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One of the major obstacles to the micropropagation of Prunus rootstocks has, up until

now, been the lack of a suitable tissue culture medium. Therefore, reformulation of culture

media or modification of the mineral content might be a breakthrough to improve in vitro

multiplication of G × N15 (garnem). We found artificial neural network in combination

of genetic algorithm (ANN-GA) as a very precise and powerful modeling system for

optimizing the culture medium, So that modeling the effects of MS mineral salts (NH+,4

NO−, PO2−, Ca2+, K+, SO2−, Mg2+, and Cl−) on in vitro multiplication parameters (the3 4 4

number of microshoots per explant, average length of microshoots, weight of calluses

derived from the base of stem explants, and quality index of plantlets) of G × N15.

Showed highR2 correlation values of 87, 91, 87, and 74 between observed and predicted

values were found for these four growth parameters, respectively. According to the

ANN-GA results, among the input variables, NH+ and NO− had the highest values of VSR4 3

in data set for the parameters studied. The ANN-GA showed that the best proliferation

rate was obtained from medium containing (mM) 27.5 NO−, 14 NH+, 5 Ca2+, 25.9 K+,3 4

0.7 Mg2+, 1.1 PO2−, 4.7 SO2−, and 0.96 Cl−. The performance of the medium optimized4 4

by ANN-GA, denoted as YAS (Yadollahi, Arab and Shojaeiyan), was compared to that

of standard growth media for all Prunus rootstock, including the Murashige and Skoog

(MS) medium, (specific media) EM, Quoirin and Lepoivre (QL) medium, and woody plant

medium (WPM) Prunus. With respect to shoot length, shoot number per cultured explant

and productivity (number of microshoots × length of microshoots), YAS was found to be

superior to other media for in vitro multiplication of G × N15 rootstocks. In addition, our

results indicated that by using ANN-GA, we were able to determine a suitable culture

medium formulation to achieve the best in vitro productivity.

Keywords: artificial neural network (ANN), genetic algorithm (GA), G × N15 rootstock, ion macronutrients,

proliferation, Prunus micropropagation
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INTRODUCTION

The use of stone fruit inter-specific hybrids has been common in
developed countries for a few decades, and this approach would
improve many problems in stone fruit trees (Beckman and Lang,
2002). Improved outcomes, however, have been observed for the
rootstock (A plant which already has an established root system,
onto which scion is grafted) G × N15, also called “Garnem,”
which is a hybrid between the stone fruits almond and peach
selected from the plants originated by crossing Prunus amygdalus
(Garfi) × Prunus. Persica (Nemared) (Series GxN), and which
was developed in Spain at the Center of Investigation and
Technology Agrifood of Arago (Felipe, 2009). This new rootstock
is characterized by red leaves, good vigor, resistance to root-knot
nematodes, adaptability to calcareous soils, and compatibility
with most peach and almond cultivars as well as some grafted
plum and apricot cultivars. Garnem also performs very well with
almond, both in irrigated and rainfed (Felipe, 2009). Obtaining
G × N15 hybrid and making their cloning is difficult. Therefore,
optimize a new in vitro multiplication protocol for large-scale
production of this rootstock is necessary.

The success and commercial usefulness of Prunus rootstock
micropropagation protocols largely depend on the mode and rate
of shoot proliferation (Number of new formed shoots). Shoot
proliferation is influenced by several factors, such as genotype,
media composition (Ruzic and Vujovic, 2008; Ivanova and Van
Staden, 2009; Yang et al., 2012), disinfection and establishment
methods (Shokri et al., 2013; Arab et al., 2014), in vitro
environmental factors, etc. Development of an appropriate
culture medium for a specific crop can be quite complex because
the response to the culture medium is often genotype dependent,
and the effects of mineral nutrition on morphogenesis have
hardly been studied (Ramage and Williams, 2002; George et al.,
2008; Greenway et al., 2012; Wada et al., 2013). Mineral
nutrients include critical molecules of plant cells or function
as critical parts of the cell structure (Ramage and Williams,
2002). Choosing the most appropriate medium culture in this
regard is a vital but often overlooked consideration in many
tissue culture applications (Greenway et al., 2012). Basal salts,
for example, regulate the growth and morphology of plant
tissues by providing essential nutrients (Ramage and Williams,
2002). Different species have different nutrient requirements that
provide the optimal growth; both deficiencies and excesses of
specific nutrients can result in negative impacts and physiological
problems, such as vitrification (Ramage and Williams, 2002;
Ivanova and Van Staden, 2009; Yang et al., 2012). These
differences have led to the development of many medium
formulations, but selecting a medium for a particular objective
can be difficult and time consuming. Medium selection is
often based on previous applications with many plant species.
However, a basal culture medium selected based upon past
usage may not give consistent results when evaluated with

Abbreviations: WPM, Woody Plant Medium (Lloyd and McCown, 1981); MS,

Murashige and Skoog medium (1962); QL, Quoirin and Lepoivre medium (1977);

YAS, Yadollahi, Arab and Shojaeiyan mediun; EM, Specific Media; BAP, 6-benzyle

amino purine; IBA, Indole-3-butyric acid; ANN, Artificial neural network; GA,

Genetic algorithm; VSR, Variable sensitivity ratio; PGRs, Plant Growth Regulator.

different plant species, different plant tissues or new applications
(Greenway et al., 2012).

Currently, there are few media formulations that are broadly
applicable for the micropropagation of Prunus. In some
situations, the nutrient concentrations of these common media
are slightly modified to accommodate a particular use (Nezami
Alanagh et al., 2014). Murashige and Skoog (MS) (Murashige
and Skoog, 1962) and woody plant medium (WPM) are the two
most commonly used basal media, but they are not suitable for
all in vitro applications (Nezami Alanagh et al., 2014). The MS,
WPM, and Quoirin and Lepoivre (QL) basal salt formulations
were not optimized for in vitro proliferation of G × N15 but
became widely used becausemany other Prunus species grewwell
on them (Arab, unpublished data). Each plant species has its own
characteristic requirement for nutrients, which can be used to
adapt the medium formulation (Nas and Read, 2004; Ruzic and
Vujovic, 2008; Radmann et al., 2009; Unek et al., 2010; Zhou et al.,
2010; Pérez-Jiménez et al., 2012; Vujović et al., 2012; Jamshidi
et al., 2016).

Micropropagation has been evaluated as an alternative to
conventional vegetative propagation of Prunus rootstock by
several research groups (Cheong, 2012), but standardized in vitro
proliferation protocols for G × N15 rootstock have not yet
been developed. Although mineral nutrition is one of the crucial
factors for successful Prunus micropropagation, the effects of
mineral nutrition used on in vitro G × N15 rootstock shoot
regeneration from a single node has been investigated in only a
few cases.

Utilization of artificial neural network (ANN) technologies
and genetic algorithms (GAs) can be efficient alternative means
for non-linear multivariate modeling and optimization of
biological processes (Prasad and Dutta Gupta, 2006; Jong, 2009).
Neural network technology is considered to be an alternative to
the polynomial regression method for approximating of different
complex mathematical functions to process and interpret many
sets of unpredictable data (Ahmadi and Golian, 2011). ANN
technology has been found to be completely applicable for
experiments with different numbers of data points, which makes
it possible to use more casual experimental designs than is
allowed with statistical approaches (Ahmadi and Golian, 2011).
Recently, several studies have demonstrated the effectiveness of
ANNs in the field of plant tissue culture for different purposes
such as predicting the number of shoots per explant and average
shoot length (Gago et al., 2010a, 2011; Nezami Alanagh et al.,
2014), modeling the weight of root biomass (Mehrotra et al.,
2008, 2013; Prakash et al., 2010), and predicting the number
of roots per microshoots and survival percentage (Gago et al.,
2010a,b). ANN-GA is a hybrid technology that combines the
adaptive learning capabilities from ANN with a GA. This
methodology has proven its applicability in successfullymodeling
complex non-linear relationships between variables (Ahmadi and
Golian, 2011). A genetic algorithm was used by these authors to
optimize input space of an ANN model since GAs are often used
as artificial intelligence based stochastic optimization methods
for optimizing the input space of an ANNmodel where the usual
methods are not applicable. The combination of ANN and GA
techniques has become one of the most efficient methods used
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for experimental modeling and for selecting the best performers
or optimization, especially to increase knowledge about the
factors that potentially affect any responses in complex non-
linear relationships hidden in formulation data (Ahmadi and
Golian, 2011). The ANN-GA method has helped researchers
understand cause–effect relationships, for example, between the
composition of the culture medium and the growth parameters
(i.e., number of new shoots formed, shoot length, quality, etc.).

