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Proactive management of invasive species in urban areas is critical to restricting their
overall distribution. The objective of this work is to determine whether advanced remote
sensing technologies can help to detect invasions effectively and efficiently in complex
urban ecosystems such as parks. In Surrey, BC, Canada, Himalayan blackberry (Rubus
armeniacus) and English ivy (Hedera helix) are two invasive shrub species that can
negatively affect native ecosystems in cities and managed urban parks. Random
forest (RF) models were created to detect these two species using a combination of
hyperspectral imagery, and light detection and ranging (LiDAR) data. LiDAR-derived
predictor variables included irradiance models, canopy structural characteristics, and
orographic variables. RF detection accuracy ranged from 77.8 to 87.8% for Himalayan
blackberry and 81.9 to 82.1% for English ivy, with open areas classified more accurately
than areas under canopy cover. English ivy was predicted to occur across a greater
area than Himalayan blackberry both within parks and across the entire city. Both
Himalayan blackberry and English ivy were mostly located in clusters according to a
Local Moran’s I analysis. The occurrence of both species decreased as the distance from
roads increased. This study shows the feasibility of producing highly accurate detection
maps of plant invasions in urban environments using a fusion of remotely sensed data,
as well as the ability to use these products to guide management decisions.

Keywords: invasive species, hyperspectral imaging, imaging spectroscopy, LiDAR, Rubus armeniacus, Hedera
helix, random forests, urban environments

INTRODUCTION

Many human-dominated landscapes are invaded by non-native species, causing adverse impacts
for native flora and fauna (Wilcove et al., 1998; Ehrenfeld, 2003), public health (Mack et al., 2000;
Laaidi et al., 2003; Jones et al., 2009), and on ecosystem services including agricultural production,
water filtration, recreation and tourism, flood mitigation, and cultural services (Pimentel et al.,
2000). The decreased resilience and compromised integrity of these ecosystem services caused by
invasive plant species costs at least US$34 billion annually in the United States alone (Pimentel
et al., 2005; Pejchar and Mooney, 2009). Reducing the negative effects of plant invasions by
restricting their spread is difficult as invasive plant species can distribute quickly through various
mechanisms such as greater dispersal abilities (Kowarik, 1995; Pysek and Hulme, 2005), heightened
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fitness from hybridization (Ellstrand and Schierenbeck, 2000), or
quicker germination (Gundale et al., 2008) than native species.

Due to the detrimental impacts of invasive plant species,
city authorities are required to initiate programs to control
or eradicate the plants. Notably, managers in urban areas are
particularly interested in controlling invasive plants (Pysek,
1998; Pimentel et al., 2000; Pysek and Hulme, 2005), as novel
habitats and increased habitat disturbance associated with urban
environments provide areas where certain invasive species can
thrive (Gundale et al., 2008; Lampinen et al., 2015; Hawthorne
et al., 2015). In addition to being a hotspot for many plant
invasions, urban ecological areas are often the most affected by
them. As more people migrate to urban areas and existing urban
areas are densified, ecosystem services that urban forests and
other urban natural areas provide, such as increasing recreational
opportunities (Arnberger, 2006), reducing the urban heat island
effect and various types of pollution (Akbari et al., 2001; Escobedo
et al., 2011), improving air quality (Akbari et al., 2001), reducing
storm water runoff (Mcpherson et al., 2005), improving esthetics
(Price, 2003), and increasing opportunities for social interaction
(Kuo, 2003) will become increasingly important (Hough, 2014).
It is therefore critical that the integrity of these urban natural
areas is maintained, partially by controlling the spread of invasive
plant species.

Detecting invasive species is typically undertaken using field
surveys when field crews are available, which may be costly
and have inconsistent methodologies over space and time.
Additionally, field crews cannot survey large areas in sufficient
detail to develop accurate maps of invasion locations. As such,
different approaches are needed to monitor and map the
distributions of invasive species. Remote sensing technology,
specifically, light detection and ranging (LiDAR) data and
hyperspectral imagery, can produce maps of the distribution of
invasive plant species, augmenting previous detection approaches
(Huang and Asner, 2009; He et al., 2011; Rocchini et al., 2015).
LiDAR sensors are active remote sensing systems, meaning
that they require and use their own energy rather than
passively detecting solar energy. These sensors send pulses of
electromagnetic radiation toward objects and record the time it
takes for the pulse to reflect off objects and back to the sensor.
Because the pulse travels at the speed of light, the distance to the
object can be calculated from the return time (Bachman, 1979).
In contrast, hyperspectral imagery is a passive remote sensing
technology that uses the objects’ reflections of solar energy as
its inputs. This type of imagery records reflectance values of
an object over numerous narrow spectral channels, providing
a detailed spectral signature of an object (Shaw and Burke,
2003).

