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The use of efficient rates of nitrogen (N) fertilizer application is important with regard

to increasing crop productivity and maintaining environmental sustainability. Rice-oilseed

rape rotations are amainstay of the economy and food security of China. Therefore, a field

experiment was carried out during 2011–2013 in Honghu to identify the most appropriate

N application rates for enhancing crop productivity and N use efficiency for rice (Oryza

sativa L.)-oilseed rape (Brassica napus L.) rotations. Six N fertilizer treatments (RO1, RO2,

RO3, RO4, RO5, and RO6) were laid out in a randomized complete block design with

three replicates. ROx represented the N fertilizer application rates (kg ha−1) for rice and

oilseed rape, respectively. Grain yields from plots receiving N fertilizer were significantly

increased by 59–71% (rice) and 109–160% (oilseed rape) during the total rotation

(2011–2013), as compared to RO1 (control; no application). Furthermore, a similar trend

was observed for N accumulation, ranging from 88 to 125% and 134 to 200% in aerial

parts of rice and oilseed rape, respectively. Nitrogen use efficiency (NUE) was significantly

higher (38.5%) under RO2 and lower (34.2%) under RO6 while apparent N balance (ANB)

was positively lowest under R05 (183.4 kg ha−1) followed by R02 (234.2 kg ha−1) and

highest under R06 (344.5 kg ha−1) during the total rotation. The results of grain yield,

NUE, and ANB indicated that the R02 rate of N application was superior. This information

should help to develop a cost-effective and environment-friendly Nmanagement strategy

for rice-oilseed rape rotation systems of central China.

Keywords: nitrogen management, grain yield, rice-oilseed rape rotation, nitrogen use efficiency, apparent N

balance

INTRODUCTION

Arable farming has historically been dominated by attempts to achieve higher levels of production;
however, new and diverse objectives now need to be considered. The environmental impact of crops
and production systems, the quality of crop products, reduced costs of production and improved
nitrogen (N) use efficiency are among the main objectives of modern agriculture.
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Rice-upland rotations are important in south Asian countries
(Yadav et al., 2000), and cover an estimated area of 26.7million ha
(Timsina and Connor, 2001). In China, these rotations contribute
72% of total cereal production and occupy an area of about 13
million ha. Globally, rice (Oryza sativa L.) is important for food
security. In China, rice accounts for ∼28% of the total grain-
sown area and 43% of total grain production (Huang et al.,
2002). With a constantly increasing population, it is estimated
that Asian irrigated rice production needs to increase by 43% over
the next 30 years (Cassman, 1999). However, a further expansion
of rice hectarage will be difficult as most arable land is either
already under rice production or has been converted into urban
infrastructure (Horie et al., 2005). It is therefore necessary to
constantly improve grain yield per unit area to maintain food
security (Peng et al., 2006). Oilseed rape (Brassica napus L.) is
globally the second most significant source of edible oil; it has
high nutritional value and a favorable composition of fatty acids
for both human consumption and livestock feed (Foley et al.,
2011; Yousaf et al., in press). Therefore, its demand is increasing
considerably all over the world (Kim et al., 2013). China is the
world’s leading producer of oilseed rape, which occupies 23.3%
of the cultivated area and contributes 22.2% of global rapeseed
production (FAO, 2010); it is therefore of great significance to
the economy and food security of China.