In vitro proliferation of G × N15 on MS medium (1962)
often exhibits physiological disorders such as hyperhydricity,
shoot tip necrosis, discoloration, callus formation, leaf spots,
fasciation, or stunting (Arab, unpublished data). In contrast,
shoots grown on WPM are healthy but show a slow growth
rate. Whereas, MS media resulted in high proliferation rate
and plantlets often exhibit suboptimal growth and symptoms
in this media (Arab, unpublished data). Finally, optimizing
culture medium to provide satisfactory mineral nutrition for
in vitro proliferation of new cultivars, such as, G × N15 is very
challenging because each cultivar has its own specific nutritional
requirements. The complexity of understanding how shoots
respond to mineral nutrients in a medium can make developing
an optimal medium very difficult and time consuming, as
shown by the classic study of Murashige and Skoog in 1962
(Ramage and Williams, 2002). Recently, many new approaches
have been developed for improving medium formulation based
on mineral nutrition and better understanding the role of
the factors involved in in vitro plant growth using kernel
composition (Nas and Read, 2004; Adelberg et al., 2010) and
computer technologies, especially ANNs (Gago et al., 2010b,
2011; Greenway et al., 2012; Mehrotra et al., 2013; Zielinska and
Kepczynska, 2013; Nezami Alanagh et al., 2014; Poothong and
Reed, 2014).

Our current study was designed to determine the mineral
factors that have the greatest effects on the growth and
development of G × N15 rootstock by using ANN-GA. The
mineral salts of the WPM and QL media and MS base medium
were used as a starting point for optimization of five mineral
stock solutions for improved growth and multiplication of
G × N15. The purposes of the present study were to: (1)
develop ANN-GA models to analyze the response of G × N15
microshoots to mineral medium according to the number of
new shoots formed and shoot length obtained from two factorial
experiments based on a completely randomized design; (2)
find the optimal culture medium composition for maximizing
the number of proliferated shoots per explant, maximizing the
average shoot length, maximizing the quality of the shoots,
and minimizing calluses derived from basal microshoots by
optimizing the model of G × N15 microshoots at the in vitro
proliferation stage; (3) compare new media formulated by ANN-
GA (YAS) with MS, WPM, EM (specific media), and QL in order
to assess the efficiency of ANN-GA for modeling and optimizing
the composition of the culture medium for growth parameters
(i.e., number of proliferated shoots per explant, average shoot
length, calluses derived from basal microshoots, and quality of
the shoots); and (4) investigate the role of macronutrients in the
culture media involved in the in vitro growth of G × N15 hybrid
rootstock.

According to the literature review, all researchers believe that
each plant species has a specific culture media for different stage
of its micropropagation and the ANN-GA method could be
applied as an alternative method for optimizing a new culture
media. Therefore, the hypothesis of this study is that mineral
nutrition affects plants performances and the obtained data of
these experiments can be analyzed using alternatives procedures
like ANN-GA.

MATERIALS AND METHODS

The experiments were carried out in the Fruit Tree
Micropropagation Laboratory, Department of Horticultural
Sciences, Tarbiat Modares University (TMU) Tehran, Iran, in
2013 and 2014.

Plant Material
Cultures were initiated using nodal explants taken from actively
growing approximately 2-year-old peach × almond hybrid
rootstock G × N15 grown in a greenhouse at 24–26◦C and
a 16/8-h (light/dark) photoperiod at TMU. Nodal segments of
lengths of 1–2 cm, including axillary buds, were used as explants.
Single-node explants of the Prunus rootstock “Garnem” were
taken in the spring of 2013 from trees propagated either by
cuttings or bymicropropagation. Actively growing axillary shoots
(15–20 cm) of “Garnem” were cut off and transferred to the Fruit
Tree Micropropagation Laboratory and used to prepare nodal
cuttings. These shoots were cut into pieces that were 2 cm long,
with each piece including one bud; then for surface disinfection,
nodal explants were agitated in a solution containing water,
liquid hand soap and 0.03% (v/v) Tween 20 (Merck, La Jolla,
USA) for 15min; and finally explants were washed with running
tap water for 1 h. These explants were subjected to internal
sterilization by immersing them in 70% (v/v) ethanol (Sigma-
Aldrich, Italy) for 30 s, rinsing them in sterile distilled water and
then submerging them for 4min in mercury chloride (0.01%),
with constant shaking. Later, the cuttings were immersed twice in
double-distilled water containing 700mg/L citric acid, each time
for 3min, and finally they were rinsed twice with distilled water,
before transferring them to test tubes containing 15mL of MS
medium.

In vitro Culture Establishment
After disinfection, MS medium (Murashige and Skoog medium,
1962) containing 0.25mg L−1 BAP, 0.05mg L−1 IBA (Sigma-
Aldrich, Steinheim, Germany) and 30 g L−1 (Duchefa) sucrose
was used as the culture medium for shoot induction. The pH of
the culture medium used was adjusted to 5.8 with 0.1M NaOH,
and then 7.0 g L−1 agar (Merck microbiological) was added, and
the medium was autoclaved at a temperature of 121◦C and a
pressure of 1.2 kPa for 15min. Nodal explants (15–20mm) were
vertically cultured in 15 × 250-mm glass test tubes containing
10–15mL of medium. Cultures were then subjected to a 16/8-h
(light/dark) photoperiod at a light intensity of 80µmol m−2 s−1

provided by white fluorescent tubes in a growth chamber for 4
weeks. One month after establishment of the culture, shoots that
originated from the explants were sub-cultured on MS medium
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supplemented with 1mg L−1 BAP and 0.1mg L−1 IBA in a glass
jar kept in a growth chamber.

Preparation of Media
Seventy six culture media were employed: MS (Murashige
and Skoog medium, 1962), WPM (Lloyd and McCown, 1981),
EM, QL (Quoirin and Lepoivre, 1977), modified MS predicted
and optimized according to ANN-GA, modified MS (first
experiment, 36) andmodifiedMS andWPM (second experiment,
36) (Tables 1, 2). All media were supplemented with 1mg L−1

BAP, 0.1mg L−1 IBA, and 30 g L−1 sucrose. After adjustment
of the pH to 5.7, 7.0 g L−1 agar (Merck microbiological) was
added to the media. The media were prepared in 25 × 200-mm
glass culture tubes. After autoclaving at 121◦C and a pressure of
1.2 kPa for 15min, the media were cooled to 65◦C in a water
bath, and then distributed into glass baby food jars (250mL),
each containing 50mL of one type of medium, and the jars
were closed with polypropylene screw caps. Before starting three
sets of experiments to evaluate the effects of the various media,
microshoots of G × N15 that were previously sub-cultured
twice on MS containing 1mg L−1 BAP, 0.1mg L−1 IBA, 30 g
L−1 sucrose, 100mg L−1 myo-inositol (Sigma), and 7.0 g L−1

agar were used as the explant source. Before the explants were
transferred to the experimental media directly, the plantlets were
pre-cultured on hormone-free media for 15–20 days for sterility
screening. The plantlets (in the second subculture) were grown
on hormone-free media under the same conditions described
above, and were transferred to the prepared experimental media.

Before starting the present investigation several experiments
have been done for choosing the best media culture among
common media cultures (unpublished). In the first stage of the
study four media culture commonly used for prunus rootstock
micropropagation were investigated (unpublished data). In the
second stage the best medium cultures (MS and WPM basal
medium) were selected for prediction and optimization of
specific GN15 micropropagation media culture. Afterwards the
critical elements in selected media have been investigated and
determined the vital and essential elements for proliferation
stage. In the present investigation we have just investigated the
most important elements that have been selected from previous
steps. finally two single factorial experiments were designed to
discover the best macro element combinations for GN rootstock
proliferation. In the next stage data from both experiments were
analyzed simultaneously by ANN-GA. Details of the tests and
modifications on the basic culture media are fully described
below.

First Set of Experiments
To optimize a new culture medium for proliferation, 36 media
were designed to evaluate the effects of the main macronutrients
on G × N5 hybrid rootstock micropropagation. Five mineral
nutrient factors used were based on MS salts, with each factor
varied over a range of concentrations (×MS): 1.25× and 1.5× for
KNO3 (2375 and 2850mg L−1); 0. 5× and 0.75× for NH4NO3

(825 and 1238mg L−1); 0.75× and 1.25× for Ca(NO3)2·4H2O
(450 and 750mg L−1); 0.75× and 1.25× for MgSO4·7H2O (278
and 463mg L−1) and 0.75× and 1.25× for KH2PO4 (128 and

213mg L−1). They were tested in multifactorial combinations,
and also four MS-modified media containing CaCl2 were used
(Table 1). The micronutrient and vitamin concentrations were
the same for all designed culture media, and were the same as for
those described for MS medium (Murashige and Skoog, 1962).
As controls, we used other media, such as MS (Murashige and
Skoog, 1962), EM and WPM (Lloyd and McCown, 1981) media
that have also been generally used in Prunus sp.