Light detection and ranging data alone has been used for
species habitat modeling and detection. Singh et al. (2015)
mapped the distribution of an understory invasive species in
urban forests using various LiDAR-derived orographic predictors
as well as LiDAR-derived forest structural characteristics, such as
return height variance, standard deviation, and mean to gather
information about the various height strata in a stand. Some of
these vegetation characteristics were found to be predictors of
invasive species presence. In addition to its applications toward

mapping plant distributions, LiDAR data has also been shown
to be able to identify tree species and quantify the density of
shrub cover using the intensity values of the LiDAR returns
(Kim et al., 2009; Ørka et al., 2009; Wing et al., 2012). However,
these analyses require extensive calibration (Kashani et al., 2015)
and have not identified individual shrub species, thus additional
information, such as detailed spectral information, may be
warranted when available and when mapping distributions of
shrub species.

Hyperspectral imagery excels where LiDAR data is often
hindered, by offering a number of spectral channels in the visible
(400–700 nm), near-infrared (700–1350 nm), and shortwave
infrared (1350–2500 nm) wavelength, and narrow spectral
channel widths (Adam et al., 2010). Despite the wealth of
information contained in hyperspectral datasets, the applicability
of using such imagery is highly dependent on the spatial
resolution of the imagery and the target of analysis, as at
coarse resolutions spectral signals mix and may impede fine-
scale species detection (Roth et al., 2015). Peña et al. (2013)
found that increasing the pixel size of hyperspectral imagery
from 1.2 to 2.4 m markedly decreased the spectral separability
between tree species and decreased a species classification’s
accuracy by up to 25%. Early studies investigating hyperspectral
detection of invasive plant species used instruments covering
the visible through shortwave infrared wavelengths, yet were
restricted to mapping with large (up to 20 m2) pixels or to
mapping communities of invasive shrubs rather than specific
plants (Parker Williams and Hunt, 2002; Underwood et al.,
2003). More recently Underwood et al. (2006) built upon
this previous research and used hyperspectral imagery with
an increased spatial resolution to detect individual plants in
a scrubland delta in California, USA. Hyperspectral imagery
has also been applied for invasive species detection in forested
areas. Asner and Vitousek (2005) mapped tree invasions by
analyzing hyperspectral imagery for nitrogen concentration and
relating this concentration to invasive species presence across
their study area in tropical forests of Hawaii. Recent studies
mapping invasive plants with hyperspectral imagery include
Narumalani et al. (2009) which used airborne hyperspectral
imagery focused on the visible and near-infrared wavelengths to
map various species along riparian areas, Bentivegna et al. (2012)
which also used airborne hyperspectral imagery, but to map
an invasive shrub along highways, Ishii and Washitani (2013)
and Mirik et al. (2013) which both used airborne hyperspectral
imagery to map invasive herbs in grasslands, Calviño-Cancela
et al. (2014) which mapped invasive plants of various lifeforms
in a coastal park, and Große-Stoltenberg et al. (2016) used
imagery in the visible infrared to shortwave infrared wavelengths
to map an invasive tree species in dune ecosystems. While
hyperspectral imagery alone has shown success detecting invasive
plants, knowledge of habitat characteristics may be important
in some cases for adequate mapping (Andrew and Ustin,
2008).

Fusion of LiDAR and hyperspectral technologies has also
been successful in mapping invasive species, as when combined
they can be used to mask certain areas or provide additional
contextual environmental information. Asner et al. (2008) used
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hyperspectral imagery to identify and map tree species in species-
rich Hawaiian rainforests and masked shaded pixels using LiDAR
data. Chance et al. (2016) undertook a similar approach by
masking densely forested and shaded areas using LiDAR data,
to then map the distributions of two understory invasive shrub
species on high spatial resolution hyperspectral images. Andrew
and Ustin (2009) used hyperspectral imagery to detect an invasive
plant and LiDAR data to create spatially contiguous potential
habitat models from the sources of invasions, as detected by
the hyperspectral imagery. This study combined LiDAR-derived
metrics such as surface elevation, slope, aspect, and curvature
with training field plots to produce the models. Gu et al. (2015)
incorporated environmental information, and mapped gradients
of species composition, including invasive species, in urban-
rural gradients using hyperspectral imagery and LiDAR-derived
structural variables, however, locations of individual species were
not mapped.

