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Wheat has been cultivated for 10000 years and ever since the origin of hexaploid wheat
it has been exempt from natural selection. Instead, it was under the constant selective
pressure of human agriculture from harvest to sowing during every year, producing a vast
array of varieties. Wheat has been adopted globally, accumulating variation for genes
involved in yield traits, environmental adaptation and resistance. However, one small but
important part of the wheat genome has hardly changed: the regulatory regions of both
the x- and y-type high molecular weight glutenin subunit (HMW-GS) genes, which are
alone responsible for approximately 12% of the grain protein content. The phylogeny of
the HMW-GS regulatory regions of the Triticeae demonstrates that a genetic bottleneck
may have led to its decreased diversity during domestication and the subsequent
cultivation. It has also highlighted the fact that the wild relatives of wheat may offer
an unexploited genetic resource for the regulatory region of these genes. Significant
research efforts have been made in the public sector and by international agencies,
using wild crosses to exploit the available genetic variation, and as a result synthetic
hexaploids are now being utilized by a number of breeding companies. However, a newly
emerging tool of genome editing provides significantly improved efficiency in exploiting
the natural variation in HMW-GS genes and incorporating this into elite cultivars and
breeding lines. Recent advancement in the understanding of the regulation of these
genes underlines the needs for an overview of the regulatory elements for genome
editing purposes.

Keywords: wheat, glutenins, genetic regulation, crop improvement, promoter diversity of wheat wild relatives,
ideotype for genome editing

BACKGROUND

Hexaploid wheat only exists in a cultivated form, and it is derived from a cross between the
cultivated Triticum turgidum subsp. dicoccum and a wild goat grass (Aegilops tauschii). In one
possible scenario its progenitors were as follows: Triticum urartu – A genome, Aegilops speltoides –
B genome and Aegilops tauschii – D genome.

The progenitors of wheat acquired many morphological and physiological improvements, such
as loss of seed shattering, increased yield, decreased chemical, and morphological defenses, loss of
seed dormancy, uniformity in germination and growth phenology, and erect growth in order to
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facilitate increased plant density in crop fields. These are
collectively referred to as a ‘domestication syndrome’ (Allaby,
2014). Further traits were acquired during the cultivation process
such as diversification in grain starch composition, adaptation
to different climates and latitudes, and the decrease in grain
protein to carbohydrate ratio (Harlan et al., 1973; Harlan, 1992;
Dubcovsky and Dvorak, 2007). Among the domesticated crops
only hexaploid wheat went through speciation, while all other
plants retained their genetic relations to their wild types (Harlan
et al., 1973).

One detrimental consequence of domestication is the
decreased genetic diversity of genes related to domestication
syndromes. This genetic restriction, also called genetic bottleneck,
may restrict the possibilities of the breeder. Indeed, haplotype
analysis of high molecular weight glutenin subunit (HMW GS)
genes in bread wheat reported less genetic diversity than their
wild counterparts, which is mainly due to the genetic bottleneck
caused by human selection processes (Giles and Brown, 2006;
Dong et al., 2013). Interestingly, in the Central and Southern
Asian regions HMW GS diversity is slightly higher than in other
territories, which is due to the fact that hexaploidization event
of wheat happened in this region (Terasawa et al., 2010) and
many ancient landrace populations have remained in cultivation
by small farmers. At present, the only ways to increase diversity
are to develop synthetic wheat utilizing the genetic variability
of the genome donors, or by backcrossing with wild relatives
that treasures a yet unchartered genetic depository (Charmet,
2011). However, in light of recent publications, genome editing
is expected to revolutionize crop breeding (Belhaj et al., 2013;
Upadhyay et al., 2013; Budak et al., 2015; Schiml and Puchta,
2016). Indeed, genome editing was already successfully used
for wheat to develop heritable resistance to powdery mildew
(Wang et al., 2014). Refined genome editing with reduced off-
target mutation will accelerate the adoption of important genes
in breeding programs. It seems that knock-out mutants by
non-homologous end-joining pathways may have limited use
(Svitashev et al., 2015), therefore small insertions or targeted gene
replacement based upon genome editing hold greater potential
for crop improvements (Voytas and Gao, 2014). However, for
targeted gene replacement mutants site specificity is crucial, and
this can be successfully achieved by inhibiting non-homologous
end joining (NHEJ) and increasing the efficiency of homology-
directed repair (HDR). One such solution was already tested in
animal production using homolog recombination stimulant RS-
1 (Song et al., 2016). In the case of plants, Zhao et al. (2016)
recently published an alternative strategy for gene replacement
where they achieved a 0.8% success rate. Although application
of genome editing is currently not without challenges and
difficulties, it is widely anticipated that these can be overcome
by further development of the technology as reviewed recently
by Schaeffer and Nakata (2015). Based on this assumption,
it is essential to have a clear understanding of the genetic
options offered as templates by the wild relatives (Charmet,
2011) in order to obtain novel genetic variability for cultivated
wheat.