The Yangtze River basin in China is a major zone for
rice-oilseed rape rotation systems, contributing 4.3% (in 2010)
of the total grain yield (Wang et al., 2012) and 91% of the
national rapeseed (National Bureau of Statistics of China, 2012)
production. In this area, oilseed rape is usually cultivated under
either the single rice-oilseed rape system or the double rice-
oilseed rape system, both of which limits the crop duration
and soil nutrient supply accessible for increasing yield (Zhang
et al., 2006). Furthermore, the yield of rice-upland rotations
faces significant decline or stagnation as their sustainability is
threatened by lower N use efficiency (Tian et al., 2013). Rice
yield/ha in China is currently 50% higher than the global mean
yield (FAO, 2010), whereas N fertilizer usage for rice (∼190 kg
ha−1) is 90% greater than global levels (Heffer, 2009). Because
of the difficulty in predicting N fertilizer requirements, farmers
often apply higher levels than those needed to maintain yield
(Yadav et al., 2000; Ata-Ul-Karim et al., 2014a, 2016). However,
excess N fertilizer is unlikely to be effective in increasing crop
yields because of its diminishing returns (Tilman et al., 2011).
Furthermore, this practice decreases N use efficiency (Peng et al.,
2006; Ata-Ul-Karim et al., 2013, 2014b), causing a series of
economic and environmental problems, as only an estimated
30–50% of applied N fertilizer is utilized by crops (Smil, 1999).
N losses associated with higher application rates can result in
leaching (Gheysari et al., 2009) that leads to contamination
of surface and subsurface water (Barton and Colmer, 2006)
and aquatic ecosystems (Fischer et al., 2010), emissions of
N2O to the atmosphere (Huang and Tang, 2010) where it is a
potent greenhouse gas (Stehfest and Bouwman, 2006), significant
acidification in major croplands (Guo et al., 2010), and adverse
effects on human health (van Egmond et al., 2002; Wilkinson
et al., 2007). Therefore, the application of appropriate levels of
N fertilizer through improved management is key to increasing
N use efficiency (Tilman et al., 2002; Yousaf et al., 2014).

The effect of nitrogen on crops is profound; however, most
understanding on crop growth responses to this element is
empirical. An appropriate amount of N fertilizer encourages
photosynthesis in both oilseed rape (Hu et al., 2007) and rice
plants (Hussain et al., 2016), it enhances resistance to biotic
stress (Guo et al., 2009), improves dry matter accumulation and
nutrient uptake (Barłóg and Grzebisz, 2004a,b), and increases
grain and oil yields (Juan et al., 2009); meanwhile, over-
fertilization has become amajor concern for sustainable intensive
agriculture in China (Meng et al., 2013).

To-date, few studies have focused on N fertilizer management
and the efficiency of its application to rice and oilseed rape crops.
Furthermore, to the best of our knowledge, no one has reported
on these factors in rice-oilseed rape rotations, especially in
China. Therefore, the present study was conducted to develop an
improved N management strategy for rice-oilseed rape systems
in central China, to quantify appropriate N fertilizer rates for
enhancing crop productivity, and to evaluate the contribution of
applied N to N use efficiency and apparent N balance. The results
will be useful in developing cost-effective and environmentally-
friendly N management strategies for the rice-oilseed rape
systems of central China.

MATERIALS AND METHODS

Description of Experimental Area
The two-year field experiment was conducted during 2011–2013
on a rice and winter oilseed rape rotation at Honghu in the
Hubei province of China (30◦01′N, 113◦32′E). The region has
a subtropical climate with mean temperatures ranging from 6.2
to 29.3◦C in 2011, 3.6 to 30.4◦C in 2012, and 4.7 to 23.0◦C in
2013. In the same years, rainfall varied from 11.7 to 475.3mm,
57.9 to 213.8mm, and 19.2 to 217.8mm, respectively. During the
winter oilseed rape growing season, the temperature was mostly
low (4◦C or lower) with little precipitation (<100mm) between
January to February (Figure 1).

