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Rapeseed (Brassica napus) is an important oil seed crop, providing more than 13%
of the world’s supply of edible oils. An in-depth knowledge of the gene network
involved in biosynthesis and accumulation of seed oil is critical for the improvement
of B. napus. Using available genomic and transcriptomic resources, we identified
1,750 acyl-lipid metabolism (ALM) genes that are distributed over 19 chromosomes
in the B. napus genome. B. rapa and B. oleracea, two diploid progenitors of
B. napus, contributed almost equally to the ALM genes. Genome collinearity analysis
demonstrated that the majority of the ALM genes have arisen due to genome
duplication or segmental duplication events. In addition, we profiled the expression
patterns of the ALM genes in four different developmental stages. Furthermore, we
developed two B. napus near isogenic lines (NILs). The high oil NIL, YC13-559,
accumulates significantly higher (∼10%) seed oil compared to the other, YC13-554.
Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related
regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON
1 (LEC1), LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4, ABI5, and
WRINKLED1, as well as structural genes, such as ACETYL-CoA CARBOXYLASE,
ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE, and LONG-CHAIN ACYL-CoA
SYNTHETASES. We observed that several genes related to the phytohormones,
gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs.
Our findings provide a broad account of the numbers, distribution, and expression
profiles of acyl-lipid metabolism genes, as well as gene networks that potentially control
oil accumulation in B. napus seeds. The upregulation of key regulatory and structural
genes related to lipid biosynthesis likely plays a major role for the increased seed oil in
YC13-559.
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INTRODUCTION

In higher plants, cell proliferation, maturation, and desiccation
are three key stages of seed development. Seed maturation
requires accumulation of storage reserves of carbohydrates,
storage proteins, and triacylglycerides (TAG) (Huang, 1992;
Goldberg et al., 1994). TAG is high in energy-density, and vital in
lipid homeostasis, cellular energy balance, and plant growth and
maintenance (Durrett et al., 2008). Seed oils are utilized in human
food, raw materials for non-food uses, and high-energy biofuels
(Kumar and Sharma, 2015). Brassica napus is one of the most
important oilseed crops, providing approximately 13% of the
world’s supply of vegetable oils (Hajduch et al., 2006). In China,
annual B. napus production reaches 14 million tons, of which
human consumption accounts for more than 6 million tons,
approximately 20% of the total edible vegetable oils (Shen and Fu,
2011). B. napus seeds contain oil, carbohydrates, and proteins as
major storage reserves. The mature seeds contain approximately
45% (w/w) storage oil and 25% (w/w) proteins. The three
major seed proteins are cruciferin (40–50%), napin (20%) and
a hydrophobic polypeptide associated with the proteinaceous
membrane surrounding the storage oil bodies (20%). In addition,
about 10% of the storage reserve in B. napus seeds are soluble
sugars (Murphy et al., 1989).

Over the past few decades, significant progress has been
made in understanding the lipid biosynthesis using the model
plant, Arabidopsis, which possesses more than 700 lipid related
genes (Beisson et al., 2003). Most of the genes encoding key
enzymes in lipid biosynthesis in plants have been isolated and
characterized. Previous studies have revealed the importance
of fatty acid (FA) metabolism in plant morphology, growth,
pollen and seed development, defense, and stress responses
(Mou et al., 2000; Kachroo et al., 2003, 2004; Zheng et al., 2005;
Zhang et al., 2008; Dong et al., 2009). In most seeds, glycolysis
in plastids supplies carbon for FA synthesis; however, green
seeds can also use light to generate NADPH and ATP, thus
enabling the bypass of glycolysis and an increased metabolic flux
(Goffman et al., 2005; Hay and Schwender, 2011). Assembly of
TAG occurs in the endoplasmic reticulum (ER) in association
with the lipid droplets (LDs), or oil bodies. The plastid FA
synthetic pathway determines the acyl chain length and the
level of saturation in seed oils. ACETYL-CoA CARBOXYLASE
(ACCase) is the first committed enzyme that controls the
flux of carbon into FAs. In the plastid, acyl carrier protein
(ACP)-linked acyl chains (acyl-ACP) are synthesized by
ACCase, FATTY ACID SYNTHASE (FAS), and KETOACYL
ACP SYNTHETASE I and II (KASI and II). The saturated
acyl-ACP can either be hydrolyzed by the FATTY ACYL-ACP
THIOESTERASES B (FATB), or desaturated by acyl-ACP
desaturases, and further hydrolyzed by the FATTY ACYL-ACP
THIOESTERASES A (FATA) (Li-Beisson et al., 2010). TAG are
formed through three sequential acyl-CoA-dependent acylation
of the glycerol backbone, catalyzed by enzymes such as ACYL-
CoA GLYCEROL-3-ACYLTRANSFERASE (GPAT), ACYL-CoA
PHOSPHATIDIC ACID ACYLTRANSFERASE (LPAAT),
and ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE
(DGAT) (Li-Beisson et al., 2010). Although significant progress

has been made in isolating structural genes encoding key
enzymes, and elucidating their roles in lipid biosynthesis, the
regulation of these genes is not well understood. During the past
decade, several families of transcription factors (TF) have been
reported to be able to enhance seed oil contents. Functionally
characterized TFs include SHOOTMERISTEMLESS (STM),
LEAFY COTYLEDON1 (LEC1), LEC2, ABSCISIC ACID
INSENSITIVE3 (ABI3), FUSCA3 (FUS3) and WRINKLED1
(WRI1) (Mu et al., 2008; Li et al., 2015; Roscoe et al., 2015).
STM, a member of the class-I KNOX HOMEODOMAIN-
containing proteins, is known to regulate shoot apical meristem
architecture in plants. In Arabidopsis, altered expression of
STM affects in vitro organogenesis and somatic embryogenesis.
Moreover, STM affects somatic embryogenesis by modulating
the expression of LEC1 (Elhiti et al., 2012). LEC1 belongs
to the NFY-B type CCAT-box binding TF family; whereas
LEC2, ABI3, and FUS3 are plant specific B3-domain TFs.
WRI1, a member of the APETALA2/ETHYLENE RESPONSE
ELEMENT BINDING PROTEIN (AP2/EREBP) TF family, is
a conserved master regulator that controls the genes encoding
at least 15 enzymes in FA synthetic and glycolytic pathways,
including PYRUVATE DEHYDROGENASE and ACCase
(Bates et al., 2013; Ma et al., 2013). ABI3, FUS3, and WRI1
work downstream of LEC1 and LEC2. In addition, WRI1 has
been shown to be a direct target of LEC2. Arabidopsis wri1
mutants accumulate 80% less seed oil (Focks and Benning,
1998). Overexpression of WRI1 enhances the oil contents in
several crop plants, including potato (Hofvander et al., 2016),
B. napus (Wu et al., 2014; Li et al., 2015), Camelina sativa
(An and Suh, 2015), and maize (Shen et al., 2010). Recently,
the mediator subunit 15 (MED15) has been implicated FA
biosynthesis. The mediator is a highly conserved multi-protein
complex and an important component of RNA polymerase
II-mediated transcription machinery in eukaryotes. Arabidopsis
MED15 overexpression increases FA content in seedlings and
mature seeds whereas MED15 silencing results in reduced FA
accumulation. Moreover, MED15 interacts with WRI1 and has
been shown to be associated with the promoters of WRI1 target
genes (Kim et al., 2016). TFs often mediate the connections
between phytohormones and biological processes, such as lipid
biosynthesis. Many of these lipid-biosynthesis regulators act
downstream of multiple phytohormone pathways (Söderman
et al., 2000; Cernac and Benning, 2004; Santos-Mendoza et al.,
2008).