Second Set of Experiments
In order to optimize a new culture medium, 36 different
media were used to evaluate the effect of macronutrients on
proliferation of G × N15 hybrid rootstock. The five mineral
nutrient factors used in these experiments were based on MS and
WPM salts, with each factor varied over a range of concentrations
(×MS and ×WPM): 1.25× and 1.5× for K2SO4 (1237 and
1485mg L−1); 0.5× and 0.75× for NH4NO3 (825 and 1238mg
L−1); 0.75× and 1.25× for Ca(NO3)2·4H2O (450 and 750mg
L−1); 0.75× and 1.25× for MgSO4·7H2O (278 and 463mg L−1)
and 0.75× and 1.25× for KH2PO4 (128 and 213mg L−1). These
factors were tested in multifactorial combinations (Table 2). The
micronutrient and vitamin concentrations were the same for all
designed culture media, and were the same as for those described
for MS medium (Murashige and Skoog, 1962). As controls, we
used four modified WPM and MS media containing different
concentrations of NH4NO3, K2SO4, and CaCl2 to facilitate
comparisons (Table 2).

Third Set of Experiments
In this experiment, five culture media were employed: MS
medium (Murashige and Skoog, 1962), WPM (Lloyd and
McCown, 1981), QL (Quoirin and Lepoivre, 1977), EM, and
modified MS medium (YAS) containing the predicted and
optimized mineral nutrients based on ANN-GA. The media were
supplemented with 1mg L−1 BAP, 0.1mg L−1 IBA, 30 g L−1

sucrose and 100mg L−1 myo-inositol (Sigma), and the pH-values
of all media were adjusted to 5.7–5.8 prior to the addition of the
gelling agent (7.0 g L−1 agar).

Culture Environment
The cultures were subjected to a 16/8-h (light/dark) photoperiod
at a light intensity of 80µmol m−2s−1 provided by white
fluorescent tubes in a growth chamber (25◦C), and sub-cultured
for 30 days.

Experimental Design and Data Collection
The first two experiments were conducted using a factorial
based on a completely randomized design (CRD) with five
replications; each replication included four explants in one glass
baby food jar per treatment. The third experiment, which was
also performed using a CRD, was repeated and the reported data
are the means of the results of the three trials. The cultures
were continuously observed for any response, and data were
collected after 4 weeks. At the end of the in vitro proliferation
stage, four parameters (outputs) were recorded to analyze the
effects of the variables (inputs) on proliferation: (1) total shoots
produced (number of new microshoots per explant); (2) lengths
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TABLE 1 | Ion concentrations of the different culture media used for G × N15 rootstock micropropagation in first set of experiments.

Ion concentrations (mM)

Media NO−

3
NH+

4
K+ Ca2+ Mg2+ SO2−

4
PO2−

4
Cl− Number Height Callus Quality

1 37.62 10.31 24.43 1.91 1.13 1.37 0.94 0 10.6± 0.4 2.30±0.05 0.07± 0.005 4.5±0.13

2 37.62 10.31 25.05 1.91 1.13 1.37 1.56 0 9.8± 0.2 2.10±0.04 0.10± 0.005 4.2±0.10

3 37.62 10.31 24.43 1.91 1.88 2.12 0.94 0 9.4± 0.2 2.02±0.03 0.07± 0.003 4.4±0.10

4 37.62 10.31 25.05 1.91 1.88 2.12 1.56 0 9.6± 0.4 1.82±0.05 0.12± 0.005 4.0±0.07

5 40.15 10.31 24.43 3.18 1.13 1.37 0.94 0 12.6± 0.4 2.48±0.03 0.04± 0.005 4.9±0.10

6 40.15 10.31 25.05 3.18 1.13 1.37 1.56 0 11.2± 0.3 2.32±0.02 0.08± 0.005 4.7±0.10

7 40.15 10.31 24.43 3.18 1.88 2.12 0.94 0 9.8± 0.3 2.30±0.04 0.06± 0.006 4.8±0.12

8 40.15 10.31 25.05 3.18 1.88 2.12 1.56 0 9.2± 0.3 2.20±0.05 0.10± 0.003 4.7±0.06

9 42.77 15.47 24.43 1.91 1.13 1.37 0.94 0 7.6± 0.2 1.82±0.03 0.12± 0.003 3.6±0.06

10 42.77 15.47 25.05 1.91 1.13 1.37 1.56 0 6.8± 0.2 1.62±0.03 0.15± 0.005 3.3±0.11

11 42.77 15.47 24.43 1.91 1.88 2.12 0.94 0 5.8± 0.2 1.71±0.03 0.13± 0.006 3.2±0.12

12 42.77 15.47 25.05 1.91 1.88 2.12 1.56 0 5.6± 0.2 1.47±0.03 0.20± 0.008 3.1±0.18

13 45.31 15.47 24.43 3.18 1.13 1.37 0.94 0 8.8± 0.2 2.08±0.02 0.11± 0.003 3.4±0.16

14 45.31 15.47 25.05 3.18 1.13 1.37 1.56 0 8.2± 0.3 1.88±0.02 0.14± 0.002 3.4±0.12

15 45.31 15.47 24.43 3.18 1.88 2.12 0.94 0 7.6± 0.2 2.34±0.04 0.11± 0.002 3.5±0.13

16 45.31 15.47 25.05 3.18 1.88 2.12 1.56 0 7.4± 0.2 2.10±0.04 0.15± 0.004 3.1±0.06

17 42.31 10.31 29.13 1.91 1.13 1.37 0.94 0 9.4± 0.2 2.56±0.02 0.07± 0.002 4.4±0.28

18 42.31 10.31 29.75 1.91 1.13 1.37 1.56 0 8.6± 0.2 2.36±0.01 0.11± 0.004 3.7±0.18

19 42.31 10.31 29.13 1.91 1.88 2.12 0.94 0 8.4± 0.2 2.42±0.03 0.09± 0.002 4.0±0.08

20 42.31 10.31 29.75 1.91 1.88 2.12 1.56 0 7.6± 0.2 2.28±0.02 0.12± 0.004 3.6±0.05

21 44.85 10.31 29.13 3.18 1.13 1.37 0.94 0 11± 0.3 2.54±0.01 0.06± 0.002 4.4±0.23

22 44.85 10.31 29.75 3.18 1.13 1.37 1.56 0 9.6± 0.4 2.64±0.02 0.10± 0.006 4.1±0.13

23 44.85 10.31 29.13 3.18 1.88 2.12 0.94 0 9.6± 0.2 2.44±0.02 0.08± 0.003 4.4±0.13

24 44.85 10.31 29.75 3.18 1.88 2.12 1.56 0 9± 0.3 2.64±0.02 0.11± 0.006 3.6±0.06

25 47.74 15.47 29.13 1.91 1.13 1.37 0.94 0 7.6± 0.2 2.28±0.02 0.13± 0.006 3.5±0.11

26 47.74 15.47 29.75 1.91 1.13 1.37 1.56 0 8± 0.3 2.06±0.05 0.17± 0.006 3.2±0.12

27 47.74 15.47 29.13 1.91 1.88 2.12 0.94 0 7± 0.3 1.86±0.04 0.15± 0.006 3.5±0.09

28 47.74 15.47 29.75 1.91 1.88 2.12 1.56 0 6± 0.3 1.64±0.02 0.19± 0.007 3.3±0.11

29 50.01 15.47 29.13 3.18 1.13 1.37 0.94 0 9.6± 0.4 2.06±0.02 0.09± 0.006 4.1±0.10

30 50.01 15.47 29.75 3.18 1.13 1.37 1.56 0 9.2± 0.3 2.28±0.02 0.12± 0.004 3.7±0.10

31 50.01 15.47 29.13 3.18 1.88 2.12 0.94 0 8.6± 0.2 2.36±0.02 0.10± 0.005 4.1±0.13

32 50.01 15.47 29.75 3.18 1.88 2.12 1.56 0 7.6± 0.2 2.57±0.03 0.13± 0.009 3.5±0.11

33 33.8 10.31 24.74 2.99 1.5 1.74 1.25 2.99 10.2± 0.3 2.02±0.05 0.10± 0.005 4.0±0.22

34 38.95 15.47 24.74 2.99 1.5 1.74 1.25 2.99 7.2± 0.3 1.62±0.03 0.23± 0.009 3.3±0.11

35 38.5 10.31 29.44 2.99 1.5 1.74 1.25 2.99 8.6± 0.2 2.20±0.07 0.13± 0.005 3.7±0.15

36 43.65 15.47 29.44 2.99 1.5 1.74 1.25 2.99 7.8± 0.3 1.86±0.04 0.19± 0.009 3.3±0.11