Despite these advances in modeling and mapping invasive
plant species distributions, the use of LiDAR data has been
restricted to masks or structural and orographic variables when
combined with hyperspectral imagery. Techniques developed
for modeling direct and diffuse light regimes from LiDAR data
in urban areas (see Tooke et al., 2012) may increase model
accuracy by providing high resolution, relevant environmental
context, in particular for plants that are sensitive to irradiance
conditions (Metcalfe, 2005). Specifically, as light is a highly
heterogeneous environmental condition that effects plant growth
and interactions (Valladares, 2003), and as many invasive plants
show preferences for certain light conditions (e.g., Metcalfe,
2005; Jansen et al., 2011), it may hold high predictive power in
modeling invasive species distributions.

Another consideration when developing models with
remotely sensed to detect plant distributions is deciding which
type of model to utilize. While many ecological models can
be developed using parametric or non-parametric regressions,
they may not perform well when there are many relatively weak
explanatory variables with complex interactions, as is often the
case with remotely sensed data (Cutler et al., 2007). Random
forests (RF) models, which are a collection of classification trees
developed by selecting random subsets of the data in each, may
solve this issue, as they are asserted to still be powerful when
using many variables of various types (Breiman, 2001) and have
been shown to outperform the majority of other classifiers in
many modeling operations (Fernández-Delgado et al., 2014).
Additionally, they have been used to map various invasive species
with higher classification accuracies achieved compared to other
models (e.g., Lawrence et al., 2006; Singh et al., 2015).

The aim of this study is to analyze the use of a combination of
LiDAR data and hyperspectral imagery to map the distributions
of two invasive plant species, Himalayan blackberry (Rubus
armeniacus) and English ivy (Hedera helix), in the urban area
of Surrey, British Columbia, Canada. First, a spectral detection
algorithm using hyperspectral imagery was performed across
open areas of the city to map the spectral closeness of each pixel
compared to the two species (Figure 1). Second, LiDAR data
was utilized to create a map of local solar irradiance conditions
during the growing season in vegetated areas across the city.

Lastly, a map from a RF model was produced with LiDAR-derived
environmental variables, the results of the spectral classification,
and the irradiance models as inputs to map Himalayan blackberry
and English ivy across the entire city at a 1.0 m pixel resolution.
The accuracies of the maps were assessed, the importance of
model variables and spatial information were analyzed, and
implications were discussed.

STUDY AREA AND SPECIES

Surrey (49◦11′N, 122◦51′W) is located in the greater Vancouver
area of British Columbia, Canada (Figure 2), covers 316 km2,
and contains a mosaic of land cover patches including urban,
agricultural, forested, wetland, and grassland area. Vegetated
areas often contain dense, shrubby and herbaceous understories,
as is commonly found in the temperate coastal climate of the area.
Additionally, the city contains a mixture of public and private
lands. On public lands, city management maintains an active
parks and natural areas (Figure 2) system that contains many of
the aforementioned land cover types. These land cover types are
also present on private lands.

Himalayan blackberry (Rubus armeniacus) and English ivy
(Hedera helix) are two invasive shrub species that land managers
aim to control, due to their harmful effects on biodiversity,
city residents, and users of natural areas. Himalayan blackberry
displaces native vegetation and birds in both disturbed and
undisturbed areas (Amor, 1973; Caplan and Yeakley, 2006;
Astley, 2010), and alters successional patterns along streams
(Fierke and Kauffman, 2006). Individual Himalayan blackberry
plants grow and reproduce quickly, producing large amounts
of seeds, and outcompete native plants (Schwartz et al., 1996;
Caplan and Yeakley, 2006). Plants overgrow walking paths and
roadways, creating a nuisance for city residents and managers.
Himalayan blackberry generally grows near sea level in moist
sites, in a variety of conditions from pastures to riparian areas
and forest edges (Gaire et al., 2015). English ivy may produce
allergens (Jones et al., 2009; Paulsen et al., 2010), has competitive
advantages over native plants (Thomas, 1980; Dlugosch, 2005),
and endangers users of natural areas by weakening trees
(Thomas, 1980). English ivy also decreases light levels in the
understory, resulting in reduced cover of native herbs and shrubs
in the understory (Thomas, 1980; Harmer et al., 2001; Dlugosch,
2005), and may be a deterrent to wildlife (Barnea et al., 1993).
It is challenging to control due to the many various life forms
it can assume: herbaceous vines, climbers, herbs, woody shrubs,
and sometimes small trees (Metcalfe, 2005). It is mostly a forest-
dwelling species, but is common in open areas as well (Clergeau,
1992).