Experimental Design and Operation
The experiment was laid out in a randomized complete block
design in three replicates with six treatments as follows: No
nitrogen applied during either season of rice or oilseed rape
(R01); 180 kg ha−1 N applied during each season of rice and
oilseed rape (R02); 210 kg ha−1 N for the rice season and
150 kg ha−1 N for the oilseed rape season (R03); 150 kg ha−1

N for the rice season and 210 kg ha−1 N for the oilseed
rape season (R04); 150 kg ha−1 N (R05) and 210 kg ha−1

N (R06) applied during each season of rice and oilseed rape.
All six treatments received calcium superphosphate (P 5.2%) and
potassium chloride (K 52.3%) at the uniform rate of 60 and 90 kg
ha−1, respectively. N fertilizer in the form of urea (N 46.4%) was
applied to rice in three splits: 50% as a base fertilizer, 25% at
tillering stage, and 25% at panicle initiation stage. For oilseed
rape seasons, 60% was applied as a base fertilizer, 20% in the
over-wintering stage, and 20% at the initiation of stem elongation
(Wang et al., 2014). All P fertilizer was applied as a base in each
cropping season of both crops. K fertilizer was applied as follows:
70% before the sowing of rice and oilseed rape, 30% at panicle
initiation, and 30% at the top dressing stage for rice and oilseed
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FIGURE 1 | Monthly total rainfall and monthly mean temperature during the crop growing season in the experiment conducted during 2011–2013.

rape seasons, respectively. Borax was added at a rate of 15 kg B
ha−1 as a basal application for the oilseed rape season only, to
meet the nutrient requirements for normal growth (Wang et al.,
2014). Replicate plot sizes measured 20m2 (3m× 6.7m) for both
crops.

The experimental field was well prepared, plowed and leveled
with a rotary plow, and basal fertilizers were incorporated
during the final plowing. Straw residues of previous crops
were completely removed from the fields before the sowing of
each crop. Local varieties, Y-liangyou1 (rice), and Hua youza9
(oilseed rape) were chosen as experimental crops; they are
widely cultivated in the locality due to high-yields and extensive
adaptability. The nursery was raised near the experimental site
on a fertile seedbed and was transplanted to the field after 30
days of seedling emergence for each growing season. All other
field operations such as planting density, irrigation, herbicide
application, and disease and pest control were performed using
local methods. No major attack of weeds, disease, pest, or
inclement weather was recorded during the growing seasons.
Plant densities were kept uniform at 200,000 and 112,500 ha−1

for both growing seasons of rice and oilseed rape, respectively.
Seeding, transplanting, and harvest times are shown in Table 1.

Sampling and Measurement
Soil samples were collected at depths of 0–20 cm at 20 random
points before the commencement of experiment to analyze the
physical-chemical properties of study site. A sub-sample of fresh
soil was used for the measurement of inorganic N (Rowell, 1994).
The remaining soil was air-dried and ground to pass through
a 2-mm sieve for measurement of pH (1:2.5 soil/water ratio),
organic C (dichromate oxidationmethod), total N (Kjeldahl acid-
digestion method), Olsen-P by spectrophotometer, NH4OAc-K
by flame photometer, and soil type using the hydrometer method.
The experimental soil was silty clay loam in texture with a pH

of 7.47. Organic matter and total nitrogen was 24.2 g kg−1 and
1.93 g kg−1, respectively, while Olsen-P was 6.9mg kg−1, and
NH4OAC-K was 96.1mg kg−1.

To investigate the overall effects of fertilizer application, plants
were sampled at maturity of both crops to determine plant dry
matter (kg ha−1) and nutrient uptake (kg ha−1; Wang et al.,
2014). Plant samples were washed with deionized water and
divided into seeds, stems, pod walls for oilseed rape and grains,
and straw for rice. Each aerial fraction was separately chopped
and dried to a constant weight at 65◦C, then all dried and
milled plant samples were digested with H2SO4–H2O2. Total
plant N concentrations (%) were determined using an automated
continuous flow analyzer (AA3, Bran and Luebbe, Nordersted,
Germany). N uptake was calculated by multiplying the crop dry
matter by N concentrations in aerial plant parts. At maturity,
rice and rapeseed were harvested manually from each plot and
yields were adjusted to a moisture content of 14 and 8–12%,
respectively.