MS 39.41 20.62 20.04 3.96 1.5 1.74 1.25 2.99 8.8± 0.4 2.4±0.04 0.16± 0.005 3.4±0.06

EM 49.62 31.28 12.41 3.39 0.41 0.65 0.85 0 6.8± 0.2 1.66±0.05 0.20± 0.009 3.0±0.09

WPM 9.71 5.0 6.93 3.0 1.5 7.42 1.25 0.65 6.4± 0.2 1.51±0.02 0.17± 0.004 4.3±0.11

of microshoots (cm), but only for new shoots longer than
0.75 cm; (3) callus weight, with the callus derived from the base
of stem explants; and (4) a subjective rating of the quality of
the plant appearance scored 1–5 based on growth parameters
such as vitrification, shoot tip necrosis, yellowing, leaf area and
leaf quality (1 = poor quality, 2 = acceptable, 3 = medium,
4 = good, and 5 = very good or best quality; Niedz and
Evens, 2007). To derive a formulation of a new culture medium
for G × N15 in vitro proliferation, the first two experiments
were combined and analyzed using the artificial neural network

genetic algorithm (ANN-GA) introduced above. Commercially
available software, Matlab R© R2010a (Matlab, 2010), was used to
write the mathematical code for developing and evaluating the
ANNmodel. The developed program is actually a modification of
the source code of an ANN algorithm that was previously applied
by Ahmadi and Golian (2011). In the third experiment to assess
the efficiency of ANN-GA in predicting and optimizing the new
formulated medium (YAS), comparisons of this new medium
(YAS) with MS, WPM, EM, and QL basal salts were carried out.
Data from this third experiment were subjected to a one-way

Frontiers in Plant Science | www.frontiersin.org 5 October 2016 | Volume 7 | Article 1526

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Arab et al. Medium Culture Modeling by AAN-GA

TABLE 2 | Ion concentrations of the different culture media used for G × N15 rootstock micropropagation in second set of experiments.

Ion concentrations (mM)

Media NO−

3
NH+

4
K+ Ca2+ Mg2+ SO2−

4
PO2−

4
Cl− Number Height Callus Quality

1 17.93 10.31 8.04 3.81 1.13 8.47 0.94 0 5.2 ± 0.32 1.34 ± 0.05 0.09 ± 0.005 3.7 ± 0.10

2 17.93 10.31 8.66 3.81 1.13 8.47 1.56 0 5.0 ± 0.32 1.49 ± 0.03 0.10 ± 0.005 3.6 ± 0.06

3 17.93 10.31 8.04 3.81 1.88 9.22 0.94 0 6.2 ± 0.38 1.59 ± 0.04 0.10 ± 0.008 4.2 ± 0.09

4 17.93 10.31 8.66 3.81 1.88 9.22 1.56 0 6.8 ± 0.20 1.70 ± 0.07 0.13 ± 0.005 4.0 ± 0.12

5 23.01 10.31 8.04 6.35 1.13 8.47 0.94 0 7.4 ± 0.40 1.81 ± 0.03 0.07 ± 0.009 4.4 ± 0.10

6 23.01 10.31 8.66 6.35 1.13 8.47 1.56 0 8.0 ± 0.32 1.96 ± 0.05 0.10 ± 0.008 4.2 ± 0.06

7 23.01 10.31 8.04 6.35 1.88 9.22 0.94 0 8.6 ± 0.25 1.95 ± 0.03 0.08 ± 0.009 4.4 ± 0.10

8 23.01 10.31 8.66 6.35 1.88 9.22 1.56 0 9.2 ± 0.20 1.97 ± 0.05 0.10 ± 0.007 4.2 ± 0.09

9 23.09 15.47 8.04 3.81 1.13 8.47 0.94 0 3.2 ± 0.32 1.12 ± 0.06 0.19 ± 0.011 3.2 ± 0.13

10 23.09 15.47 8.66 3.81 1.13 8.47 1.56 0 3.0 ± 0.32 1.02 ± 0.07 0.25 ± 0.007 3.0 ± 0.08

11 23.09 15.47 8.04 3.81 1.88 9.22 0.94 0 3.4 ± 0.32 1.16 ± 0.05 0.22 ± 0.008 3.1 ± 0.17

12 23.09 15.47 8.66 3.81 1.88 9.22 1.56 0 3.8 ± 0.37 1.10 ± 0.08 0.25 ± 0.009 3.0 ± 0.14

13 28.17 15.47 8.04 6.35 1.13 8.47 0.94 0 4.6 ± 0.24 1.41 ± 0.06 0.12 ± 0.006 3.7 ± 0.09

14 28.17 15.47 8.66 6.35 1.13 8.47 1.56 0 4.8 ± 0.20 1.30 ± 0.07 0.17 ± 0.007 3.5 ± 0.09

15 28.17 15.47 8.04 6.35 1.88 9.22 0.94 0 5.2 ± 0.20 1.53 ± 0.05 0.15 ± 0.011 3.8 ± 0.12

16 28.17 15.47 8.66 6.35 1.88 9.22 1.56 0 5.8 ± 0.37 1.38 ± 0.09 0.19 ± 0.011 3.5 ± 0.09

17 17.93 10.31 9.46 3.81 1.13 9.89 0.94 0 6.4 ± 0.24 1.48 ± 0.09 0.12 ± 0.007 4.6 ± 0.17

18 17.93 10.31 10.08 3.81 1.13 9.89 1.56 0 5.8 ± 0.20 1.58 ± 0.06 0.14 ± 0.009 4.5 ± 0.08

19 17.93 10.31 9.46 3.81 1.88 10.64 0.94 0 7.0 ± 0.00 1.60 ± 0.07 0.13 ± 0.007 4.3 ± 0.09

20 17.93 10.31 10.08 3.81 1.88 10.64 1.56 0 6.8 ± 0.20 1.82 ± 0.06 0.16 ± 0.007 4.3 ± 0.17

21 23.01 10.31 9.46 6.35 1.13 9.89 0.94 0 8.8 ± 2.20 1.94 ± 0.04 0.07 ± 0.012 5.0 ± 0.05

22 23.01 10.31 10.08 6.35 1.13 9.89 1.56 0 8.6 ± 0.40 1.96 ± 0.05 0.11 ± 0.007 4.9 ± 0.06

23 23.01 10.31 9.46 6.35 1.88 10.64 0.94 0 10 ± 0.32 2.10 ± 0.07 0.10 ± 0.009 4.7 ± 0.09

24 23.01 10.31 10.08 6.35 1.88 10.64 1.56 0 9.0 ± 0.45 2.40 ± 0.07 0.13 ± 0.007 4.5 ± 0.09

25 23.09 15.47 9.46 3.81 1.13 9.89 0.94 0 4.2 ± 0.37 1.04 ± 0.08 0.15 ± 0.009 3.5 ± 0.08

26 23.09 15.47 10.08 3.81 1.13 9.89 1.56 0 4.8 ± 0.37 1.06 ± 0.09 0.19 ± 0.007 3.3 ± 0.09

27 23.09 15.47 9.46 3.81 1.88 10.64 0.94 0 5.0 ± 0.32 1.08 ± 0.04 0.16 ± 0.005 3.6 ± 0.09

28 23.09 15.47 10.08 3.81 1.88 10.64 1.56 0 5.8 ± 0.20 1.28 ± 0.07 0.20 ± 0.009 3.2 ± 0.09

29 28.17 15.47 9.46 6.35 1.13 9.89 0.94 0 6.8 ± 0.20 1.22 ± 0.07 0.13 ± 0.009 3.9 ± 0.13

30 28.17 15.47 10.08 6.35 1.13 9.89 1.56 0 6.4 ± 0.25 1.55 ± 0.06 0.15 ± 0.011 3.8 ± 0.08

31 28.17 15.47 9.46 6.35 1.88 10.64 0.94 0 7.6 ± 0.25 1.59 ± 0.07 0.15 ± 0.008 3.7 ± 0.09

32 28.17 15.47 10.08 6.35 1.88 10.64 1.56 0 7.0 ± 0.32 1.67 ± 0.05 0.17 ± 0.009 3.5 ± 0.09

33 10.31 10.31 8.35 2.99 1.50 8.84 1.25 3.0 7.8 ± 0.58 2.07 ± 0.04 0.11 ± 0.007 3.9 ± 0.13

34 15.47 15.47 8.35 2.99 1.50 8.84 1.25 3.0 7.2 ± 0.66 1.43 ± 0.04 0.21 ± 0.011 3.1 ± 0.13

35 10.31 10.31 9.77 2.99 1.50 10.26 1.25 3.0 9.4 ± 0.68 2.26 ± 0.08 0.16 ± 0.007 4.5 ± 0.08

36 15.47 15.47 9.77 2.99 1.50 10.26 1.25 3.0 7.0 ± 0.32 1.34 ± 0.16 0.18 ± 0.005 3.4 ± 0.06

analysis of variance (ANOVA). Significance was determined
by analysis of the variance, and significant (i.e., P ≤ 0.05)
differences between mean values were estimated using the least
significant difference test. SAS version 9.1 was used for statistical
analyses.