MATERIALS AND METHODS

Field Measurements
The presence and absence of Himalayan blackberry, English
ivy, and other common plant species were recorded by City of
Surrey field crews throughout 2012 and 2013 in park natural
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FIGURE 1 | Flow diagram showing the use of the LiDAR data, hyperspectral imagery, and field data to detect Himalayan blackberry (Rubus
armeniacus) and English ivy (Hedera helix). SAM, spectral angle mapper.

areas. The municipal government sent experts to locate invasive
species across the city according to a stratified design that targeted
areas known to be susceptible to invasions first. These initial
surveyed areas included forest edges, riparian areas, fields, edges
to developed properties, and trails. Following the survey of these
selected sites, other locations in parks and natural areas across
the city were surveyed for invasions. Single points in large,
discrete, established patches dominated by the invasive species
with an area of greater than 40 m2 separated by least 10 m
from another plot were recorded as having either a presence or
absence of the two species. These plots also contained a clear
dominance of the invasive species over all species. An eTrex 10
GPS device (Garmin, Olathe, KS, USA) with a dGPS positional
accuracy within 3 m was utilized. After the field survey, plots were
randomly categorized as either training or validation, creating
646 training plots (108 Himalayan blackberry, 123 English ivy,
and 415 of other species), and 496 validation (160 Himalayan
blackberry, 114 English ivy, and 222 of other species) which were
used for detection models.

Remotely Sensed Data
Between April 3 and April 11, 2013, airborne LiDAR data were
collected for the entire City of Surrey (Figure 2) by Airborne
Imaging (Calgary, AB, Canada). The Leica ALS70-HP (Leica
Geosystems, Heerbrugg, Switzerland) system sent pulses with
a wavelength of 1064 nm from an altitude of 1000 m with a
view angle of 20◦ and a scan frequency of 53 kHz resulting in a
point density of 25 points/m2. TerraScan software (Terrasolid,
Helsinki, Finland) classified points as ground or non-ground.
TerraScan processing was completed using standard default
parameters (Kraus and Pfeifer, 1998; Axelsson, 1999).

The Compact Airborne Spectrographic Imagery (CASI) 1500
acquired hyperspectral imagery over Surrey on May 4, 2013

at a 1.0 m pixel resolution. The imagery consisted of 72
spectral channels from 363 to 1051 nm with a constant channel
width of 9.6 nm. Following the acquisition of the images, they
were radiometrically corrected, georeferenced, and converted
to reflectance imagery. To radiometrically correct the imagery,
raw digital numbers, value representations of the contents
of a pixel, were converted into spectral radiances for each
spectral channel based on calibrations from ITRES Research
(Calgary, AB, Canada), who calibrated the radiance imagery
to known lab calibration files and corrected for dark and
electronic offsets. These corrected images were georeferenced
to a 1.0 m digital elevation model (DEM) produced from the
LiDAR data and ground-based global positioning data (GPS)
data. Lastly, atmospheric conditions and topographic and bi-
directional effects were corrected to produce reflectance imagery
that ranges from 0 to 100% using the ATCOR-4 procedure
(Richter and Schlapfer, 2016).

Spectra of the two species of interest, Himalayan blackberry
and English ivy, and other common shrub or herbaceous species
in open areas in Surrey, lamium (Lamium galeobdolon) and
grasses (lawn and European beachgrass [Ammophila arenaria]),
were collected in April 2015 using a portable Analytical
Spectral Devices (ASD) full range (FR) spectrometer (Analytical
Spectral Devices, Boulder, CO, USA) within ±2 h from solar
noon while the leaves were still attached. This spectrometer
recorded spectra from 350 nm to 2500 nm at a 3 nm channel
resolution up to 1000 nm and a 10 nm channel resolution
at wavelengths between 1000 and 2500 nm. To account for
differing light conditions between samples, the spectrometer was
calibrated before each measurement with a Spectralon panel
(Labsphere, North Sutton, NH, USA). At each measurement,
the sensor was held approximately 10 cm from the surface
of the plant, and leaves were manipulated to be stacked at
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FIGURE 2 | Entirety and location of the Surrey, BC, Canada, the land cover classification from Plowright et al. (in review) and the municipal parks
system across the city.

least six deep, to achieve a standard optical depth (Datt, 1998;
Jones et al., 2010). While 10 cm away from the plant, the
sensor was moved around in circles to acquire spectra from
various parts of the plant simultaneously, providing spectra
that were representative of the entire plant from the view on
the imagery. This sampling protocol controlled for variable
irradiance conditions between samples by calibrating for the
irradiance at each sample with the Spectralon panel and by
limiting our sample area to the small area covered by the
10 cm circles. Between 10 and 15 samples were collected
for each species. After measuring spectra, ASD channels were
converted to the 72 CASI channels via averaging (Chance et al.,
2016). Figure 3 shows the spectra of these species prior to
resampling.