Brassica napus (genome AACC, 2n = 38) arises from
hybridization between the diploids B. rapa (Asian cabbage,
genome AA, 2n = 20) and B. oleracea (Mediterranean cabbage,
genome CC, 2n = 18) (Allender and King, 2010). Over the past
decade, a growing number of genomic resources for B. napus have
become available, most noticeably the whole genome sequence
of B. napus cultivar Darmor-bzh, a European winter oilseed
(Hilliker et al., 2008; Chalhoub et al., 2014; Wang et al., 2015).
Efforts have been made to either identify genomic loci controlling
oil contents, or alter the quality and quantity of seed oil of
B. napus (Katavic et al., 2014; Wu et al., 2014; Elahi et al.,
2015, 2016; Li et al., 2015; Liu S. et al., 2016). Niu et al.
(2009) have analyzed the FA biosynthesis-related genes using
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serial analysis of gene expression (SAGE), and concluded that
17–21 days after flowering (DAF) are crucial for the transition
of young seeds to sink tissues (Niu et al., 2009). Transcriptome
analysis of developing seeds from four different plant species,
Ricinus communis, B. napus, Euonymus alatus and Tropaeolum
majus, which differ in their oil storage tissues, as well as TAG
structures and contents, has revealed both conserved and distinct
species-specific expression patterns for the genes involved in
lipid biosynthesis (Troncoso-Ponce et al., 2011). Recently, a
comparative mapping of Arabidopsis lipid-related orthologous
genes in B. napus has also been reported (Subramaniam et al.,
2011).

As a close relative to Arabidopsis, B. napus is considered
an ideal crop plant for translating information from the
model species (Snowdon and Friedt, 2004). However, frequent
duplication and rearrangement events in the B. napus genome
preclude the establishment of a simple one-to-one relationship
between B. napus and Arabidopsis (Parkin et al., 2005). Although
the biochemical pathway for de novo lipid biosynthesis is
well understood, much less is known about how qualitative
and quantitative lipid productions are controlled during seed
development of oil seed crops, such as B. napus. Advancements
in high throughput technologies have resulted in surge of
various -omic data addressing different aspects of plant growth
and development. Microarray and next-generation sequencing
(NGS) technologies have revolutionized our ability to monitor
and analyze the global transcriptomic changes of plants in
response to developmental and environmental cues. Genome-
wide transcriptomic analyses of genetic variants can lead to
identification of a set of genes that contribute to phenotypic
changes. An insightful approach to understand the multi-step
TAG biosynthetic pathway, and its complex regulatory network,
is to study plant near isogenic lines (NILs) with near identical
genetic background but different levels of TAG accumulation.
Transcriptomic analysis of such NILs can potentially yield
distinctive gene expression profiles that allow the identification of
critical genes involved in TAG biosynthesis and candidate target
genes for further characterization. For this purpose, we have
developed a pair of B. napus NILs that vary in seed oil content by
∼10%. We identified differentially expressed genes (DEGs) of the
two NILs. Our results suggest that changes in expression of the
genes related to phyotohormones and lipid-regulating TF likely
resulted in increased expression of FA and TAG pathway genes in
the high oil-accumulating NIL, YC13-559.

MATERIALS AND METHODS

Plant Materials
The parental donor of the NILs was a high-oil B. napus
variety, YN171, developed by the Nanjing Agricultural Research
Institute, China. Breeding in Shanxi province to select regional
agronomic performance, such as growth, yield, and oil contents,
has developed several B. napus lines. The NILs were developed by
conventional method of repeated back-crossing (BC) of YN171
with locally domesticated recipient for up to five generations.
BC individuals were then selfed and a number of lines selected

from each crossing stream. YC13-554 and -559 are two individual
NILs having genetic similarity coefficient of 0.94 as determined by
SSR analysis. FA analysis also showed that YC13-559 accumulated
significantly higher oil (∼10%) than YC13-554 (Liu Z. et al.,
2016). This pair of NILs were selected for three consecutive years
of field trial for agronomic characteristics and oil accumulation.

Near isogenic lines, YC13-554 and YC13-559, were grown in
experimental fields in Yuncheng city, Shanxi, China, in the 2014
growing season. Following artificial pollination, siliques in the
middle of main florescence were date-tagged. Immature seeds
were separated from siliques at 19 days after pollination (DAP)
as described previously (Niu et al., 2009), frozen immediately in
liquid nitrogen, and stored at−80◦C until total RNA isolation.

RNA Isolation and Illumina Sequencing
Total RNA were isolated from 2 g of immature seeds collected at
19 DAP using the RNeasy Plant Mini Kit (Qiagen, Chatsworth,
CA, USA) following manufacturer’s instructions. RNA quantity
was determined using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA). Quality of
RNA samples were determined using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA, USA). RNA samples with
RNA integrity number (RIN) above 8 were used for library
preparation. cDNA libraries were prepared using the TruSeq
RNA Sample Prep Kit (Illumina, San Diego, CA, USA) according
to the manufacturer’s protocol. The libraries were then pooled
together and sequenced on an Illumina HiSeq 2000 (2X 101bp).

Gene Expression Quantification
Raw Illumina sequence reads were processed using the prinseq-
lite-0.20.4 (Schmieder and Edwards, 2011) for removal of
low-quality reads (Singh et al., 2015). Subsequently, pre-
processed reads were assessed for quality control with FastQC
(version 0.11.3; Babraham Bioinformatics, Cambridge, UK).
Read mapping was performed by Bowtie2 (Langmead and
Salzberg, 2012) using reference sequence downloaded from the
B. napus genome database (Chalhoub et al., 2014). Differential
gene expression analysis was carried out using the DESeq2
Bioconductor package in R (Love et al., 2014). DEGs were
identified using two criteria: (a) log2 fold-change ≥ 1 and (b) an
adjusted p-value less than 0.05.