ANN-GA Model
In the present study, one of the most well-known network
algorithms, the feed forward back-propagation learning
algorithm, including input, output and hidden layers (a three-
layer back-propagation network) was applied in developing the
ANN model (Demuth et al., 2006; Ahmadi and Golian, 2011).
The transfer function included hyperbolic tangent sigmoid

(tansig) and linear (purelin) functions for the hidden and output
layers, respectively. For training the network, a Levenberg-
Marquardt algorithm was used for back-propagation with a
gradient descent with momentum weight and bias learning
function (Demuth et al., 2006). The 0.01 level MS error was
used as the performance function, and training was terminated
after 1000 epochs or iterations of the network. In ANN process,
eight inputs and the four outputs were employed. Eight inputs
variables corresponding to different levels of NH+

4 , NO
−
3 , K

+,

Ca2+, Mg2+, SO2−
4 , PO2−

4 , and Cl− were used as units in the
ANN model input layer. Four models were developed separately
for the number of microshoots, lengths of the microshoots, callus
rate, and quality index. The 375 data sets generated from the first

Frontiers in Plant Science | www.frontiersin.org 6 October 2016 | Volume 7 | Article 1526

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Arab et al. Medium Culture Modeling by AAN-GA

two factorials based on CRDs were used to train and test the
network. Before training, each data set (input and output data)
was normalized (−1, 1) in order to make the problem simpler
for the network, to obtain fast convergence minimum mean
square error, and to ensure that the targets (output data) would
reproducibly fall into the specific range of the new feed forward
network (Demuth et al., 2006; Gulati et al., 2010). For artificial
neural network modeling, 225 (i.e., c. 60%) of the data samples
were randomly selected for use as training samples, with another
150 data sets used as testing samples. Training data were used to
present the cause–effect relationship for the model to learn, and
test data were for assessing the quality of the model.

After the training process, the developed ANN models were
subjected to additional practice using GA to find the optimal
values of the input variables (the NH+

4 , NO
−
3 , K

+, Ca2+, Mg2+,

SO2−
4 , PO2−

4 , and Cl− requirements) to maximize the number
of microshoots, length of microshoots and quality index, as

well as to minimize callus rate. The input vector comprising of
input variables of model becomes the decision variable for the
GA. The GA treats an optimization using a cycle of four stages
of initialization of solution populations, fitness computation

based on objective function, selection of best chromosomes,

and genetic propagation of selected parent chromosomes using
genetic operators like crossover and mutation to create the new

population of chromosomes (Desai et al., 2008). The whole

process continues until a suitable result is achieved (Figure 1).

The chromosome is a collection of genes where genes were

represented by binary encoding method. A “roulette wheel

selection” method was used for selecting elite populations for
crossover. Initial population of 50, generation number of 500,

mutation rate of 0.1, and crossover rate of 0.85 has been set to

obtain the best fitness. This generational process was repeated
until the number of generations has been reached. During
GA implementation, the search for the optimal solutions was
restricted between the input variable bounds specified in CRD
design (Tables 1, 2).

Sensitivity analysis was performed on the developed ANN
models to determine which input variable would be more
effective in the model output. In other words, such sensitivity

analyses of the models would determine which of the NH+
4 ,

NO−
3 , K

+, Ca2+, Mg2+, SO2−
4 , PO2−

4 , and Cl− ions tested is
most effective to achieve optimal number of microshoots, length

of microshoots, callus rate and quality index in proliferation of

G × N15. The sensitivities of output vs. each input variables

were assessed by determining the variable sensitivity error (VSE)

value, which shows the performance of the developed ANN
model if that variable is unavailable, and the value of the variable

sensitivity ratio (VSR), which is a relative indication of the ratio

between the VSE and ANN model error when all variables are

available (Lou and Nakai, 2001; Ahmadi and Golian, 2010a,b).
A more important variable has a higher VSR value. Thus, based

on the obtained VSR value, the input variables may be ranked in
order of importance.

Actual and predicted output values were compared using
criteria that are commonly used to evaluate forecasting models.
The accuracy of each model was assessed using the root mean

squared error (RMSE) and the R2 for each output. The R2 values
which was used to investigate the efficiency of each model, was
computed using the equation

R2 = 1−

n
∑

i = 1
(yi − ŷi)

2

n
∑

i = 1
(yi − ȳi)

2

The RMSE was computed using the equation

RMSE =

√

√

√

√

√

n
∑

i = 1

∣

∣ŷi− yi
∣

∣

2

n

where n is number of observations, yi is the observed value of
dependent variable, ŷi is the predicted value from the model,
and ȳi is average observed values of each output. The R2 ratio
describes howmuch of the variance of the parameters (dependent
variable) is accounted for in the model: The larger the value of
the training set R2, the more the model captured the variation
in the training data. The values predicted by the ANNmodels are
plotted against the corresponding experimental values to evaluate
the modeling abilities.

Matlab R2010a (Matlab, 2010) software was used to write
mathematical code to develop and evaluate the ANN-GA
model.

RESULTS

Validation Experiment: Assessment of the
Optimum Productivity Produced by the
New Medium Formulation (YAS)
Multifactorial analysis of variance showed that the MS, EM,
QL, WPM, and YAS media had significantly different effects
(P < 0.001) on the proliferation rate, shoot length, callus
weight derived from the base of stem and quality index of
GN-15 rootstock after 4 weeks in culture (Table 3). The best
shoot formation was obtained on MS medium. This medium,
when including 1mg l−1 BAP and 0.1mg l−1 IBA, resulted in
the production of an average of 10.25 microshoots per explant
inoculated, which is significantly higher than that produced
by using the same concentrations of BAP and IBA in other
media (Table 3). MS and YAS were the most productive media,
and the QL and WPM media were the poorest performers for
this rootstock. The maximum average shoot length (1.99 cm)
obtained using YAS medium was also significantly greater than
that using MS, EM, QL, and WPM media (Table 3). WPM
medium supplemented with 1mg l−1 BAP and 0.1mg l−1 IBA
resulted in production of the highest callus weight derived from
the base of the stem explants (0.20 g per explant), which was
significantly higher than that produced by using other media
(Table 3). The result also showed that the concentration of NH+

4
correlated inversely to the quality index. On the other hand,
increasing the NH+

4 concentration led to a decrease in the quality
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FIGURE 1 | Schematic describing the relationship between ANN and GA.

index. The best plantlet quality index, 4.69, was obtained using
the WPM medium, and this value was also significantly better
than the indexes obtained using MS and EM media (Table 3).
TheMSmedium resulted in the production of an average of 10.25
microshoots per explant inoculated, which is significantly higher
than that produced by the use of other media, but the highest
average micro-shoot length (1.84 cm) and plantlet quality index
(4.75) from the MS medium were significantly lower than those
from the YAS medium (Table 3). Based on the above results,
the MS medium produced an undesirable plantlet quality and
mean microshoot length, and this medium was less efficient than
the YAS medium, but it did produce the most microshoots. It
can be concluded that YAS medium was overall superior to MS,

EM, QL, and WPM media for proliferation of the G × N15
rootstock.

ANN-GA Modeling and Evaluation
While many studies have concentrated on the micropropagation
of Prunus rootstock, the formulation of effective media for
such rootstock has received much less attention. However,
optimization or modification of media based on appropriately
selecting minerals dramatically influences the development
and growth of shoot, including the shoot growth (length),
proliferation (number of new microshoots), weight of calluses
derived from the base of stem explants and quality index.
In the present study, the response of GN-15 rootstocks
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TABLE 3 | Effect of different culture media on Shoot Number, Shoot

length, callus rate, and quality index.

Effects Proliferation Length Callus Quality index

MEDIUM

MS 10.25± 0.25 a 1.84 ± 0.01 b 0.16 ± 0.003 b 3.34 ± 0.10 b

EM 8.63± 0.26 b 1.55 ± 0.01 c 0.19 ± 0.005 a 3.25 ± 0.12 b

QL 7.25± 0.25 c 1.60 ± 0.01 c 0.13 ± 0.004 c 4.34 ± 0.11 a

WPM 6.00± 0.27 d 1.39 ± 0.01 d 0.20 ± 0.003 a 4.69 ± 0.06 a

YAS 9.25± 0.25 ab 1.99 ± 0.01 a 0.06 ± 0.005 d 4.31 ± 0.06 a

P-VALUE

Medium <0.001 <0.001 <0.001 <0.001

Values in each column represent means ±SE. Different letters within columns indicate

significant differences (p < 0.05).

was found to depend on how the mineral nutrients were
modified in the MS medium. MS, WPM, and QL media were
usually used as the standard growth media for all Prunus
rootstocks and, whenever studied, the formulations of these
media were predicted and optimized with the concentrations
of these mineral ions taken into consideration as factors. An
extremely easy-to-use commercial neural network software,
Matlab R2010a (Matlab, 2010), and the genetic algorithm, ANN-
GA, succeeded in simultaneously modeling and optimizing the
four growth parameters mentioned above that is, the number of
microshoots, length of microshoots, callus weight, and quality
index selected as a function of the concentrations of eight ions
(inputs).