Creation of Model Variables
LiDAR-Derived Variables
As orography and forest structural characteristics may partially
drive understory plant invasions (Royo and Carson, 2006),

and as some invasive plant species, particularly shrub species,
can alter forest structural characteristics (e.g., Hartman and
McCarthy, 2008; Kuebbing et al., 2014), numerous orographic
and forest attribute layers were created. Summaries of the
vertical LiDAR data distribution were produced across the
entire extent of the city, at a 1.0 m pixel resolution. The
following layers were created using FUSION software (version
3.42, United States Forest Service, Seattle, WA, USA): a digital
elevation model (DEM) of the elevation of the ground, a
digital surface model (DSM) of the elevation of the first returns
including trees and buildings, 75th (P75), 90th (P90), and
95th (P95) height percentiles, kurtosis of height, skewness of
height, coefficient of variation of height, canopy cover and
penetration above a height of 2.5 m, and cover below a height
of 2.5 m (Table 1). As height percentiles are a function of
the locations of points vertical profiles, increased understory
cover due to plant invasions may decrease the height percentile
values when comparing forests with similar structure and height
otherwise. Metrics that describe vertical point distributions were
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FIGURE 3 | Reflectance of Himalayan blackberry (Rubus armeniacus), English ivy (Hedera helix), grasses, and lamium (Lamium galedo. . .) in Surrey,
BC, Canada as obtained from an Analytical Spectral Devices spectrometer in the spectral range of the hyperspectral imagery. Mean reflectance is
indicated by dark lines, and ±1 standard deviation is indicated by the lighter lines.

included, as kurtosis of height was found to be negatively
related to an invasive understory plant in Singh et al. (2015).
For cover and penetration, a height of 2.5 m was chosen as
a threshold as Himalayan blackberry and English ivy plants
that are not vines on trees mostly occur below this height in
Surrey.

Orographic variable layers were created in ArcMap (version
10.3, Esri, Redlands, CA, USA). Slope and aspect were calculated
from the DEM. A cosine transformation was applied to aspect
to convert the value range from −1 to 1, 1 being north (360◦),
and−1 being south (180◦). Curvature rasters, which describe the
concaveness of a surface, were created from the DEM. From the
penetration layer, a measure of distance to open areas was created
for each pixel. Pixels with penetration values above 90% were
classified as open areas. Distances to these areas were calculated
using Euclidean Distance. Lastly, a topographic wetness index,
which is a unitless index quantifying hydrological accumulation
based on slope and contributing area (Sørensen et al., 2006), was
produced (Beven and Kirkby, 1979; Table 1).

Invasive Species and Land Cover Classifications
Rule images from a spectral angle mapper algorithm (SAM;
Kruse et al., 1993) for Himalayan blackberry and English
ivy were produced using the hyperspectral imagery in open
areas (all areas with less than 20% canopy cover above a
height of 2.5 m). SAM algorithms are well-established spectral
matching algorithms that classify pixels based on the angle
between spectral vectors. Rule images indicate the degree to
which the spectral signature of a pixel matches the spectral
signature of the target object. Smaller differences between angles
represent more closely aligned spectra. Spectra from 73 of

the field plots in open areas (38 of Himalayan blackberry
and 35 of English ivy) were extracted from the hyperspectral
imagery. As hyperspectral imagery can be processing intensive
and contain redundancy in the spectral signals across channels
(Clark et al., 2005), a spectral channel selection was applied
to test whether or not all channels were needed for accurate
classification. Chance et al. (2016) identified key spectral channels
for differentiating Himalayan blackberry and English ivy from
lamium and grasses, other common species in Surrey, and
each other, using the instability index (ISI; Somers et al., 2010)
channel selection and spectra from the ground-based acquisition.
Table 2 describes these spectral channels. Prior to producing
SAM rule images, forested areas were omitted by eliminating
pixels with more than 20% cover above a height of 2.5 m
according to the LiDAR-derived canopy cover layer. SAM rule
images were produced by classifying the hyperspectral imagery
using both the channel subsets and all channels of the spectra
for Himalayan blackberry and English ivy across the open areas
of the city in ENVI software (version 5.1, Exelis, McLean, VA,
USA).