Gene Ontology Analysis
Corresponding Arabidopsis thaliana orthologs for all DEGs
were determined by the reciprocal best hits method. A list of
Arabidopsis orthologs was uploaded to BiNGO plug-in (Maere
et al., 2005) of Cytoscape (Shannon et al., 2003) for gene ontology
analysis. Enrichment analysis was based on a hypergeometric test.
P-values were adjusted using Benjamini–Hochberg’s FDR; only
FDR < 0.05 was considered significant. For pathway analysis,
a MapMan mapping file was specifically generated for B. napus
genes by the Mercator tool, which bins all genes according to
hierarchical ontologies after searching a variety of databases.
MapMan v.3.5.1 (Thimm et al., 2004) was used to visualize the
DEGs. In this study, the MCScanX tool kit (Wang et al., 2012a)
with default parameter was used to identify genome collinearity.
The Protein ANalysis THrough Evolutionary Relationships
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(PANTHER) Classification System and analysis tools were used
to categorize DEGs by protein class (Mi et al., 2016).

Identification and Expression Analysis of
Acyl-lipid Metabolism Genes of B. napus
In order to identify genes related to acyl-lipid metabolism,
B. napus gene sequences were analyzed against a list of acyl-lipid
metabolism genes obtained from the “Arabidopsis Acyl-Lipid
Metabolism” website (ARALIP)1. Locally installed MultiLoc2 tool
was used for prediction of sub-cellular localization of proteins
(Blum et al., 2009).

To analyze the temporal expression of acyl-lipid metabolism
genes in sequential stages of seed filling of B. napus, RNA-seq
data of seeds at four developmental stages (2, 4, 6, and 8 weeks
after pollination), and microarray data of eight developmental
stages (10, 15, 20, 25, 30, 35, 40, and 45 days), were obtained
from the sequence read archive database (accession number
SRP069360) and Gene Expression Omnibus (accession number
GSE43918), respectively (Leinonen et al., 2011; Barrett et al.,
2013). Unsupervised hierarchical clustering was performed using
hclust function, and clusters were then extracted using the cuttree
function in R base package2. The heat-map corresponding to the
hierarchical clustering was generated with the heatmap.2 function
of the R packages gplots3.

Quantitative Real-Time PCR
RNA isolated from immature seeds of YC13-554 and YC13-559
were reverse-transcribed using the Superscript III Reverse
Transcriptase (Invitrogen, USA), following the manufacturer’s
instructions. Quantitative real-time PCR (qRT-PCR) was
performed as described previously (Pattanaik et al., 2010). All
PCR reactions were performed in triplicate and repeated two
times. The comparative cycle threshold (Ct) method (bulletin no.
2; Applied Biosystems)4 was used to measure transcript levels.
B. napus actin (GenBank accession number AF111812) was used
as a reference gene (Niu et al., 2009). The relative expression
of each gene is presented as the ratio of that in YC13-559
and YC13-554. The normalized expression in YC13-559 was
divided by the normalized expression in YC13-554 and log2
transformed. The data represent the mean values ± SD of three
replicates. Primer sequences for the genes have been listed in
Supplementary Table S5.

RESULTS AND DISCUSSION

The Near Isogenic Lines YC13-559 and
YC13-554 Differ Significantly in Oil
Content
Near isogenic lines, with near identical genetic background but
varying mainly in the alleles responsible for a trait of interest,

1http://aralip.plantbiology.msu.edu
2https://www.R-project.org
3https://cran.r-project.org/web/packages/gplots/index.html
4http://www.appliedbiosystems.com

are useful in identification of target genes and pathways. Starting
in 2009, we developed two B. napus NILs, YC13-554 and YC13-
559, through repeated backcrossing of a high-yielding production
line, YN171 with the recipient line. The two NILs share a genetic
similarity coefficient of 0.94 based on SSR marker analysis.
Agronomic trait analysis of the NILs showed several major
differences, including 1000-seed weight and seed oil content.
While plant height, primary branch height, length of main
inflorescence, and number of pods per main inflorescence, were
indistinguishable, YC13-559 accumulated significantly higher
(∼10%) seed oil than YC13-554. The 1000-seed weight, which
negatively correlates with seed oil content (Tang et al., 1997),
is 30% less in YC13-559 compared to YC13-554. High oil
accumulation is inversely correlated with protein content in
seeds. As no significant seed size difference between the two NILs
was observed, we speculate that a decrease of proteins or other
metabolites led to the reduced seed weight. The results of three
consecutive years of field trial (2012–2014) demonstrated that
oil accumulation was higher in YC13-559 compared to YC13-
554. It is important to note that the data generated in this study
were based on field trial results. In field production, even a small
percentage increase in seed oil translates into significant crop
values (Lardizabal et al., 2008). The two NILs are ideal materials
for the investigation of genetic and gene regulatory variations that
contribute to TAG accumulation.

Analysis of Acyl-lipid-Metabolism Gene
Expression during B. napus Seed
Development Reveals Genetic
Complexity and Critical Timing for TAG
Biosynthesis
The amphidiploid B. napus shows significantly greater genome-
level divergence compared to its close relative, Arabidopsis. We
sought to clarify the number and distribution of acyl-lipid-
metabolism (ALM) genes in B. napus. Based on homologies to
771 Arabidopsis ALM genes, we identified a total of 1750 lipid-
related genes in B. napus (Supplementary Table S1). B. rapa
and B. oleracea, two diploid parents of B. napus, contributed
almost equally to the ALM genes; 881 and 863 genes were derived
from the AA and CC genomes, respectively (Supplementary
Table S1). B. napus ALM genes were found to be present
in over 19 chromosomes, with chromosomes A03 and C03
harboring the largest numbers of ALM genes (126 and 122,
respectively), while chromosomes A06 and C06 contain the least
70 and 68, respectively. Figure 1A summarizes the distribution
of these genes into 12 different functional categories. The most
abundant ALM genes were found to function in FA elongation,
followed by phospholipid signaling and TAG biosynthesis. The
maximum numbers of ALM proteins (∼37%) were predicted
to be distributed in the cytoplasm, followed by organelles
involved in ALM, such as the ER (∼18%) and chloroplasts
(∼12%) (Supplementary Table S1). Whole-genome, segmental,
and tandem gene duplications are common mechanisms for
the generation of evolutionary novel functions (Wang et al.,
2012b). In this study, we used the MCScanX toolkit (Wang
et al., 2012a), with default parameters to detect collinear
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FIGURE 1 | Acyl-lipid-metabolism (ALM) genes in Brassica napus (A) Identification and distribution of ALM genes in B. napus into twelve different
functional categories and number of genes in each category is shown (B) ALM genes were categorized into 8 distinct clusters based on their
expression pattern. Heat map shows the relative expression of all groups. Clusters are color-coded by row sidebars: light orange (cluster 1), green–yellow (cluster
2), green (cluster 3), cyan (cluster 4), aqua (cluster 5); blue (cluster 6); purple (cluster 7) and pink (cluster 8). FAE, Fatty Acid Elongation; PS, Phospholipid Signaling,
TGB, Triacylglycerol Biosynthesis; EPSE, Eukaryotic Phospholipid Synthesis and Editing; OM, Oxylipin Metabolism; FAD, Fatty Acid Degradation; FAS, Fatty Acid
Synthesis; SST, Suberin Synthesis Transport; SB, Sphingolipid Biosynthesis; MLS, Mitochondrial Lipopolysaccharide Synthesis; MPS, Mitochondrial Phospholipid
Synthesis; LT, Lipid Trafficking; 2W, 2 weeks; 4W, 4 weeks; 6W, 6 weeks and 8W, 8 weeks.