Data Analysis
Analysis of variance (ANOVA) was conducted on data separated
for each year. The data were statistically analyzed using SPSS
17.0 (IBM) software. Differences between the treatments were
calculated using the least significance difference test (LSD) at
0.05 probability level. Figures were prepared using MS Excel
(Microsoft Office 2007) and Origin 8.0 (Origin Lab) software.

Calculation Methods
Apparent Nitrogen Balance (ANB)
Mean annual apparent balance values for plant N was calculated
using the method of Duan et al. (2014).

ANB kg ha−1
= Total N uptake−N applied
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TABLE 1 | Timing of each operation for rice and oilseed rape in the experiment conducted during 2011–2013.

Operation 1st rotation (2011–2012) 2nd rotation (2012–2013)

Rice Oilseed rape Rice Oilseed rape

Seeding 8 May 2011 25 Sept. 2011 9 May 2012 20 Sept. 2012

Transplanting 11 Jun. 2011 25 Oct. 2011 12 June 2012 21 Oct. 2012

Harvesting 20 Sept. 2011 15 May 2012 22 Sept. 2012 13 May 2013

Nitrogen Use Efficiency (NUE)
NUE was calculated according to Su et al. (2014).

NUE =

Difference inN uptake with and without N applied

N application rate

RESULTS

Yield of Rice and Oilseed Rape in
Response to Nitrogen Fertilization
Results indicated a significant effect of different N fertilization
rates on rice and oilseed rape yield (Table 2). In 2011–2012,
yields varied from 5302 to 8955 kg ha−1 and 550 to 1384 kg
ha−1, respectively, while in 2012–2013, they were 4781 to 8424 kg
ha−1 and 793 to 2145 kg ha−1, respectively. Rotation yields
were statistically similar and higher under the R06 and R02
treatments while the lowest yields were observed under the
R01 treatment (see Table 2). The greatest yield increase for
rice was obtained at a rate of 210 N kg ha−1; however, this
was not significantly different from the application of 180 N
kg ha−1. The yield-increase ratio for oilseed rape was highest
at a rate of 180 N kg ha−1. In contrast, the lowest yield
increase in the rice-oilseed rape rotation was observed in the
R05 treatment that received the lowest application rate. With
the different rates of N application, overall, the total rotation
yield (2011–2013) varied from 10,083 to 17,229 kg ha−1 and
1344 to 3496 kg ha−1 for rice and rapeseed, respectively. When
compared to the R01 treatment, other treatments increased total
yields by 59 to 71% and 109 to 160% for rice and rapeseed,
respectively. These results indicated that a balancedN application
of 180 kg ha−1(R02) was superior and increased the total yield
by 69% for rice and 156% for rapeseed when compared to the
control (R01).

Nitrogen Uptake in Response to N
Fertilization and N Contribution to Rice and
Rapeseed Crop
Total N uptake in the aerial parts of rice and oilseed rape under
different N fertilization levels are shown in Table 3. Total N
uptake was significantly enhanced under different levels of N
fertilization compared with the R01 treatment. In 2011–2012,
total N varied from 82 to 202 kg ha−1 (rice) and 20 to 64 kg ha−1

(oilseed rape), while in 2012–2013, the total N uptake by aerial
plant parts ranged between 71 to 155 kg ha−1 and 34 to 105 kg
ha−1, respectively. Highest N uptake was observed under the R06
followed by the R03 and R02 treatments during the 2011–2012
rotation. During the 2012–2013 rotation, N uptake was highest

under R02 followed by the R06 and R04 treatments. The lowest
N uptake in all parts of both crops during both rotation years
was recorded under R01. When compared to the R01 treatment,
other application rates showed increased total N uptake from
2011 to 2013 by 88 to 125% (rice) and 134 to 200% (oilseed
rape). Furthermore, the increment ratio of N uptake by rice
and oilseed rape was highest under R02 in the 2nd, and total
rotation; in the 1st rotation, the N uptake increment ratio was
greatest under the R06 followed by R02 treatments. Hence, results
illustrated that N accumulation at the R02 level was the optimal
rate.