Regulatory regions are one of the major contributors
to forming novel traits. Genome wide association studies

highlighted the importance of non-coding genomic regions in
phenotypic variation in plants (Cubillos et al., 2012). According
to Olsen and Wendel (2013), most of the domesticated traits were
gained via mutations in either the coding or the promoter region
of the genes (Olsen and Wendel, 2013). In case of maize, the
gene teosinte branched1 (tb1) is reported to be responsible for
a major domestication syndrome, and a polymorphism analysis
showed that the reduction of diversity was the most severe in
the 5′-UTR (untranslated region) (Wang et al., 1999). They
concluded that due to the abrupt nature of this reduction,
recombination allowed the uncoupling of the coding region
from the 5′-UTR. Doebley et al. (2006) reported that changes
in development and morphology are related to mutations in
transcriptional regulator genes. One noticeable mutation is the
Q allele that may have appeared in durum or bread wheat first
(Simons et al., 2006). This gene is an AP2 type transcription
factor and its product, the Q allele, increases the number of
flowers per spikelet thus increasing the sink capacity (Simons
et al., 2006).

Well-characterized and important trait genes of wheat are the
HMW GS genes which are major contributors to the end-use
quality of wheat flour (Shewry et al., 2002). Wheat is a primary
protein source for human consumption, and has been extensively
studied, but not detailed here. The genes are located on the
Glu-1 locus on the chromosome 1 of the three homoeologous
genomes of hexaploid wheat. Due to a duplication event, each
locus contains two paralogous glutenin genes named as x- and
y-type subunits (Kong et al., 2004). Their coding regions have
been thoroughly analyzed and compared. The three Glu-1 loci
of hexaploid wheat have different level of sequence variation,
indicating a different history of evolution before hexaploidization
(Ciaffi et al., 1998; Rodríguez-Quijano et al., 2001; Gu et al., 2004;
Giles and Brown, 2006; Jiang et al., 2012; Dong et al., 2013).
The HMW GS genes are found in all species of the Triticeae
tribe.

Our earlier study reported that the regulatory regions of
Glu-1 genes have a conserved structure of seven cis-regulatory
modules (CRM) including the proximal basal promoter region
(Makai et al., 2014b). The motif compositions of regulatory
regions vary across the x- and y-type pairs as well as across
the homeologous genes, causing variation in expression activity.
However, the x to y ratio of HMW GS proteins is currently
sub-optimal from the perspective of end-use. Experiments with
transgenic wheat showed that overexpression of y-type HMW
GS genes had a more favorable effect on the mixing properties
of the dough than overexpression of x-type (Blechl et al.,
2007; León et al., 2009). Titration experiments concluded that
an appropriate x:y ratio is needed for dough extensibility
(Butow et al., 2003; Anderson and Bekes, 2011). Reconstitution
experiments using rice flour as a base demonstrated that 1:1
ratio of x- and y-type HMW GS gave the largest effect (Oszvald
et al., 2011). Therefore, any attempt to improve this ratio
by increasing the activity of the y-type HMW GS genes may
positively affect the protein composition of the wheat grain and
consequently the bread-making quality of the dough. However,
the low allelic differences detected for these regions (Makai
et al., 2014a) have severely restricted genetic gains from breeding
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to date. Genetic variation may be increased by introducing
novel elements from related wild species. However, altering
such a tiny part of the genomes by traditional crossing is
nearly impossible, which leaves genome editing as the most
viable technology to address the problem. Here we propose a
possible strategy for gene/promoter replacement via studying
the phylogeny of the regulatory regions of HMW GS genes of
Triticeae and exploring the potential advantages of a new type of
promoter.

PHYLOGENY OF THE REGULATORY
REGIONS OF HMW GS GENES

The high similarity between the regulatory region of the
homeologous HMW GS (also referred as Glu-1) genes raises
many questions: (i) What genetic variability is available in the
wild species? (ii) How and when were the paralogs (x and y
type) separated? (iii) Which gene was the original copy and how
has the evolution of the regulatory regions changed during the
duplication? (iv) What are the signs of functional shift that are
usually characteristic of duplicated genes?