genomic regions and classify duplicated ALM genes according
to their most likely mode of generation. The ALM genes,
distributed on all nineteen chromosome pairs, were subjected
to substantial duplication events (Supplementary Table S1).
Among the duplicated genes, 1499 (85.6%) were predicted to
have originated from whole genome duplication or segmental
duplication events (Supplementary Table S1). The significantly
higher numbers of ALM genes found in B. napus compared to
Arabidopsis, are most likely due to frequent duplication events.

Developing seeds accumulate TAGs either in embryonic
tissues (e.g., B. napus and soybean), or in the endosperm
(e.g., castor bean). Analyzing the specific gene expression
patterns during seed development will aid in understanding the
mechanism of seed oil accumulation. We examined the temporal
changes in ALM gene expression during B. napus seed filling
by analyzing RNA-seq data. Expression profiles of ALM genes
during different stages of seed development were studied using
publicly available RNA-seq datasets deposited in sequence read
archive (SRA) database (accession number SRP069360). These
datasets contain the expression data for four seed developmental
stages, i.e., 2, 4, 6, and 8 weeks after pollination (WAP). To avoid
background noise, ALM genes having expression levels equal to,
or more than 1, read per kilobase per million (RPKM) in at least
two samples, were selected for expression analysis (Topa and
Honkela, 2016) (Supplementary Table S2). A total of 1205 genes
thus generated from four developmental stages were grouped into
8 different clusters based on their expression patterns (Figure 1B;
Supplementary Figure S1). Genes in cluster 1 (n = 203) and
3 (n = 408), which constitute ∼50% of all analyzed genes,
were most highly expressed during week 4 of seed development
(Supplementary Figure S1). Members of these two clusters are

mainly involved in FA synthesis, FA elongation, and phospholipid
signaling. As seeds aged, cluster 2 (n = 123) gene expression
increased continuously, while cluster 5 (n= 198) gene expression
decreased. Cluster 2 was overrepresented by genes involved in
TAG biosynthesis, whereas cluster 5 genes are mostly related to
FA elongation, phospholipid signaling, and TAG degradation.
The expression of genes related to FA-elongation, TAG synthesis,
and degradation peaked in week 4 (Supplementary Figure S2).
Between weeks 6 and 8, the expression of most lipid related
genes were gradually reduced. Previous studies on B. napus
seed filling (Hajduch et al., 2006; Jolivet et al., 2011) show that
seed weight, FA accumulation, and protein production increase
continuously during the first 5 weeks after flowering. Seed weight
and FA synthesis remain unchanged between weeks 4 and 5, while
protein production continues. Our results are in good agreement
with the reported characteristics of B. napus seed filling, showing
the timing of ALM gene expression is slightly ahead of lipid
accumulation.

To further verify our data, we analyzed a microarray dataset,
obtained from Gene Expression Omnibus (accession number
GSE43918), that includes B. napus tissues from week 2–6 of
seed development (Huang et al., 2013). A total of 597 probes
that mapped uniquely to the ALM genes, were included in this
analysis (Supplementary Table S3). As shown in Supplementary
Figure S3A, B. napus ALM genes formed three clusters,
corresponding to week 2 (10 and 15 days), week 3–4 (20, 25,
and 30 days), and week 5–6 (35, 40, and 45 days), of seed
filling. Based on expression patterns during seed development,
all probes were further classified into 16 different clusters. Similar
to RNA-seq data, and a previous report (Niu et al., 2009),
we observed that approximately 50% of analyzed probes were
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expressed the highest at 3–4 weeks (Supplementary Figure S3B).
Seed LDs comprise a TAG core surrounded by a monolayer
of phospholipids embedded with proteins such as caleosin and
oleosin. Consistent with a report by Jolivet et al. (2011), we
found that the expression of caleosin- and oleosin-family genes
increased as seeds aged. Several TF genes that are known to be
involved in FA biosynthesis and TAG accumulation, including
WRI1, FUS3, and ABI3, have their highest expression in 3–
4 weeks. Collectively, both RNA-seq and microarray analysis
revealed that weeks 3–4 during seed development is critical for
TAG biosynthesis in B. napus as expression of genes encoding key
enzymes and transcriptional regulators peak at this stage.

RNA-seq Identifies Differentially
Expressed Genes in the NILs
Illumina transcriptome sequencing was performed for libraries
prepared from the two NILs. After the quality control, RNA-seq
generated approximately 23.5 and 22.6 million pair-end reads
(100-bp in size), as well as 7.9 and 7.5 million singletons for YC13-
554 and YC13-559, respectively (Table 1). On an average, 86%
reads were mapped to the reference genome using the software,
Bowtie2 (Langmead and Salzberg, 2012). Based on RPKM, we
found close overlap between the two NILs. When 0.1 RPKM was
set as the threshold, 60,896 common genes were found to express
in both NILs. When the threshold was increased to 1 RPKM,
46,797 common genes were found (Figure 2A). We identified
1234 candidate DEGs (twofold change) between the two NILs
(Figure 2B, Supplementary Table S4). In YC13-559, 635 genes
were upregulated, while 599 genes were downregulated compared
to YC13-554. The upregulated and downregulated DEGs were
classified into different class of proteins using PANTHER. More
than 35% of DEGs belonged to enzyme class of proteins. Nucleic
acid binding proteins and transporters were two other abundant
class of proteins in DEGs (Figure 2C).