The distribution of N to aerial parts of rice and oilseed
rape in response to N fertilizer levels was calculated (see
Table 3). In 2011–2012, ∼73 to 80% of the N absorbed was
allocated to aerial parts of rice, and the remaining 20 to 27% of
absorbed N was utilized by the aerial biomass of oilseed rape;
while in 2012–2013, the ratio was 56 to 67% and 33 to 44%,
respectively. Compared with oilseed rape, the higher allocation
of N fertilizer to rice indicated that rice requires more nitrogen
than the former; however, the oilseed rape showed greater
sensitivity to N fertilizer; this was also reflected by the increment
ratio of yield and N uptake between rice and oilseed rape
(Tables 2, 3).

Nitrogen Use Efficiency and Apparent N
Balances in Response to N Fertilization
Nitrogen use efficiency was significantly influenced by different
application rates during the rotations (Figure 2). During 2011–
2012, NUE ranged from 32 to 38% while in 2012–2013, it ranged
from 31 to 40%. Maximum total NUE during 2011–2013 was
observed for R02 (39%) while the lowest was observed under
R06 (34%). These results showed that N fertilization under R02
improved NUE, and reduced N loss and environmental risk.

Apparent N balance values also varied for different N
fertilizer rates ranging from −102.5 to 159.0 kg ha−1 during
2011–2012 and from 105.9 to 185.5 kg ha−1 during 2012–
2013 (Figure 3). Furthermore, N balance was affected by
application rates as follows: R06>R04>R02>R03>R05>R01,
during 2011–2012, and R06>R03>R04>R02>R05>R01 in
2012–2013. ANB during the overall rotation was highest under
R06 (344.5 kg ha−1) while lowest under R05 (183.4 kg ha−1)
followed by R02 (234.2 kg ha−1). Hence, application rates that
lowered N threat to the environment could be ranked as
R05>R02>R06; the lowest was under R01 that had no N
input. Negative ANB values were only observed for the R01
treatment.
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TABLE 2 | Grain and seed yields (kg ha−1) of rice and oilseed rape as affected by different application rates of nitrogen (N) fertilizer in the experiment

conducted during 2011-2013.

Treatment 1st rotation (2011-2012) kg ha−1 2nd rotation (2012-2013) kg ha−1 Total rotation (2011-2013) kg ha−1

Rice Increment Oilseed Increment Rice Increment Oilseed Increment Rice Increment Oilseed Increment

to R01 (%) rape to R01 (%) to R01 (%) rape to R01 (%) to R01 (%) rape to R01 (%)

R01 5302c 550d 4781e 793c 10083c 1344c

R02 8603ab 62 1384a 152 8424a 76 2060a 160 17028a 69 3444a 156

R03 8955a 69 1201b 118 8146bc 70 1777b 124 17102a 70 2977b 122

R04 8413b 59 1351a 146 7987c 67 2145a 171 16400b 63 3496a 160

R05 8325b 57 1076c 96 7751d 62 1735b 119 16076b 59 2811b 109

R06 8921a 68 1376a 150 8307ab 74 1988a 151 17229a 71 3364a 150

Mean values within a column for each season followed by different letters are significantly different at P < 0.05 according to LSD.

TABLE 3 | Nitrogen (N) uptake (kg ha−1) transmitted to aerial parts of rice and oilseed rape plants as affected by different rates of N fertilizer application

in the experiment conducted during 2011–2013.