As land cover type may be an indicator for plant invasions
(see Roy et al., 1999; Pearson et al., 2004), a land cover map
of Surrey established by Plowright et al. (in review) was used
as a categorical input in the detection models (Figure 1). Seven
classes, coniferous forest, deciduous forest, grass, bare earth,
paved areas, buildings, and water were classified at a 1.0 m
pixel resolution using LiDAR data and hyperspectral imagery.
The overall accuracy of this land cover classification was 88.6%
(Plowright et al., in review). The resulting total surface area of
pervious surfaces (coniferous forest, deciduous forest, grass, and
bare earth) was 215 km2, 68% of the total area of Surrey.
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TABLE 1 | Variables used as inputs to the random forest models to detect Himalayan blackberry (Rubus armeniacus) and English ivy (Hedera helix) in
Surrey, BC, Canada.

Variable type Variable name Description

Orographic Digital elevation model (DEM) Ground height from LiDAR returns

Digital surface model (DEM) Surface heights from LiDAR returns

Aspect “Northness,” 1 being north and −1 being south of a pixel on the DEM

Slope Slope of a pixel on the DEM

Curvature Degree of concavity of a pixel on the DEM

Plan curvature Degree of concavity perpendicular to the maximum slope

Profile curvature Degree of concavity parallel to the maximum slope

Topographic wetness index Wetness based on hydrological accumulation as modeled by the slope and
contributing area, and as described by Beven and Kirkby (1979).

Vegetation attributes 95th percentile height (P95) Height of the 95th percentile of LiDAR returns

90th percentile height (P90) Height of the 90th percentile of LiDAR returns

75th percentile height (P75) Height of the 75th percentile of LiDAR returns

Kurtosis Kurtosis of the height of LiDAR returns

Skewness Skewness of the height of LiDAR returns

Coefficient of variation Coefficient of variation of height of LiDAR returns

Penetration above a height of 2.5 m Proportion of total LiDAR returns in a pixel above a height of 2.5 m

Cover below a height of 2.5 m Proportion of total LiDAR returns in a pixel below a height of 2.5 m that are also
above ground

Distance to open area Distance to area with less than 10% canopy cover

Spectral (only applies to open
areas)

Himalayan blackberry rule image (all
channels)

SAM rule image of Himalayan blackberry using all spectral channels

Himalayan blackberry rule image (channel
subset)

SAM rule image of Himalayan blackberry using a subset of spectral channels

English ivy rule image (all channels) SAM rule image of English ivy using all spectral channels

English ivy rule image (channel subset) SAM rule image of English ivy using a subset of spectral channels

Land cover classification and
products

Land cover classification (from Plowright
et al. (in review))

Seven class land cover classification from the LiDAR data and hyperspectral
imagery

Distance to grass Distance to grass as determined by the land cover classification

Distance to impervious Distance to impervious surfaces as determined by the land cover classification

Irradiance layers Direct irradiance Average daily direct irradiance from the 15th day of each month of the growing
season at 3 m by 3 m resolution across Surrey

Diffuse irradiance Average daily diffuse irradiance from the 15th day of each month of the growing
season at 3 m by 3 m resolution across Surrey

All variables are rasters with a pixel size of 1.0 m except for the irradiance layers, which have pixel sizes of 3.0 m.

Irradiance Model
Because invasive plant distributions may be related to light
levels, especially in forests in western North America (Parendes
and Jones, 2000), an irradiance model indicating the light
regime across the city was developed. Methods established by
Tooke et al. (2012) were used to map irradiance at 3 m by
3 m pixel resolution. In this procedure, the LiDAR returns,
the DSM, and the DEM were used in conjunction with solar
angles and typical atmospheric conditions to calculate direct
and diffuse irradiance on the 15th day of each month between
March and October in 2013. Direct irradiance at each hour
from 5 am to 10 pm local time was calculated according to
the following three steps: atmospheric transmission, viewshed
calculation, and vegetation transmission. Prior to taking these
steps, the solar position was calculated according to the
ENEA solar position algorithm (Grena, 2008) for each time
interval.

The atmospheric transmission step calculates the irradiance
that penetrates the atmosphere, a function of turbidity and

cloud cover. Monthly broad scale (50 km) global turbidity maps
were obtained from the National Oceanic and Atmospheric
Administration website and the values over Surrey were used as
inputs into the model. A clearness index Hammer et al. (2003),
describing light transmission through clouds of 0.5, was applied
to the model based on values obtained in Tooke et al. (2012) from
a nearby weather station.

Second, a viewshed of the effective horizon from the point
2.5 m above the DEM was produced for 36 viewing azimuths. At
each pixel and azimuth, the angle of the tallest obstruction within
100 m, whether tree, building, or otherwise, was obtained from
the DSM, relative to the orientation and slope of the pixel. This
information was used to calculate the sky view factor (SVF), a
measure of the directly visible proportion of the sky.