Quantitative RT-PCR of Selected ALM
Genes Validates the RNA-seq Results
We identified a number of FA biosynthesis- and accumulation-
related genes whose expression changed significantly in YC13-
559 compared to YC13-554 and chose a set of 10 genes

TABLE 1 | Summary of transcriptome data.

YC13-554 YC13-559

R1 R2 R1 R2

Raw reads 39,101,234 39,101,234 37,673,205 37,673,205

Total number of
paired-end reads

23,529,581 23,529,581 22,688,191 22,688,191

Total number of
unique paired-end
reads

11,657,929 11,915,210 11,895,558 11,683,396

Total number of
singletons

4,405,652 3,528,907 4,391,647 3,295,361

Total number of
unique singletons

3,124,713 2,587,097 3,220,975 2,508,251

(7 upregulated and 3 downregulated) from that list to validate
their expression by qRT-PCR (Figure 3; Supplementary Table S5).
In addition to the 3 downregulated genes, 7 ALM genes, including
pyruvate kinase (PK), long-chain acyl-CoA synthetase1, 6, and
7 (LACS1, 6, and 7), alpha/beta-Hydrolases superfamily protein
(alpha/beta hydrolase), DGAT1, and 3-ketoacyl-CoA synthase
16 (KCS16), were upregulated. The qRT-PCR results were in
agreement with the RNA-seq data, confirming the quality and
accuracy of our RNA-seq experiment.

Gene Ontology and MapMan
Functionally Classify the Differentially
Expressed Genes
Gene Ontology (GO) annotation is a major tool for gene
enrichment analysis of genome-scale experiments. The
enrichment analysis of the transcriptomic data from the
two NILs, according to three major GO terms, namely the
biological process, cellular component and molecular function,
and, is given in Figure 4. The GO term, “biological process,”
includes the majority of genes involved in metabolic process
(GO: 0008152), cellular process (GO: 0009987), and response to
stress (GO: 0006950) (Figure 4A). Lipid metabolic process (GO:
0006629) and carbohydrate metabolic process (GO: 0005975)
were two most affected metabolic processes. Lipid metabolism is
closely connected to that of carbohydrates which are regularly
metabolized to form acetyl-CoA, a precursor for FA biosynthesis.
The metabolism process was overrepresented by children terms,
including lipid biosynthesis (GO: 0006629), monocarboxylic
acid biosynthesis (GO: 0072330), and oxylipin metabolism (GO:
0031407). Several genes related to JA and oxylipin metabolism,
such as LIPOXYGENASE 2 (LOX2), LOX3, JASMONIC ACID
CARBOXYL METHYLTRANSFERASE (JMT), and JASMONATE
RESISTANT 1 (JAR1), were found to be differentially expressed in
our transcriptome data. JA and FA synthesis are well connected
as the acyl-CoA pool generated from FA biosynthetic pathway is
used for JA synthesis (Fu et al., 2015). The DEGs in the category
“cellular components” were predicted to localize mostly in
cytoplasm or plasma- and cell-membranes (Figure 4B). Notably,
cell organelles, such as ER and plastid, which are known sites
of FA and TAG biosynthesis, are also enriched in our dataset.
Within the category “molecular function,” the most abundant
GO term is catalytic activity (GO: 0003824), followed by protein
binding (GO: 0005515) (Figure 4C). The majority of catalytic
activities are associated with hydrolases and transferases.

As a complementary approach to GO term enrichment
analysis, we explored the putative functions of the DEGs using
MapMan (Thimm et al., 2004), which allows the visualization
of varietal specific changes in different metabolic processes
(Figure 5). Each gene in MapMan is initially organized in bins
rather than as pathways, allowing the genes to be assigned into a
pathway even when their functions are only tentatively predicted.
Figure 5 shows the mapping of the DEGs to overall metabolism,
cellular responses, and regulation. Consistent with the GO
analysis, the DEGs were enriched in similar functional categories
and pathways by MapMan. Although a significant fraction of
DEGs could not be assigned to specific functional categories, a
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FIGURE 2 | Differential expression and classification of transcripts. (A) Venn diagrams showing overlap of expressed genes having at least 0.1 reads per
kilobase of transcript per million mapped reads (RPKM) and 1.0 RPKM expression value in near- isogenic lines YC13-554 and YC13-559. (B) Number of upregulated
and downregulated genes. (C) Protein classification of the DEGs (n = 1234 genes; 635 upregulated and 599 downregulated) using PANTHER (Protein Analysis
Through Evolutionary Relationships). Protein classes encompassing at least 2% of the upregulated or downregulated genes are shown.

large number of genes were assigned to lipid metabolism, cell
wall, protein, signaling, and transport. Notably, many genes were
linked to stress, consistent with the involvement of lipid related
genes in response to both biotic (Shah, 2005) and abiotic stress
(Golldack et al., 2014; Higashi et al., 2015; Hou et al., 2016).
An additional bin comprises genes involved in biosynthesis of
secondary metabolites, such as flavonoids and phenylpropanoids.
Another significantly affected category involves genes related
to phytohormone biosynthesis and signaling. A total of 41
genes related to JA, ethylene, abscisic acid, gibberellins (GAs),
auxin, and brassinosteroid were found to be differentially
expressed. Previously, altered FA productions have been reported

in Arabidopsis mutants deficient in JA and auxin metabolism
(Niu et al., 2009). GAs play crucial roles in many aspects
of plant life cycles, from seed germination and development
to reproduction. GA signal perception and transduction are
controlled by the GA receptor GIBBERELLIN INSENSITIVE
DWARF (GID) and DELLA repressor proteins (Daviere and
Achard, 2013). In many plant species, GA biosynthesis increases
in the early stages of seed development, continues to seed
maturity, and begins to decrease at the onset of dormancy.
GA3 is also involved in the regulation of FA biosynthesis in
Arabidopsis. Loss of DELLA function or exogenous application
of GA3 affect the expression of key regulatory genes, including
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FIGURE 3 | Validation of RNA-seq results using quantitative real-time polymerase chain reaction (qRT-PCR). The relative abundance of each gene is
presented as the ratio of YC13-559 and YC13-554 lines. B. napus actin was used as an internal control for normalization. The normalized expression (2−1CT) in
YC13-559 sample was divided by the normalized expression in YC13-554 and log2 transformed. The data represent the mean values ± SD of three replicates.
HKL1, hexokinase-like 1; GPAT6, glycerol-3-phosphate acyltransferase 6; TPRL, tetratricopeptide repeat (TPR)-like superfamily; protein PK, pyruvate kinase family
protein; LACS7, long-chain acyl-CoA synthetase 7; LACS6, long-chain acyl-CoA synthetase 6; LACS1, long-chain acyl-CoA synthetase 1; alpha/beta-Hydrolases,
alpha/beta-Hydrolases superfamily protein; DGAT1, acyl-CoA:diacylglycerol acyltransferase 1; KCS16, 3-ketoacyl-CoA synthase 16.