Treatment 1st rotation (2011–2012) kg ha−1 2nd rotation (2012–2013) kg ha−1 Total rotation (2011–2013) kg ha−1

Rice Increment Oilseed Increment Rice Increment Oilseed Increment Rice Increment Oilseed Increment

to R01 (%) rape to R01 (%) to R01 (%) rape to R01 (%) to R01 (%) rape to R01 (%)

R01 82e 20c 71c 34d 154c 55d

R02 174bc 111 64a 216 155a 117 94b 173 328a 114 157ab 189

R03 190ab 131 51b 154 143ab 100 78c 128 333a 117 129c 137

R04 162cd 96 59a 193 131b 84 105a 204 293b 90 164a 200

R05 151d 83 49b 145 139b 94 78c 127 289b 88 127c 134

R06 202a 145 59a 196 144ab 101 91b 164 345a 125 150b 175

Mean values within a column for each season followed by different letters are significantly different at P < 0.05 according to LSD.

DISCUSSION

Rice and Oilseed Rape Yield
Efficient nitrogen fertilizer management is essential for achieving
economic yields and for enhancing N use efficiency (Pan et al.,
2012). Normally, N fertilization will raise grain yield and
increase growers’ profits. However, high application rates are not
guaranteed to continually increase yield, and might result in low
N use efficiency or environmental issues (Guo et al., 2010; Tilman
et al., 2011).

Sustainable crop production relies on the continuous renewal
of soil fertility through a balance between N demand and
supply in cropping systems. N is the most yield-restraining
nutrient in crop production globally (Guo et al., 2016); it is
required in the greatest quantity by plants and is the most
mobile element in the soil (Timsina et al., 2006). However,
N availability, accumulation, and its utilization by crops are
restricted by various biotic and abiotic components in the soil-
plant system such as fertilizer application rates, cultivar, climate,
irrigation, crop residue, and crop management (Witt et al., 2000;
Yadvinder-Singh et al., 2005). The current results showed variable
grain yields in both crops under different N application rates
during both rotation years; this illustrates the significance of N
for boosting crop productivity and agrees with previous reports
on rice and oilseed rape (Wang et al., 2012; Li et al., 2015).
Differences in yield were mainly the consequent of different N
rates associated with soil fertility and the N uptake ratio by

aerial parts of rice and oilseed rape (Table 3). These results are
in agreement with previous studies reported by Zhang et al.
(2003) and Pan et al. (2012), who reported that yield components
were affected by the rate of N fertilization, and that crop yields
are usually more dependent on fertilizer levels (Harrison and
Webb, 2001) and soil fertility (Hossain et al., 2005). A close
correlation between N uptake and crop yield has also been
documented by Witt et al. (2000) and Timsina et al. (2006).
The current results illustrated that N released under the R02
treatment met the requirements of rice and oilseed rape, which
in turn resulted in the efficient translocation of photosynthetic
products during grain formation and consequently led to an
increase in yield.

Nitrogen Use Efficiency and N Uptake
Synchronization of crop N requirements with N supply is key
to improving N use efficiency. A crop’s demand for N is firmly
related to yield potential, which in turn is associated with N
supply and crop management practices. In this study, different N
application rates significantly increased NUE and in particular,
the R02 treatment was superior when compared with other
application rates in the 1st, 2nd, and total rotation of rice and
oilseed rape (Figure 2). Rice NUE was high (46 to 57%) in the 1st
rotation and low (34 to 46%) in 2nd rotation; while for oilseed
rape, NUE was low (18 to 24%) in 1st rotation and high (27 to
33%) in 2nd rotation. This was assumed to be due to greater
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FIGURE 2 | Nitrogen (N) use efficiency (NUE %) of rice and oilseed rape as affected by different N application rates in the 1st (2011–2012), 2nd

(2012–2013), and total rotation (2011–2013). Each value represents the standard error (n = 3). Within a season, bars with different letters are significantly different

at P < 0.05 according to LSD.