The most important objective of ANN-based modeling
approaches is to develop a model that as precisely as
possible predicts value(s) of the output variable(s). Comparing
the observed and predicted output values may describe the
performance of the ANNmodel based on the investigated inputs.
The predicted ANN model graph vs. observed values for the
number of microshoots, length of microshoots, callus weight
and quality index are shown in Figure 2. The fitted simple
regression lines indicate good agreement between the observed
and predicted values for all four of these growth parameters,
for both the training and testing sets. Using a high squared
correlation coefficient fitting method and based on the ANN
models derived, four graphs were produced to display how each
of the four growth parameters varied as the percentages of NH+

4 ,

NO−
3 , PO

2−
4 , Ca2+, K+, SO2−

4 , Mg2+, and Cl− were varied
(Figure 2).

The graphs may be useful for understanding the complete
relationship between nutrients and responses, and to evaluate
the combined effects of modifying the mineral nutrients in the
MS medium. The goodness-of-fit statistical values derived from
the ANN model to predict the number of microshoots, length
of microshoots, callus weight and quality index are shown in
Table 6. The ANN models were able to accurately (R2 > 87,
91, 87, and 74) predict each of these four growth parameters in
the testing data sets, which were not used during the training
processes (Figure 2). Moreover, the trained ANN models of
these four growth parameters yielded balanced statistics for both
the training and testing subsets (Table 6). Overall, the statistics

(Table 6) revealed that the ANN-based models could efficiently
fit published data on the responses of G × N15 microshoots
during in vitro multiplication to the MS medium with modified
mineral nutrients.

Sensitivity Analysis of the Models
The relative importance of input variables was determined using
the entire 375 lines of data (training and testing) to calculate
the overall VSR. The VSR values obtained for the model output,
i.e., number of microshoots, length of microshoots, callus
weight and quality index, with respect to changes in the mineral
nutrients of the MS medium are shown in Table 4. The number
of microshoots of G × N15 was found to be most sensitive
to the concentration of NH+

4 (VSR = 6.7), followed by NO−
3

(VSR = 6.3), Ca2+ (VSR = 4.2), PO2−
4 (VSR = 4), K+ (VSR =

2.6), Mg2+ (VSR = 2.2), SO2−
4 (VSR = 2.2), and Cl− (VSR =

2.1) (Table 4). For the length of microshoots model, the feed
efficiency of G × N15 also showed the most sensitivity to NH+

4

concentration (VSR= 9.8), followed by PO2−
4 (VSR= 7.7), NO−

3
(VSR = 6.9), Ca2+ (VSR = 6.6), K+ (VSR = 3.4), Mg2+ (VSR
= 2.6), SO2−

4 (VSR = 2.5), and Cl− (VSR = 2.1) (Table 4). In
micropropagation, the aim is to reduce callus since it results in
somaconal variation. The callus weight of G × N15 was also
found to be most sensitive to the concentration of NH+

4 (VSR

= 11.4), followed by NO−
3 (VSR = 10.4), PO2−

4 (VSR = 10.1),

Ca2+ (VSR = 3.7), K+ (VSR = 2.8), SO2−
4 (VSR = 2.3), Cl−

(VSR = 2.2), and Mg2+ (VSR = 1.8) (Table 4). For the quality
index model, the feed efficiency of G × N15 plantlets showed
most sensitivity to the concentration of NO−

3 (VSR = 5.8),

followed by NH+
4 (VSR = 5.5), K+ (VSR = 2.3), PO2−

4 (VSR

= 2.3), Cl− (VSR = 2.2), SO2−
4 (VSR = 1.9), Ca2+ (VSR =

1.8), and Mg2+ (VSR = 1.4) (Table 4). These results suggests
that ion concentrations (inputs) can significantly influence
the performance of G × N15 multiplication; however, the
effects of NH+

4 , NO
−
3 , PO

2−
4 , Ca2+, and K+ levels were more

pronounced than were the effects of SO2−
4 , Mg2+, and Cl−

levels. Several researchers have suggested that the responses of
Prunus rootstock to NH+

4 , NO
−
3 , PO

2−
4 , Ca2+, K+, SO2−

4 , Mg2+,
and Cl− differ from one another. Significant effects of NH+

4 ,

NO−
3 , PO

2−
4 , Ca2+, and K+ on Prunus rootstock multiplication

performance have been reported by previous researchers, but the
effects of the concentrations of these ions on the responses of
plants usually depend on the experimental design and how the
statistical evaluation was applied. On the other hand, appropriate
mathematical or statistical models are necessary to extract
appropriate conclusions regarding the response to ion levels.
Individual experiments may show no significant response to ions
levels. However, when the data from several experiments
are pooled together and analyzed with an appropriate
model, the responses to ion concentration may be highly
significant.

Model Optimization
The final aim of the current study was to analyze the ANN
models to address the question of what levels of NH+

4 , NO
−
3 , K

+,

Ca2+, Mg2+, SO2−
4 , PO2−

4 , and Cl− should be used to achieve
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FIGURE 2 | Scatter plot of observed vs. model-predicted values of (A) Proliferation rate, (B) shoot length, (C) Callus rate, and (D) quality index of G ×

N15 rootstock during in vitro multiplication obtained by artificial neural network model testing set (n = 150). The solid line indicates the fitted simple

regression line on scatter points.

TABLE 4 | Importance of ion concentrations (mM) of the different culture

media used for G × N15 rootstock micropropagation according to the

sensitivity analysis on the developed neural network model to rank the

importance of ion concentrations.

VSR

Element NO−

3
NH+

4
K+ Ca2+ Mg2+ SO2−

4
PO2−

4
Cl−

Proliferation rate 6.3 6.7 2.6 4.2 2.3 2.2 4 2.1

Rank 2 1 5 3 6 7 4 8

Shoot length 6.9 9.8 3.4 6.6 2.6 2.5 7.7 2.1

Rank 3 1 5 4 6 7 2 8

Callus rate 10.4 11.4 2.8 3.7 1.8 2.3 10.1 2.2

Rank 2 1 5 4 8 6 3 7

Quality index 5.8 5.5 2.3 1.8 1.4 1.9 2.3 2.2

Rank 1 2 3 6 7 5 3 4

VSR, relative indication of the ratio between the variable sensitivity error and the error of

the model when all variables are available.

the maximum number and length of microshoots and maximum
quality index, as well as the minimum callus weight of G ×

N15 rootstock. Our aim not only was to predict a new culture
medium but also was to optimize and use this new medium.

The results of our optimization are summarized in Table 5. The
optimization process was conducted in the range of values found
in the data sets (Tables 1, 2). The optimization analysis on the
ANNmodel to maximize the number of microshoots of G×N15
rootstock under the in vitro multiplication condition revealed

that the maximum number of microshoots may be obtained
with a medium containing 27.5mM of NO−

3 , 14mM of NH+
4 ,

25.9mM of K+, 5mM of Ca2+, 0.7mM of Mg2+, 4.7mM of

SO2−
4 , 1.1mM of PO2−

4 , and 0.96mM of Cl− (Table 5). The
number of microshoots at this optimal point was predicted to
be 12. The longest microshoots may be achieved with a medium
supplemented with 48.9mM of NO−

3 , 6.9mM of NH+
4 , 28.8mM

of K+, 4.9mM of Ca2+, 1.5mM of Mg2+, 4.3mM of SO2−
4 ,

1.3mM of PO2−
4 , and 0mM of Cl−, for which the microshoots

length was predicted to be 2.63 cm (Table 5). The optimization
analysis on the ANN model to minimize the callus weight of
G × N15 rootstock under the in vitro multiplication condition
revealed that the minimum callus weight may be obtained with
a medium containing 28.2mM of NO−

3 , 17.6mM of NH+
4 ,

16.3mM of K+, 4.5mM of Ca2+, 1.4mM of Mg2+, 2.6mM of
SO2−

4 , 1.2mM of PO2−
4 , and 0.07mM of Cl− (Table 5). The

callus weight was predicted to be 0.03 (gr) at this optimal
condition. The optimal plantlet quality may be achieved with
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the medium being supplemented with 13.3mM of NO−
3 , 5.8mM

of NH+
4 , 28.2mM of K+, 4.5mM of Ca2+, 0.89mM of Mg2+,

7.6mM of SO2−
4 , 0.9mM of PO2−

4 , and 1mM of Cl− (Table 5),
for which the plantlet quality index was predicted to be 4.95.
The ion concentrations suggested by the ANN model showed
that the required NO−

3 and NH+
4 concentrations for optimal

productivity in in vitro multiplication of G × N15 rootstock
were lower than those concentrations on MS medium. In
conclusion, a platform of ANN-based models with sensitivity
analysis and optimization algorithms was used successfully in this
study to integrate published data on the responses of in vitro
multiplication of G × N15 rootstock to macro element nutrient
concentration. Analyses of the ANN models for the number of
microshoots and the lengths ofmicroshoots from a compiled data
set suggested that the concentrations of NH+