Within vegetated pixels, an extinction coefficient, calculated
from the proportion of LiDAR returns at regular height
intervals, was determined. A two-parameter Weibull distribution
function, previously shown to be capable of characterizing
vegetation structure from LiDAR returns (Coops et al., 2007;
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TABLE 2 | Key CASI (Compact Airborne Spectrographic Imagery) spectral channels and their corresponding wavelengths for differentiating Himalayan
blackberry (Rubus armeniacus) and English ivy (Hedera helix) from each other and other common species in Surrey, BC, Canada, and the possible
causes of the responses shown at these wavelengths and discussed in Chance et al. (2016).

Species Wavelength at
channel center (nm)

Corresponding CASI
channel number

Possible reason for response as discussed in Chance et al. (2016)

Himalayan blackberry 512 16 Nitrogen, phosphorus, potassium or a combination of these (Mutanga et al., 2004)

559 21 Lack of nitrogen or potassium (Mutanga et al., 2004)

655 31 Electron transition response to Chlorophyll a (Curran, 1989) and/or red edge beginning

712 37

750 41 End of red edge

922 59

960 63

979 65

1008 68

1027 70 Water, cellulose, starch or lignin (Curran, 1989)

English ivy 569 22 Lack of nitrogen or potassium (Mutanga et al., 2004)

588 24

607 26

693 35 Beginning of red edge

741 40 End of red edge

855 52

912 58

970 64

Tooke et al., 2012), was produced at each using a vertical
scaling parameter, a shape parameter, and the extinction
coefficient as inputs. The vertical scaling parameter and shape
parameter were estimated using a Levenberg-Marquardt least-
squares analysis for LiDAR returns in each pixel (Tooke
et al., 2012). The extinction coefficient was the proportion of
LiDAR returns above a certain height (Tooke et al., 2012).
These parameters varied across the study area as they were
determined by the vertical distribution of LiDAR returns at each
pixel.

The diffuse irradiance component was calculated using the
diffuse transmissivity function and solar altitude function from
Hofierka et al. (2002), which depends on atmospheric turbidity
and solar elevation, in conjunction with the SVF (see Tooke et al.,
2012, Eq. 9). The two output layers were the average daily diffuse
and direct irradiance during the growing season from March to
October with units of MJ m−2 day−1.

Detection Model
Development
Four binary RF detection models were developed for each species
in R programming environment (version 3.1.2, R Core Team)
using the randomForest package (Liaw and Wiener, 2002) with
2000 trees and default values for the number of variables selected
at each node and all other input parameters. Two models
detected Himalayan blackberry and English ivy respectively in
open areas using SAM rule images and LiDAR-derived variables
relevant to open areas, and the other models detected the
species in areas of canopy cover using only LiDAR-derived
variables. In this present study, the model development processes
were iterative, as initially all relevant remote sensing predictor
variables (Table 1) were considered. Using the training data,

correlated and unimportant variables were iteratively removed
until only uncorrelated variables with high predictive power
remained, using mean decrease accuracy provided by the RF
models as the measure of predictive power. Of variables that
were correlated, the variable with higher predictive power was
included in the model. Variables with negative mean decrease
accuracies were excluded. Prior to fitting the model, two masks
were created. Pixels with less than 10% cover below a height of
2.5 m were omitted and dirt, paved areas/rock, buildings, and
water were masked using the land cover classification. The RF
models were applied to the unmasked areas only, and produced
maps of presence and absence of Himalayan blackberry and
English ivy across the study area. For both species, the resulting
maps of open areas and areas of closed canopy were combined
to produce one map for each species or its distribution across the
entire city.

According to Breiman (2001), RF classifications do not
require independent accuracy assessments as some training
data is inherently used as validation data to produce unbiased
error. However, using this implicit error estimate may inflate
the accuracy of the classification in some cases (Millard and
Richardson, 2015). For detecting Himalayan blackberry and
English ivy, the validation data from field plots were used
to conduct an independent accuracy assessment. A minimum
mapping unit (MMU) of 3 m radius circles around the validation
plots was established since the two irradiance layers had pixels
of 3 m resolution. Detection of the species of interest, either
Himalayan blackberry or English ivy, within one of these plots
counted as a presence in the accuracy assessment, indicating a
true positive. Detection in an absence plot was recorded as a
presence, and thus a false positive. The same logic applied for true
and false negatives. Accuracies, kappa coefficients, and true skill
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statistics (Allouche et al., 2006) were assessed accordingly from
the output map.