N accumulation in rice as compared to oilseed rape, which was
also reflected in the allocation of N uptake by aerial parts of the
crops where 64 to 80% of absorbed N was used by rice, and the
remaining 20 to 44% was utilized by oilseed rape. The ratio of N
accumulation by aerial parts of rice was greater in the 1st rotation,
while that of oilseed rape was lower in the 1st rotation (Table 3).
N application raises N uptake, and application rates of 240 N kg
ha−1 enhanced N uptake compared with the 150 N kg ha−1 in
rice plants (Pan et al., 2012); similarly, it has been shown that any
preceding crop also influences N accumulation in canola (Luce
et al., 2016). Higher N use efficiencies were possibly obtained
in the R02 treatment because the level of applied N closely
matched the N requirements of rice and oilseed crops; this level
of application achieved an increase in N uptake and crop yields
while reducing N losses to the environment. Dawe et al. (2003)
found that N losses decrease with improved yield and NUE in
rice, and similar results are reported by Fofana et al. (2005) in
maize crops. Moreover, a greater panicle N fraction significantly
enhances NUE, regardless of cultivar or growing season (Jiang
et al., 2004). Elements influencing crop N use efficiency include
crop, accessibility of other nutrients, nutrient leaching, weather,
and genotypic differences (De-shui et al., 2007; Takahashi and
Anwar, 2007). All of these components may also responded to
the differences in NUE of rice and oilseed rape in different
rotations.

Fate of Applied Nitrogen
Better management of high yielding crops with lower N loss is
desperately needed to achieve sustainable Chinese agriculture
(Duan et al., 2014). In the current study, the fate of N fertilizer

was evaluated using ANB. During both rotation seasons of rice-
oilseed rape, ANB response to applied N fertilization levels was
83–186 kg N ha−1, which is comparable to the 24–190 kg N ha−1

in a rice-wheat system in Bangladesh (Timsina et al., 2006). It
has been established that N losses increase as N fertilizer input
increases up to 200 kg N ha−1 (Sepaskhah and Tafteh, 2012).
The results of the current study showed that the R02 application
rate, with an ANB value of 234 kg N ha−1 during the total
rotation, was sufficient to sustain rice and oilseed rape yields.
The R02 application rate improved NUE and N accumulation
as compared to the ANB value of 345 kg N ha−1 under the
R06 treatment. This management change would result in saving
at least 16% yr−1 of N resources with significantly lower N
losses to the environment in the rice-oilseed rape rotation. The
most important N losses are ammonia volatilization during rice-
growing seasons (Xu et al., 2013; Duan et al., 2014) while N
leaching and denitrification are the main losses during oilseed
rape-growing seasons (Sepaskhah and Tafteh, 2012; Luce et al.,
2016). The current results agree with the reports of various
researchers who observe that ANB and N losses respond to N
fertilization during crop rotations (Timsina et al., 2006; Duan
et al., 2014; Luce et al., 2016).

CONCLUSION

Economic management of N fertilizer application is essential
for improving crop productivity, N use efficiency, and
environmental sustainability. In the current study, rice and
oilseed rape yields were significantly higher in N fertilized
plots. Higher positive ANB values demand the application of
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FIGURE 3 | Apparent nitrogen (N) balance (kg ha−1) of rice and oilseed rape as affected by different N application rates in the 1st (2011–2012), 2nd

(2012–2013), and total rotation (2011–2013) in the experiment conducted during 2011–2013.

reasonable and efficient N fertilizer inputs to avoid loss to the
environment and to improve NUE and N uptake for better rice-
oilseed rape productivity. Results indicated that a combination
of external N input and crop N uptake is key to maintaining
productivity in rice-oilseed rape systems. Furthermore, based on
yields, NUE, and ANB, the R02 application rate was superior for
rice-oilseed rape rotations in the study region. Further studies
are required on N fertilizer distribution by using R180–O150 and
R150–O180 to address the variability of economic income and the
risk of environmental pollution. The findings of the current study
can be used to develop appropriate N management strategies
for rice-oilseed rape rotations in central China. Additional
studies under various N management practices using different
cultivars in different rice-oilseed rape rotation systems would be
supportive.
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