LEC1, LEC2, FUS3, ABI3 and WRI1, as well as their targets
in Arabidopsis (Chen et al., 2012). A cytochrome p450, ent-
kaurenoic acid oxidase (KAO), catalyzes the three-step oxidation
of ent-kaurenoic acid to GA12, the precursor of all GAs, thereby
determining the endogenous GA levels in plants (Regnault
et al., 2014). In our data set, the expression of a KAO1
homolog was significantly higher in YC13-559 compared to
YC13-554. The higher expression of KAO1 likely resulted in the
increase of endogenous GA level, and was probably, at least
in part, responsible for increased expression of the regulatory
and structural genes in YC13-559 FA biosynthetic pathway.
Inactivation of phytohormones is a mechanism to maintain
hormone homeostasis in plants. In Arabidopsis, two members
of the SABATH family methyltransferases, GIBBERELLIN
METHYLTRANSFERASE (GAMT) 1 and GAMT2, mediate the
transfer of methyl groups to GA, resulting in the biologically
inactive methyl esters. Overexpression of GAMT1 or GAMT2
in Arabidopsis, petunia, and tobacco lead to GA deficiency and
the resulting transgenic plants are dwarf with reduced fertility
(Varbanova et al., 2007). In our data set, the expression of a
GAMT homolog was higher in YC13-559 compared to YC13-
554. It appears that the biosynthesis and catabolism of GA,
involving activation and deactivation of the GA, are affected more
significantly in YC13-559 than in YC13-554.

Jasmonic acid is essential for a number of biological processes
in plants, including growth, development, and response to
wounding. Long-chain FAs serve as the precursors of JA
biosynthesis in plants. CORONATINE INSENSITIVE 1 (COI1)
plays a key role in JA signal perception and transduction. The

Arabidopsis loss-of-function mutant, coi1, exhibits altered FA
biosynthesis and composition in seeds (Niu et al., 2009). On
the other hand, mutations in key FA biosynthetic genes have
been shown to affect JA signaling. Mutation in the Arabidopsis
ssi2 locus, that encodes the plastidic stearoyl–ACP desaturase,
compromises JA responses (Kachroo et al., 2003; Nandi et al.,
2003), suggesting the existence of a feedback regulatory loop
between the JA signaling and FA biosynthesis pathways.
A number of genes encoding enzymes for JA biosynthesis and
conversion of JA to methyl jasmonate (MeJA) were differentially
expressed in our data set. Increased expression of genes encoding
LOX2, that oxidizes ś-linolenic acid, and JMT, that converses JA
to MeJA, were observed in YC13-559 relative to YC13-554.

The category ‘RNA’ includes the genes related to RNA
metabolism and TFs (Supplementary Table S6). A total of 57
TFs in this category can be further classified into 28 families
that are overrepresented by MYB, WRKY, and homeobox TFs.
FA biosynthesis is a rigorous process in which transcriptional
regulation is no doubt vital; however, to date only very few TFs
have been identified to be responsible for FA biosynthesis and
storage. We thus analyzed the co-expression of these TFs and
the FA biosynthetic genes. A total of 1262 genes (1205 ALM and
57 TF genes), were categorized into 7 clusters (Supplementary
Figure S4A). Clusters 3 and 4 were the largest clusters containing
approximately 50% of the identified TFs. The members of cluster
3 were found to have highest expression at early stage (2-week) of
seed filling, while the members of cluster 4 maximally expressed
during week 4 (Supplementary Figure S4B). Cluster 3 and 4 are
rich in MYB, AP2/ERF and Dof TFs. Some members of these TF

Frontiers in Plant Science | www.frontiersin.org 8 September 2016 | Volume 7 | Article 1498

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01498 September 27, 2016 Time: 15:34 # 9

Wang et al. Transcriptome of Brassica NILs

FIGURE 4 | Gene Ontology (GO) analysis of DEGs. GO analysis was
carried out using BinGO (Maere et al., 2005). Enriched categories for (A)
biological process, (B) cellular component, and (C) molecular function are
shown. Goslim_Plants categories with significant enrichment in the dataset
were highlighted in color. The size of the node is proportional to the number of
molecules within the group, and the color of the node represents the
significance of enrichment. Benjamini and Hochberg p-value legend is
indicated below.

families are known to be involved in direct or indirect regulation
of ALM genes. For example, overexpression of GmDof4 or
GmDof11 from Glycine max enhance lipid content in transgenic
Arabidopsis (Wang et al., 2007).

Key Regulatory Genes in FA and TAG
Biosynthetic Pathways are Upregulated
in YC13-559
Expression of the structural genes in FA and TAG biosynthetic
pathways are regulated by a number of TFs, including STM,
LEC1, LEC2, ABI3, FUS3, and WRI1 (Figure 6A). Recently,
ABI4, an AP2/ERF TF, and ABI5, a bZIP TF, have also been

implicated in TAG biosynthesis in Arabidopsis (Yang et al., 2011;
Kong et al., 2013). Accumulating evidence has begun to uncover
the gene regulatory network underlying lipid biosynthesis in
plants. LEC1 and LEC2 likely act downstream of STM, but
upstream of ABI3 and FUS3. ABI3 and FUS3 are known to
regulate each other (Figure 6A) (Baud et al., 2007; Mu et al.,
2008; Santos-Mendoza et al., 2008; Maeo et al., 2009). Expression
of STM, LEC1, LEC2, ABI3, and FUS3, were moderately higher
in YC13-559 compared to YC13-554. The B. napus genome
contains two LEC1 and four LEC2 homologs of Arabidopsis.
Expression of two LEC1 and three LEC2 homologs were 1.7–2.5
fold higher in YC13-559 relative to YC13-554. B. napus contains
four FUS3 homologs of Arabidopsis and expression of one was
higher in YC13-559 compared to YC13-554. In Arabidopsis,
WRI1 is directly controlled by LEC1 (Mu et al., 2008) and
LEC2 (Baud et al., 2007). We therefore analyzed the expression
of the genes encoding WRI1 in the two NILs. B. napus has 3
Arabidopsis WRI1 homologs. Expression of all three homologs
were 1.5–1.8 fold higher in YC13-559 compared to YC13-554.
WRI1 regulates expression of the late step genes in the glycolic
and FA biosynthetic pathways. Enhanced expression of WRI1
homologs in YC13-559 correlated with expression of the genes
involved in seed oil biosynthesis, such as PK, PDHC, and LACS,
known targets of WRI1 (Pouvreau et al., 2011). ABI4 and ABI5
repress lipid breakdown by increasing expression of DGAT1, a
rate-limiting gene in TAG biosynthesis (Yang et al., 2011; Kong
et al., 2013). The expression of ABI4 and ABI5 were 5- and
3-fold higher, respectively, in YC13-559 relative to YC13-554
(Figure 6B).