4 , NO
−
3 , PO

2−
4 , Ca2+,

and K+ were more important than the concentrations of SO2−
4 ,

Mg2+, and Cl−. The results revealed that a medium containing
27.5mM of NO−

3 , 14mM of NH+
4 , 25.9mM of K+, 5mM of

Ca2+, 0.7mM of Mg2+, 4.7mM of SO2−
4 , 1.1mM of PO2−

4 ,
and 0.96mM of Cl− (Table 5) may lead to the production of
optimal microshoots, whereas the optimal length of microshoots
may be achieved with a medium containing 48.9mM of NO−

3 ,
6.9mM of NH+

4 , 28.8mM of K+, 4.9mM of Ca2+, 1.5mM of

Mg2+, 4.3mM of SO2−
4 , 1.3mM of PO2−

4 , and 0mM of Cl−

(Table 5). According to the preliminary results obtained by the
ANN-GA, optimal productivity (number of new microshoots
× length of microshoots) may be achieved with a Yadollahi,
Arab and Shojaeyan (YAS)medium containing 38.2mMof NO−

3 ,
10.45mM of NH+

4 , 27.35mM of K+, 4.95mM of Ca2+, 1.1mM

of Mg2+, 4.5mM of SO2−
4 , 1.2mM of PO2−

4 , and 0.48mM of
Cl−. It is noteworthy that the YAS medium consists of the
average of optimal ions concentrations resulting from ANN-
GA for producing optimal microshoots with optimal length.
Finally, the YAS medium was compared with other media, such
as MS, EM, WPM, and QL, that are commonly used for Prunus
micropropagation.

DISCUSSION

One of the major obstacles to the micropropagation of Prunus
rootstocks up to now has been the lack of a suitable tissue
culture medium (Ruzic and Vujovic, 2008). Optimizing the
culture medium is one of the most important ways to effect a
successful in vitro micropropagation. The majority of Prunus
micropropagation studies of Prunus rootstocks have used a
single mineral nutrient formulation to determine the effects of
various PGRs (Andreu and Marín, 2005; Ruzic and Vujovic,
2008). Unfortunately, because of the complexity of interactions
between medium constituents, it is very difficult to determine
the optimum levels of minerals and organic compounds for a
culture medium (Nas et al., 2013). The wide application of MS,
WPM, and QL media as standard growth media for all Prunus
rootstocks, for the purpose of micropropagation and as a source
of leaf explants for transformation and regeneration, has given
the false impression that these rootstocks would be difficult to
culture if they do not grow well on MS, WPM, and QL media.

Previous studies with diverse Prunus genotypes confirmed that
the so-called standardmedia require an optimization of nutrients
for the successful micropropagation of the unique rootstock or
cultivar of Prunus (Nas et al., 2013; Nezami Alanagh et al.,
2014). Our initial studies showed that the NH4NO

−
3 and KNO+

3
components of the MS medium were inadequate for optimal
growth and multiplication of G × N15 rootstock (Arab et al.,
unpublished data). Our earlier studies also showed that replacing
Ca(NO3)2 with CaCl2 can improve in vitromultiplication of G×

N15 (Arab et al., unpublished data). Moreover, Prunus rootstocks
come in a wide variety of genotypes, with varying nutritional
requirements, which makes the medium optimization process
more complex and difficult (Espinosa et al., 2006; Canli and
Tian, 2008; Ruzic and Vujovic, 2008; Nas et al., 2013; Nezami
Alanagh et al., 2014). There are many possible approaches for
optimizing the culture medium for plant tissue culture, but there
is not a universal approach that can be used either to develop
or to modify a micropropagation medium for a large number
of species. As a result, time-consuming and complex factorial
designs have been applied to optimize the culture medium
(Murashige and Skoog, 1962; Niedz and Evens, 2007; Petri and
Scorza, 2010). Due to the difficulties involved in developing
new formulations, medium development has typically involved
comparisons of established media to find one that provides
adequate growth and development (Bell et al., 2002), but some
researchers have suggested that the levels of medium components
can be optimized based on composition of growing whole plants
or developing tissues or raw kernels (Staikidou et al., 2006;
Ashrafi et al., 2010; Nas et al., 2013). It is likely that more than
one medium will be needed for optimum growth of Prunus
species and cultivars because when MS, EM, and QL media were
used for the in vitro culture of G × N15, abnormal growth,
hyperhydricity, necrosis and discoloration were observed at the
multiplication stage, whereas on WPM medium, most shoots
were healthy but grew much more slowly (Arab, unpublished
data). In order to design an optimized culture media, application
a reliable mathematical modeling and optimization method
is necessary to reach optimal growth and efficiency (Nezami
Alanagh et al., 2014; Jamshidi et al., 2016). Previous studies have
used different statistical software to design new and efficient
medium culture on in vitro condition (Gago et al., 2010a,b;
Gallego et al., 2011; Nezami Alanagh et al., 2014; Jamshidi et al.,
2016). Response surface method (RSM) has been repeatedly
used to optimization of new in vitro culture media for pear
genotypes (Wada et al., 2013; Jamshidi et al., 2016). Previous
investigations reported that ANN-GA models had a significantly
higher accuracy of prediction than RSM and stepwise regression
models (Ahmadi and Golian, 2011; Sedghi et al., 2012; Jamshidi
et al., 2016). Moghri et al. (2015) and Jamshidi et al. (2016)
indicated that RSM and regression models alone are not reliable
for approximation of non-polynomial or non-linear variables.
Recently, it has been reported that the ANN strategy can be
an alternative to the traditional statistical methodology, and
reduce this long process. Using this methodology does not
require a highly specialized background in statistics, yet can
optimize a culture process and infer the best conditions (Gago
et al., 2010a,b). In this work, we used ANN-GA technology
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TABLE 5 | Optimization analysis on artificial neural network (ANN) model to reach maximum proliferation rate, shoot length, and quality index and

minimum callus rate G × N15 prunus rootstock.

Item Input variable [Ion concentrations (mM)] Predicted output variable at optimal point

NO−

3 NH+

4 K+ Ca2+ Mg2+ SO2−

4 PO2−

4 Cl−

G × N15

Proliferation rate 27.5 14 25.9 5 0.7 4.7 1.1 0.96 12

Shoot length 48.9 6.9 28.8 4.9 1.5 4.3 1.3 0 2.63

Callus rate 28.2 17.6 16.3 4.5 1.4 2.6 1.2 0.07 0.03

Quality index 13.3 5.8 28.2 4.5 0.89 7.6 0.9 1 4.95

TABLE 6 | Statistics and information on artificial neural network models for number of micro-shoots, height, callus weight, and quality index of G × N15

plantlet during in vitro multiplication (training vs. testing values).

Item Proliferation rate Shoot length Callus rate Quality index

Training Testing Training Testing Training Testing Training Testing

R Square 0.91 0.87 0.95 0.92 0.92 0.87 0.82 0.75

RMSE 0.63 0.77 0.10 0.13 0.013 0.017 0.24 0.30

with high learning potential, as a new approach, in order to
predict and optimize the combination of mineral nutrient factors
(inputs) that influence the growth parameters (outputs) of G
× N15 rootstock in the in vitro proliferation stage, and to
gain new insights into improving the composition of Prunus
rootstock culture media. In order to predict and optimize
the best combination of mineral nutrients, a database of 75
different media was compiled (Tables 1, 2) to model the effect
of the ion concentration on the growth parameters using the
ANN-GA technique according to Ahmadi and Golian (2011).
ANN-GA allows the development of statistical and significant
mathematical models characterized by high squared correlation
coefficients between predicted and experimental values for all
training data (Table 6). There are various methods available for
evaluating model performance, including numerical indicators
(Table 6) and graphical representations (Figure 2; Shao et al.,
2006). As can be seen in Table 6 for each output, the training
set R2 and the test set R2 obtained were far higher than
75.0% and lower than 96%. R2 values within these limits have
been established as being indicative of good performance, and
not overtrained and highly predictable ANN models (Shao
et al., 2006). Furthermore, the trained ANN models of outputs
yielded balanced statistics for both training and testing data sets
(Table 6). This result suggests that overlearning had not occurred
during the training process and that the developed models were
sufficiently generalizable to successfully treat a previously unseen
data set (Lou and Nakai, 2001). Overall, the statistics (Table 6)
revealed that the ANN-GA based models could efficiently fit
data gained from our experiments on the responses of G × N15
microshoots during in vitro multiplication to modified mineral
nutrients MS medium. However, one limitation of the ANN
modeling technique is that it uses a “black box” approach, which
does not allow one to obtain insight into the internal workings
of the model or information for evaluating the interactions of

the inputs (Dayhoff and DeLeo, 2001). The VSR obtained for the
outputs of the models demonstrated that NO−

3 and NH+
4 play

key roles for all of the growth parameters studied (Tables 4, 5),
as they are major sources of nitrogen for G × N15 rootstock
micropropagation. The importance of the concentrations of
NO−

