma, this
variability could be important for varietal characteristics. Several
monoterpenes are glycosylated to a lesser extent in wines as
compared to grapes. This can be attributed to hydrolysis of
glycosides by the yeast during fermentation, as well as acid
hydrolysis during wine maturation.

In spite of the large number of monoterpenes included in this
study, the list presented here is not exhaustive. The lowest limit
of quantification in the analyzed set of profiling experiments is
around 10−7 µg L−1 (Figure 2) and concentrations of some
monoterpenes, including key wine odorants rose oxide or wine
lactone, are below this limit. Furthermore, another linalool
derivative, (E)-8-carboxylinalool, has been detected in grapes
and wines, but is not detectable by gas chromatography, hence
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FIGURE 5 | Linalool derivatives in grapes and wines (A) and estimated
flux of linalool to different oxygenated derivatives (B). Relationship
between log concentrations of each linalool derivative and linalool was
described with a linear regression. These models were then used to estimate
the concentration of each derivative in the function of linalool concentration.
(cis)-linalool oxide (F) and hotrienol were excluded from the figure because of
low R2 value (Supplementary Table S2).

the absence from the data collected here. This compound also
indirectly influences wine aroma as a precursor to wine lactone.

Norisoprenoids
Norisoprenoids are a group of carotenoid-derived metabolites.
Similarly to monoterpenes, their aroma is mostly described as
floral or fruity, although some, for example 1,1,6-trimethyl-
1,2-dihydronaphthalene (TDN) which is described as petrol or
kerosene-like, can have a negative impact on aroma (Marais et al.,
1992).

Norisoprenoids are synthesized by carotenoid cleavage
dioxygenases, enzymes that cleave carotenoid substrates at
different in-chain positions, yielding products of different sizes.
All the norisoprenoids in this study have 13 carbon atoms (C13-
norisoprenoids), with the exception of 4-oxoisosporone (C9).

The most abundant carotenoids in grapes are β-carotenoid,
lutein, violaxanthin and neoxanthin (Baumes et al., 2002). Most
of the norisoprenoids in this study are derived from neoxanthin
(Mendes-Pinto, 2009). A carotenoid cleavage dioxygenase from
grapevine was characterized (Mathieu et al., 2005), but it was
shown to cleave zeaxanthin, a minor grape carotenoid, whereas
neoxanthin was not tested as a substrate.

The chemical diversity of norisoprenoids in grapes appears
to originate from different non-enzymatic reactions, including
photooxygenation, thermal degradation or acid hydrolysis
(Mendes-Pinto, 2009). Although norisoprenoids are considered
grape-derived metabolites, our data show higher concentrations
of two norisoprenoids (3-hydroxy-β-damascone and 3-oxo-
α-ionol) in wines as compared to the grapes (Figure 2).

Volatile Phenols
Volatile phenols are a heterogeneous group of wine volatiles with
respect to both their origin and impact on wine aroma. Many of
them are common plant volatiles, derived from ferulic acid or
related metabolites, and contribute to pleasant spicy aroma notes.
Although enzymes catalyzing their biosynthesis have not yet been
characterized in grapes, they have been studied in other plants.
Examples include clove aroma eugenol, which is synthesized by
an enzyme reducing coniferyl acetate in basil or petunia flowers
(Koeduka et al., 2006), or vanillin, synthesized from ferulic acid
by a hydratase/lyase enzyme in vanilla pods (Gallage et al., 2014).
Most of volatile phenols are stored in grapes as glycosides, and
can be hydrolyzed during winemaking. It is noteworthy that
vanillin in wine can also originate from aging in oak barrels
(Spillman et al., 1997).

Not all volatile phenols are associated with pleasant aroma:
some of them, for example guaiacol, are described as smokey,
ashy, or medicinal, and are considered off-flavors in wine. These
compounds can originate from fermentation, contamination
with spoilage yeast Brettanomyces (Chatonnet et al., 1992) or
smoke exposure of grapes, for example from nearby forest
fires (Hayasaka et al., 2010). Concentration of guaiacol is
much higher in wines compared to grapes (Figure 2), which
confirms fermentation origin of this compound. Interestingly,
some authors suggested that glycosylated precursors from grapes
represent only a minor source of p-vinyl guaiacol in wine
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(Chatonnet et al., 1993), but our data suggest this contribution
can be substantial.

Benzenoids
Benzenoid compounds in wines are cinnamic acid derivatives
with varying side chain lengths and oxidation states.
Phenylethanol and phenylacetaldehyde have a weak floral
aroma. The high odor detection threshold of phenylethanol is
compensated by its high concentration. Although these volatiles
can be produced by both plants (Tieman et al., 2006) and
yeast (Vuralhan et al., 2005), their concentration in wines is
generally much higher than in grapes, which suggests that
contribution from yeast is larger (Figure 2). An exception is
phenylacetaldehyde, concentration of which is higher in grapes
compared to wines and which is reduced by the yeast to yield
2-phenylethanol.

CONCLUSION

Meta-analysis is a powerful approach that allows to summarize
and draw new conclusions from a collection of existing
data. While most studies focus on the differences in volatile
profiles between varieties or grapes subjected to different
viticultural practices, we attempted to highlight the common
characteristics of grape and wine volatile profiles. The inventory
we compiled from 20 publications (Table 2) should facilitate
peak annotation of non-targeted profiling experiments, and
help researchers compare their results to data from other
experiments. Our analysis also serves as a reminder that
while non-targeted profiling allows quantification a large
number of different volatiles, it can easily miss some important
odor-active compounds. A targeted approach is required
for the detection of low-abundant volatiles, such as sulfur-
containing volatiles or fatty acid derived lactones, which
influence wine aroma because of their low odor detection
threshold. In the future, new hidden key wine odorants,
which have so far slipped under the radar of non-targeted
analysis, will likely be discovered using more sensitive
methods.

Quantitative analysis of wine and grape profiling data
revealed large variations spanning several orders of magnitude
in concentrations among different compounds and samples.
We paid particular attention to variation between grape
and wine samples to highlight the changes that occur in
the volatile composition during the winemaking process.
Although wine aroma compounds are traditionally divided
into three classes, based on their origin—grape-derived,
fermentation-derived and aging-derived—our analysis showed
that concentrations of many compounds can be influenced
by all three processes. They are connected to both grape and
yeast metabolic networks and, in addition, undergo chemical

transformations. For example, many grape-derived volatiles
accumulate in berries essentially as glycosylated derivatives,
which are subsequently hydrolyzed during the winemaking
process. We furthermore showed that concentrations of some
groups of compounds, such as monoterpenes, are tightly
correlated, which is indicative of their common metabolic
origin. Linalool, a typical aroma of floral-scented wines, has
a particularly rich oxidative metabolism. We showed that
most of the linalool in grapes is oxygenated to a variety
of different compounds. Linalool oxygenases thus not only
influence wine aroma by formation of new compounds, but
also by depletion of linalool, one of the key wine odorants.
Once more data will be available, similar relationships
may transpire for other classes of compounds with so
far poorly understood metabolism, such as norisoprenoids
or phenolic compounds. Understanding metabolism of
aroma compounds in grapes and during the fermentation
could help wine industry anticipate the changes that occur
during the winemaking process and their influence on wine
quality.
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