A Number of Key Structural Genes in the
FA and TAG Biosynthetic Pathways Are
Upregulated in YC13-559
Biosynthesis of TAG involves three major steps in two sub-
cellular compartments (Figure 6C). The first step is de novo
FA synthesis in the plastid, mainly by the FA synthase complex
(FAS) using acetyl-CoA as starting substrate. Subsequently, TAG
is derived from FA and glycerol backbone in the ER. Finally,
TAG is stored, by association with LDs, in the cytoplasm
(Li-Beisson et al., 2010; Bates et al., 2013). PK catalyzes the
conversion of phosphoenol pyruvate (PEP) to pyruvate, which
is translocated to the plastid via the BILE ACID: SODIUM
SYMPORTER FAMILY PROTEIN 2 (BASS2) transporter, and
acts as an initial precursor for FA biosynthesis (Furumoto et al.,
2011). Expression of PK and BASS2 were higher (1.6–10 fold)
in YC13-559 compared to YC13-554, suggesting a potential
increase of initial substrate for FA biosynthesis in YC13-559. The
conversion of pyruvate to FAs involves at least 14 enzymes and/or
protein complexes (Figure 6C). As in Arabidopsis, most of the
individual enzymes are encoded by multiple homologous genes
in B. napus. The pyruvate dehydrogenase complex (PDHC),
catalyzing the oxidative decarboxylation of pyruvate to form
acetyl-CoA, consists of three subunits, E1, E2, and E3. We found
that 3 PDHC genes were upregulated (1.5-15 fold) while one
was downregulated in YC13-559. ACCase converts acetyl-CoA
into malonyl-CoA in the first committed step of FA synthesis. In

Frontiers in Plant Science | www.frontiersin.org 9 September 2016 | Volume 7 | Article 1498

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01498 September 27, 2016 Time: 15:34 # 10

Wang et al. Transcriptome of Brassica NILs

FIGURE 5 | Functional analysis of DEGs using MapMan. Overview of the distribution of DEGs in different functional groups as identified by MapMan (Thimm
et al., 2004) analysis. Red boxes correspond to up-regulated genes and green boxes to down-regulated genes.

YC13-559, two of the 3 identified ACCase genes were upregulated
(1.5–1.9 fold) and one was downregulated. FAs are elongated
in a series of condensation reactions with malonyl-ACP. This
process is catalyzed by the FAS that comprises five components,
namely MALONYL-CoA-ACP TRANSACYLASE (MCMT), 3-
OXOACYL:ACP-SYNTHASE (KAS) I, KASII and KASIII,
3-OXOACYL-ACP REDUCTASE (KAR), HYDROXYACYL-
ACP DEHYDRATASE (HAD) and ENOYL-ACP REDUCTASE
(EAR). All of these genes, except KASI and KASII, were highly
expressed in YC13-559 compared to YC13-554. FAs synthesized
in the plastids are transported to the ER for TAG biosynthesis.
LACS catalyze the esterification of FAs to acyl-CoAs, a key
activation step that is essential for the utilization of FAs by
most lipid metabolic enzymes. LACS are thus important enzymes
for supplying the acyl-CoA pool for phospholipids and TAG
biosynthesis (Shockey et al., 2002). Recent findings suggest that
LACS are involved in lipid trafficking between ER and plastids
in Arabidopsis (Jessen et al., 2015). Expression of seven LACS
genes were 1.5–15 fold higher in YC13-559 compared to YC13-
554, suggesting an increased acyl-CoA pool and trafficking rate
for YC13-559.

Glycerol-3-phosphate (G-3-P) is an initial substrate for
TAG biosynthesis (Figure 6C). GLYCEROL3-PHOSPHATE
ACYLTRANSFERASE (GPAT) utilizes G-3-P and acyl-
CoA as substrates to form lysophosphatidic acid (Lyso-PA).
Expression of eight GPAT genes were significantly higher
(1.5–15 fold) in YC13-559, possibly contributing to higher
TAG accumulation. Acylation of Lyso-PA is catalyzed by 1-
ACYL-sn-GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE
(LPAAT), resulting in phosphatidic acid (PA) formation.
Next, PA is dephosphorylated by PHOSPHATIDATE
PHOSPHATASE (PP) to form diacylglycerol (DAG). Two
LPAAT genes were upregulated and two were downregulated
in YC13-559. Four PP genes were downregulated while
two were upregulated in YC13-559. In addition, two genes
encoding PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL
CHOLINEPHOSPHOTRANSFERASE (PDCT), that catalyzes
the transfer of phosphocholine head-groups from PC to DAG
(Lu et al., 2009), were 2–4.5 fold higher in YC13-559. The final
conversion of DAG into TAG is catalyzed by two enzymes:
DIACYLGLYCEROL O-ACYLTRANSFERASE (DGAT) and

PHOSPHOLIPID DIACYLGLYCEROL ACYLTRANSFERASE1
(PDAT). In B. napus, DGATs are encoded by four homologous
genes of Arabidopsis DGAT1 and DGAT2. In Arabidopsis,
DGAT2 seems to be more efficient in DAG to TAG conversion
than DGAT1 (Zhou et al., 2013). The expression of DGAT2 in
YC13-559 was approximately 6-fold higher compared to that of
YC13-554. No significant difference in the expression of PDAT
was observed in the two NILs. TAGs are stored in LDs which
consist of caleosins and oleosins. In our data set, the expression
of four out of ten caleosin genes were higher in YC13-559 relative
to YC13-554. We did not observe increase in oleosin expression
in the two NILs.