3 and NH+
4 and of the ratio of these concentrations has

been widely described (Nowak et al., 2007; Damiano et al.,
2009; Ivanova and Van Staden, 2009; Shirdel et al., 2011). The
results of this study are in concurrence with those by previous
authors that showed that nitrate and ammonium as mineral
nutrients play an important role in in vitro multiplication of
Prunus rootstock (Ramage andWilliams, 2002; Niedz and Evens,
2007; Nowak et al., 2007; Ivanova and Van Staden, 2009). Many
reports on the macro element requirements of Prunus sp. in
the multiplication stage have predicted total NO−

3 and NH+
4

requirements in the ranges of 9.71mM (Gago et al., 2011) to
12.12mM (Nezami Alanagh et al., 2014) and 5mM (Gago et al.,
2011) to 10.30mM (Nezami Alanagh et al., 2014), respectively,
for live performance, whereas the NO−

3 and NH+
4 contents

of experimental diets have ranged from 0.25mM to 39.41mM
and 0 to 20.61mM, respectively. The different published values
may be due to the different genetics, environmental conditions
and dietary factors involved when conducting the experiments
(Nezami Alanagh et al., 2014). However, the macro element
content of medium is one of the most important determinants of
the responses to in vitro growth and multiplication. The results
obtained from the current study indicated that a proper ratio
of NO−

3 to Ca2+ and K+ is necessary to obtain the best results.
Similarly, Nezami Alanagh et al. (2014) suggested that the GF677
responses to nutrient may vary with the macro level of the
element in the culture medium. Analyses of their ANN models
for total shoots, healthy shoots and number of nodes from a
compiled data set pinpointed the key role of NO−

3 and its ionic
complexes (NO−

3 × Ca2+, NO−
3 × Ca2+ × K+) on all growth
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parameters measured. Ca2+, as an essential plant nutrient, has
many roles in plants such as participating in metabolic processes
involving the uptake of other nutrients, promoting the proper
elongation of plant cells and strengthening the cell wall structure.
Application of this ion at high concentrations in culture media
caused shoot necrosis (Nezami Alanagh et al., 2014). In contrast
to the results of Nezami Alanagh et al. (2014) our use of
the ANN-GA model showed that Ca2+ should be at a mid-
level concentration (higher than the ∼5.0mM value in MS
medium; Table 5) and in a mixture with a high concentration
of NO−

3 (27.5–48.9mM; Table 5) to maximize the number and
lengths of new microshoots (Table 3). Our results showed that
to obtain the optimum productivity, the culture medium must
be supplemented with a higher concentration (i.e., 25mM) of
K+ than the approximate 20mM concentration of K+ that is
found in well-established media such as MS or QL. Our results
are in contrast with those of Nezami Alanagh et al. (2014) on
GF677 that suggested K+ at any concentration promotes healthy
shoots and high bud number. Our results also suggest that
PO2−

4 has a significant effect on shoot length (Table 5). We also
investigated Mg2+, which is an indispensable mineral for plant
growth and plays a part in many physiological processes (Fontes
et al., 1999). The findings of this study showed that relatively low
concentrations of Mg2+ in the medium resulted in maximum
productivity. In contrast, Nezami Alanagh et al. (2014) reported
that, compared to MS medium, using a higher concentration
of Mg2+ (∼2.14mM) in the nutrient medium was required to
achieve maximum production.

Many researchers have reported that NH+
4 plays a key role in

in vitro culture of Prunus rootstock, but at high concentrations,
it resulted in hyperhydricity and abnormal growth (Nowak
et al., 2007; Ivanova and Van Staden, 2009; Shirdel et al., 2011;
Yu et al., 2011; Nezami Alanagh et al., 2014). The results of
previous studies showed that the NH4NO

−
3 component of theMS

medium was inadequate for optimal growth and multiplication
of Prunus sp., leading to hyperhydricity and low quality of
plantlets (Nowak et al., 2007; Yu et al., 2011; Arab et al.
unpublished data). The ANN-GA model predicted the best
results for growth parameters for media including a low amount
of ammonium ion (lower than MS; Table 5). Our observation
is in agreement with previous findings in which applications
of other well-established media, such as WPM and/or QL,
containing a reduced proportion of ammonium appeared to
have effected efficient Prunus micropropagation (Pérez-Tornero
et al., 2000). That the reduced amount of ammonium was
the causative agent of this improved efficiency is supported
by noting that a high dose of ammonium ions (vs. nitrate
ions) has been shown to have a negative impact on some
growth parameters during Prunus rootstock micropropagation
(Ivanova and Van Staden, 2009; Radmann et al., 2009; Yu
et al., 2011). In our study, plantlets growing on medium
containing a high level of ammonium showed hyperhydricity,
suggesting that the impact of this factor on the efficiency of
micropropagation and quality of plantlets can also be related
to additional factors such as the NH+

4 /NO
−
3 ratio and the

presence of cytokinins, which regulate plant growth (Bosela and
Michler, 2008; Shirdel et al., 2011). The ANN-GA model was

able to predict and maximize the quantity and average length
of microshoots by a combination of decreasing NH+

4 from a
high to low concentration and setting the NO−

3 concentration
at a mid-high level (Table 5). Moreover, by increasing the
NH+

4 concentration, the model predicted a large increase
in the number of new microshoots, but also predicted that
non-healthy shoots would be obtained. The ANN-GA model
predicted that reducing the amount of NH+

4 in the medium
from 20.62 to 5.8mM would not change microshoots number
and height, but would, importantly, increase plantlet quality
(Tables 4, 5).

The potential multiplication rates are determined by
productivity (number of new microshoots × length of
microshoots). Therefore, A superior medium culture should
provide a higher mean number of new microshoots per cultured
explant, produce longer shoots and be more productive than
any commonly used “standard” media. Earlier, for GF677, WPM
was found to have a better effect on shoot proliferation rate
than either the MS or QL medium, and an explanation given
for this was the reduced nitrogen content in WPM (Andreu and
Marín, 2005). In addition, other researchers have reported MS,
EM, and QL media to be more efficient than other media for
in vitro proliferation of Prunus rootstock (Andreu and Marín,
2005; Radmann et al., 2009). These findings led us to utilize
YAS (MS-modified) medium in this study and to compare its
effects with those of MS, EM, QL, and WPM media. However,
the optimized culture medium YAS was superior to MS, EM, QL,
and WPM with respect to the three growth parameters: Shoot
length, shoot number per cultured explant and productivity.
Nas et al. (2013) reported that productivity may be a helpful
growth parameter to consider for selecting the best medium.
Higher productivity indicates a high number of long shoots
that contain more axillary buds. As the result of being the
only medium that provided a high number of long shoots for
G × N15, YAS was by far the most productive medium. The
differences between productivities observed on different media
clearly showed that YAS was the most suitable medium for G ×

N15 rootstock multiplication. The findings of the present study
that YAS medium was more effective compared to MS, EM, QL,
and WPM media may be explained by the presence of very high
doses of nitrogen in full-strength MS medium, approximately
two- to four-fold higher than in QL and WPM. Also, there are
differences in the micronutrient compositions of YAS, MS, EM,
QL, and WPM media, which might cause differences in the
shoot proliferation rates of different species (Andreu and Marín,
2005).

Many researchers of in vitro propagation of Prunus rootstock
have used MS or modifications of this medium, but an increasing
number have suggested that concentrations of the inorganic
nutrients in the MS medium are inadequate (Pérez-Tornero
et al., 2000). Our findings are consistent with the results reported
by Nowak et al. (2007), Mansseri-Lamrioui et al. (2009) and
Petri and Scorza (2010), which suggested that other well-
known media such as WPM and/or QL with lower ammonium
concentrations or modifications in mineral composition, mainly
reducing nitrate and/or ammonium concentration, of MS have
been made in an attempt to optimize Prunus micropropagation.
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The aim of our study was to establish a new approach for
prediction-optimization of a new medium formulation as well
as to assess the efficiency of this approach by comparing
the new formulated medium with media commonly used in
in vitro multiplication of Prunus rootstocks. In the present
study, a technique combining artificial neural networks and
genetic algorithms (ANN-GA) was applied to an in vitro
proliferation of the G × N15 rootstock experiment data set.
Compared to statistical analysis, ANN-GA more accurately
identified interaction effects. Moreover, ANN-GA is less time
consuming than statistical analysis, and is particularly helpful
when the number of experiments is large. Finally, ANN-GA
technology allowed us to determine the optimal combination
of factors for achieving the most suitable results for the
parameters studied (Tables 4, 5). In addition, comparing the new
YAS medium formulated by ANN-GA technology (Tables 4, 5)
with standard MS, EM, WPM, and QL growth media for
all Prunus rootstock showed the YAS medium to be superior
(Table 3). ANN-GA should therefore be considered for use
as a powerful tool in determining medium formulations, as

well as for other areas in plant tissue culture, so that the
development of a new nutrient medium can be performed
rapidly and efficiently with an increase of productivity,
consistency, and quality. According to the results of the
current study, application of the ANN-GA technique as
a new approach could be extremely useful for designing
new and effective optimized culture media in plant tissue
culture.
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