A phylogenetic study was used to compare 139 regulatory
sequences (or promoters) of HMW GS from nearly 40 species
of the Triticeae tribe. These species represented the A, B, D,
E, H, S, R, and V genomes. The sequences were first aligned,
and then a phylogenetic tree was built (Figure 1). The tree
has two main branches separating the x- and y-type promoter
paralogs. The branches are marked with different colors. The
figure also presents a condensed view of the regulatory sequences
marking only the binding sites (BS) of transcription factors
(TF). These binding sites are known for their involvement
in the regulation of HMW GS genes. The x-type promoters
carry the unique CEREAL box motif and MYB BS at their
basal promoter regions. The y-type promoters are missing
these features but carry a NAC binding site at their CRM4
region that was lost in the x-type promoters. The condensed
promoter view offers a graphical representation of the changes
in the promoters. Many motifs disappear by the growing
distance from the middle to form the typical x- and y-type
promoter profiles at the outer parts of the tree. The sequences
at the middle part of the tree (including Dasypyrum villosum,
Leymus and Elymus species) contain features of both x- and
y-type promoters therefore we refer to them as hybrid type
promoters.

Earlier expression analysis demonstrated that the paralogous
HMW GS genes had distinct expression profiles (Hurkman
et al., 2013; Makai et al., 2014b). The x-type genes had a peak
during the grain-filling stage while the y-type genes showed a
gradually increasing but generally lower activity. In addition,
a co-expression based focused network analysis identified two
distinct gene regulatory networks (GRN) for the paralogs (Makai
et al., 2015). Both the transition to grain filling and the transition
from grain-filling to maturation are promoted by abscisic acid
(ABA) (Finkelstein et al., 2002; Kanno et al., 2010). Based on
the relative abundance of ABA-related TFs (LEC1, TaABI5)
in their GRN, it is assumed that the x-type HMW GS genes

are closely linked to ABA. In contrast, the gene composition
of the GRN and their gradually increasing expression profile
suggest that y-type HMW GS genes are less dependent on
ABA and probably are under a NAC/NAM type regulation
(Shinozaki and Yamaguchi-Shinozaki, 2007; Makai, 2015). It is
likely that the promoters of the ancient, pre-duplication HMW
GS genes were similar to the hybrid type promoters identified
in the V and E genome species. Consequently, following
duplication, and most importantly during domestication and
cultivation, the x-type promoter became closely aligned to
the regulatory pathways driving the grain filling stage of the
developing endosperm. In other words, the x-type genes may
become the primary sink for the nitrogen supply during grain
filling. In addition, the coding region of the two paralogs
carry distinctive conserved features (number and distribution
of cysteine residues, repetitive regions) (Shewry and Tatham,
1997; Shewry et al., 2009), which may indicate a yet unknown
functional difference in storage accumulation or protein packing
or trafficking. This is in concert with the view that after
duplication the expression patterns and/or the function of
genes are shifted apart (Li et al., 2005; Gibbs and Donohue,
2014).

In order to have an overall view of the diversity of the
regulatory regions of HMW GS genes, the sequences were
grouped by genomes and the values of divergence were calculated
between the groups (Figure 2). In the case of the A, B, and
R genomes the x-type promoters had lower divergence values,
while in the case of the S and D genomes it was the y-type
promoters. The reasons for these biased differences in diversity
are unknown. The tetraploid species (AB) were longer exposed
to the selective pressure of mankind (Feuillet and Muehlbauer,
2009) and their end-use purpose was (and widely still is) different
compared to the hexaploid wheat. This may have driven the
AB species toward a different gene set. The calculation of in-
between group divergence gave a slightly higher value for the
y-type promoters. Although this difference is small, it raises an
interesting question: Could the lower level of expression hide any
effect on the phenotype, thus easing the grip of selection that led
to higher diversity? More sequence data would likely help to find
an answer.

NATURE VERSUS BREEDING

The phylogeny of the regulatory regions of HMW GS genes
offers a view on how domestication and subsequent breeding
have influenced these regions. The analysis demonstrates that
the emergence of variation identified in the promoter profiles
of hexaploid wheat precedes its evolution, which suggests
that breeding has had no influence on the polymorphisms
of regulatory regions of HMW GS genes. It is very likely
that breeding has affected the activity of GRNs that directly
or indirectly are involved with grain protein content (GPC).
Many studies have reported the importance of TFs and their
polymorphisms as a contributor to improved quality. The
haplotype analysis of storage protein activator (SPA) genes has
presented evidence for such correlations (Ravel et al., 2009).
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FIGURE 1 | The phylogenetic tree based on the 900 bp long 5′-UTR of high molecular weight glutenin subunit (HMW GS) genes of 139 Triticeae
species. All publicly available (at the time of writing) sequences were used. The sequence data was obtained from the NCBI nucleotide database. The tree was build
using the Neighbor-joining method of the MEGA6 software (Tamura et al., 2013). The blue branch marks the x-type promoters, the magenta branch the y-types. The
transient gradient represents the hybrid type promoters. Typically, species belonging to the genome E are placed on this transient part. Condensed promoter view is
shown where only the motifs and their order are presented. The accession and the species are written in small letters. The motifs to generate the promoter profiles
are as follows (in regex format): bZIP (including SPA) - (TGACGT| [GA]TG[AT]G[TA]CAT| GTCAT| GATGACGTGTC); MYB - (TAACAA| AACAAA| AAACCA); NAC –
CATGTG; VP1 – CATGCA; TBF - TATA[AT]A[AT][AG]; PBF - TG[GC]A{3,4}[GC]; CEREAL Box - GACATG[GC]TTAGAAG[TC][TA]TTGAGTG; HMW Enhancer -
[TG]TTTT[GAC][GC](AAA| CAA| AA)GC[TA]CCAATTGCTCCTT[GA]CTTATCCAGCT.
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FIGURE 2 | The divergence of the promoters of Glu-1 genes in wheat. Analyses were conducted using the Maximum Composite Likelihood model. All
positions containing gaps and missing data were eliminated. Evolutionary analyses were conducted in MEGA6.