Key Structural Genes in the
Glucosinolate Biosynthetic Pathway Are
Downregulated in YC13-559
Glucosinolates (GLS) are a group of sulfur-containing specialized
metabolites in Brassica seeds that negatively affect nutritional
quality. GLS and their breakdown products play roles in plant
defense against pest and pathogens (Troncoso-Ponce et al.,
2011). A previous study showed that overexpression of STM
in B. napus downregulates key genes in the GLS pathway, and
reduces GLS accumulation (Elhiti et al., 2012). In our data
set, the expression of STM was higher in YC13-559 compared
to YC13-554. We therefore analyzed the expression of key
GLS pathway genes, including CYTOCHROMEP45 CYP79B2
(CYP79B2), METHYLTHIOALKYLMALATE SYNTHASE1
(MAM1), CYTOCHROMEP45 CYP83B1 (CYP83B1), and
SULPHOTRANSFERASE5a (ST5a), in the two NILs. The
transcript levels of CYP79B2, CYP83B1 and ST5a were lower in
YC13-559 relative to YC13-554, suggesting that higher expression
of STM possibly affected the GLS pathway in YC13-559. Our
future efforts will include profiling of GLS accumulation in the
NILs.

Glucosinolate metabolism is tightly connected to
phytohormones. Auxins, in particular, indole-3-acetic acid
(IAA), are essential for plant growth. Indolic GLS are derived
from tryptophan (Trp) and linked to IAA biosynthesis (Bak
and Feyereisen, 2001). The enzymes, CYP83B1 and CYP83B2,
are important for indolic GLS and IAA biosynthesis. CYP83B2
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FIGURE 6 | Overview of gene network involved in seed oil biosynthesis in B. napus (A). A simplified scheme of transcription factors (TF) network involved in
regulation seed oil biosynthesis B. napus (B) Relative expression levels of different TF genes in YC13-559. TFs whose expression changed more than 1.5-fold in
YC13-559 relative to YC13-554 are shown. The RPKM values for multiple copies of same TF were summed. (C) Overview of de novo fatty acid (FA) and
triacylglycerol (TAG) biosynthesis pathways. Genes whose expression changed more than 1.5-fold in YC13-559 relative to YC13-554 were included in this study.
Genes were mapped onto de novo FA and TAG biosynthesis pathway. Numbers refers to the numbers of genes, and “up” refers to up-regulation in YC13-559 line
compare to YC13-554 line, and “down” to down-regulation. Same enzyme catalyze several steps are highlighted with dotted rectangle. Lipid substrates are
abbreviated: 16:0, palmitic acid; 18:0, stearic acid. PDHC, pyruvate dehydrogenase complex; ACCase, acetyl-CoA carboxylase; MCMT, malonyl-CoA : ACP
malonyltransferase; ACP, acyl carrier protein; KASI/II/III, ketoacyl-ACP synthase I/II/III; KAR, ketoacyl-ACP reductase; HAD, hydroxyacyl-ACP dehydrase; ER,
enoyl-ACP reductase; FATA/B, fatty acyl-ACP thioesterase A/B; SAD, stearoyl-ACP desaturase; LACS, long-chain acyl-CoA synthetase; GPAT, glycerol-3-phosphate
acyltransferase; LPAAT, 1-acylglycerol-3-phosphate acyltransferase, PP, phosphatidate phosphatase; PDCT, Phosphatidylcholine:diacylglycerol
cholinephosphotransferase; PDAT, phospholipid :diacylglycerol acyltransferase; DGAT, acyl-CoA : diacylglycerol acyltransferase, LPCAT, lysophospholipid
acyltransferase; FAD2/3, fatty acid desaturase.

converts Trp to indo-3-acetaldoxime (IAOx), a precursor of
IAA and indole-GLS. CYP83B1 catalyzes the conversion of
IAOx to S-alkyl thiohydroximates to regulate the flux of IAOx
between IAA and indolic GLS. In Arabidopsis, loss-of-function
of CYP83B1 results in auxin overproduction phenotypes (Bak
and Feyereisen, 2001). In our data set, the transcript levels
of both CYP83B1 and CYP83B2 were lower in YC13-559
compared to YC13-554, indicating possible upregulation of
auxin biosynthesis. To support our assumption, we analyzed
the expression of auxin metabolism genes in the two NILs.
Transcript level of NITRILASE, which is involved in IAA

production, was higher in YC13-559 relative to YC13-554.
Amino acid-conjugated IAA are biologically inactive, perhaps
to help maintain IAA homeostasis in plants. Several IAA-amido
synthetases catalyze the conjugation of amino acids to IAA
(Bak and Feyereisen, 2001). In addition, IAA conjugates can be
hydrolyzed by amidohydrolases, such as IAR3 and ILL2 (Rampey
et al., 2004). In YC13-559, we found upregulation of IAA-
amido synthetase and downregulation of IAR3 (Supplementary
Table S4). Our results suggest that upregulation of amido-
synthatase, and downregulation of amido hydrolase, possibly
play roles in maintaining optimal auxin levels during seed
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development. Previously, Taipalensuu et al. (1997) reported
that the myrosinase-binding protein, MYROSINASE-BINDING
PROTEIN 2 (MIB2), is involved in the conversion of metabolized
GLS to other defense compounds (Taipalensuu et al., 1997). We
found that the expression of MIB2 was more than fourfold higher
in YC13-559 compared to YC13-554.

CONCLUSION

Comparative transcriptome analysis of a pair of B. napus NILs,
YC13-554 and YC13-559 which differ significantly in seed
oil accumulation revealed 1,234 candidate DEGs between the
two lines that are mostly involved in lipid and carbohydrate
metabolism. In addition, a number of genes associated with signal
transduction, transport, and biosynthesis of phytohormones,
such as JA, GA, and IAA, were found to be differentially
expressed. Identification of DEGs related to phytohormones
in the NILs is of particular interest. Phytohormones impose
drastic phenotypes, often through interactions with signal
pathway proteins that form complexes with TFs. Therefore, small
changes in phytohormone metabolism can affect a large number
of transcriptional cascades that regulate various biological
processes. The differential expression of several lipid-related TF
genes, such as STM, LEC1, ABI3, WRI1, FUS3, in the NILs, are
potentially influenced by these phytohormones. The upregulation
of these TFs in YC13-559 probably led to the increased expression
of key pathway genes, including PK, ACCase, LACS, FATA/FATB,
and DGAT, resulting in higher seed oil content in YC13-559.
In addition, the differential expression of key TF genes is likely
responsible for the downregulation of GLS pathway genes in
YC13-559. It is highly possible that genetic variations affecting
other pathways, e.g., that of carbohydrate metabolism, also

contribute to the distinct lipid phenotypes of the NILs. Our
comparative transcriptomic analysis of the B. napus NILs to
elucidate DEGs that potentially affect seed oil accumulation
provides a broader insight into gene networks involved in lipid
biosynthesis and metabolism.
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