Genetic mapping in barley has indicated that prolamin-binding
factor (PBF) is associated with grain protein content (Haseneyer
et al., 2010). Later, the PBF-B was shown to be in linkage
disequilibrium with GPC related markers in wheat (Plessis et al.,
2013). Both SPA and PBF are directly interacting with the
regulatory region of HMW GS genes. Furthermore, the GPC-B1
quality trait locus was shown to be related to NAC transcription
factor (Uauy et al., 2006).

The hybrid type promoters are unique to the relatives of
wheat. This suggests that natural selection had a preference for
this type of promoter. Since GRNs are conserved across species
(Pires et al., 2013; Shrestha et al., 2014), it is most probable
that the two distinct GRNs identified in hexaploid wheat are
also present in the wild relatives of wheat. Consequently, the
storage protein genes of the wild relatives may be controlled
by two interwoven regulatory circuits: an ABA-dependent and
an ABA-independent circuit (Agarwal et al., 2011; Nakashima
et al., 2014). While the exact mechanism is still unclear, the high
drought tolerance of wild species may offer a clue for one possible
advantage of this regulatory strategy (Molnár et al., 2004; Akpınar
et al., 2013; Dulai et al., 2014). Considering the involvement of
ABA in the signal transduction pathway of drought (Zhang et al.,
2006), it is hard not to think of these hybrid promoters as a
“bullet-proof” regulatory region that can secure the needs of
germination in a broad spectrum of environmental conditions.
High levels of ABA (in response to drought) may promote an
early transition from grain filling to maturation stage (Chen et al.,
2013), however, the ABA-independent pathway would keep up
the transcription of these storage compounds in dry conditions.

In conclusion, the hexaploid (bread) wheat may have finely
tuned regulatory mechanisms controlling the expression of
HMW GS genes that produces high yield in optimal conditions.
In contrast, the regulatory regions of HMW GS of the wild
relative seem to be better adapted to environmental changes.
With regard to the increasing amount of evidence suggesting
the role of TF in yield (Sreenivasulu and Schnurbusch, 2012)
and with regard to the restricted diversity of regulatory regions
of HMW GS genes, the question arises: could any change in

the promoters of HMW GS genes make a better use of the
transcriptional mechanisms present in the developing endosperm
of the hexaploid wheat? Or more specifically, would the hybrid
type promoters of the wild relatives coupled with the GRNs
of the hexaploid wheat stabilize the grain yield without a loss
in protein content even in drought conditions? In the light of
our current knowledge, the answer is most probably positive.
The wild relatives of wheat offer a diverse catalog of regulatory
regions and naturally occurring mutations. Amongst them, wild
relatives possessing hybrid type promoters may be of particular
interest. Their binding site composition and distribution may
offer a way to rewire the regulation of the lower expressing y-type
genes to make the most out of the two GRNs. The hybrid type
promoters of Pseudoroegneria spicata, Heteranthelium piliferum,
or Thinopyrum bessarabicum may take full advantage of both
GRNs. They could potentially stabilize GPC in a wider range of
environmental conditions, thus narrowing the gap between the
expected and potential quality.

However, a precisely targeted gene replacement of the
regulatory regions of HMW GS via genome editing currently
faces many challenges. One is due to the high homology between
the paralogs and homeologs. To overcome this, the precise
sequence data of the targeted region and its homeologs and
paralogs of the chosen wheat genotype must be known and guide
RNA(s) should be designed accordingly. Other challenges may
be the low efficiency of HDR mediated gene replacement and
the low frequency of successful transgenic events in plants as
recently reviewed by Altpeter et al. (2016). However, even with all
these issues, genome editing holds a great potential to overcome
the effect of linkage drag in backcross breeding, via directly
replacing, deleting, or inserting genetic material to the desired
locus.
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