The uncertainty associated with accuracy was assessed as
well at each validation point. RF models can provide spatial
information about the probability of a pixel being classified as
a certain class (either presence or absence in this present study;
Cutler et al., 2007). This RF probability metric can be utilized to
derive information about the classification uncertainty (Loosvelt
et al., 2012). In this present study, U = 1 – pmax was calculated
for each pixel, where pmax was the probability that a pixel was
most likely to occur in its class based on the RF model. A higher
value indicated class confusion and a lower value indicated
greater certainty about the result (Loosvelt et al., 2012). In this
present study, the maximum probability within the MMU that
corresponded to the same class as the validation plot was used to
assess the uncertainty.

Analysis
Variable importance was provided by the RF algorithm. The map
was used to quantify the distributions of Himalayan blackberry
and English ivy across the extent of the city and within parks.
The total areas of Himalayan blackberry and English ivy were
determined across the entire city and in parks according to
the number of 1 m by 1 m pixels classified as the respective
species. For analyzing the distribution of the species across the
parks system, the number of parks containing the species was
tabulated. Additionally, ecological relationships were analyzed
by extracting information from the LiDAR-derived layers at all
the field plots, training and validation. For this analysis, field
plots were one of six categories: Himalayan blackberry open,
Himalayan blackberry closed, English ivy open, English ivy
closed, absence open, or absence closed. Values of the variables
were compared between open and closed areas, as well as species
presence and absence.

As the distribution of invasions across the city has
management implications, clusters and outliers of Himalayan
blackberry and English ivy were identified using Anselin Local
Moran’s I. Moran’s I is an indicator used to quantify spatial
autocorrelation (Moran, 1950; Anselin, 1995). Anselin Local
Moran’s I, which measures local autocorrelation, has proven to
be an effective indicator of spatial clustering in ecological studies
(see Fu et al., 2014; Swetnam et al., 2015). This metric ranks
the abundance of species in each cell of a grid and determines
which areas are significantly clustered or separated. A grid of
cells 100 m by 100 m was applied across the entire study. At each
cell in this grid, the number of pixels with Himalayan blackberry
or English ivy invasion was tabulated, creating a measure of
abundance. Anselin Local Moran’s I was calculated across the city
with α= 0.05 for both Himalayan blackberry and English ivy.

RESULTS

Models
The overall accuracies of the invasive species detection models
ranged from 77.8 to 87.8% (Table 3). Himalayan blackberry
in open areas was detected best, followed by English ivy in

open areas (areas with canopy cover less than 20% above a
height of 2.5 m), English ivy in areas with closed canopies
(areas with greater than 20% canopy cover above a height of
2.5 m), and Himalayan blackberry in areas with closed canopies
(Table 3). Detection of Himalayan blackberry in open areas
had the highest kappa coefficient (0.75) followed by English
ivy in open areas (0.56), Himalayan blackberry in areas with
closed canopy (0.55), and English ivy in areas with closed
canopy (0.53; Table 3). True skill statistics took a different order,
with Himalayan blackberry in open areas receiving the highest
(0.78), followed by Himalayan blackberry in areas with closed
canopy (0.55), the English ivy in open areas (0.52) and areas
with closed canopy (0.48; Table 3). Himalayan blackberry was
detected with higher true positive rates (sometimes referred to
as sensitivity) than English ivy in both open areas and areas
with closed canopies (Table 3). English ivy was detected with
higher true negative rates (sometimes referred to as specificity)
than Himalayan blackberry in both open areas and areas with
closed canopies (Table 3). False negative rates (miss rates) were
higher for English ivy than for Himalayan blackberry and false
positive rates (fall-out) were higher for Himalayan blackberry
than English ivy (Table 3). All classifications had low uncertainty,
as the majority of validation points showed uncertainty values
below 0.25 (Figure 4). Himalayan blackberry in areas with closed
canopies had the highest uncertainty (Figure 4).

In open areas, the SAM rule images were ranked as highly
important for both Himalayan blackberry and English ivy
(Figure 5). For both species, the SAM rule image produced
using the subset of spectral channels was chosen over the
SAM rule image from all spectral channels (Figure 5). Direct
irradiance was more important to English ivy detection than
to Himalayan blackberry detection in open areas (Figure 5).
In areas with closed canopies, the most important predictor
variables – 75th and 95th percentile height, skewness, and
the coefficient of variation of height – were related to forest
structural characteristics (Figure 5). Aspect was an important
variable in both open areas and areas with closed canopies for
both species (Figure 5). Land cover classification was ranked
as the least important variable in all classifications, however, its
product, distance to impervious surface, and was ranked highly
for detecting Himalayan blackberry in open areas (Figure 5).
Figure 6 shows examples of the final classification results.

Distribution of Invasive Species
Across the city, Himalayan blackberry covered 1.18 km2 and
English ivy covered 1.51 km2, corresponding to 0.5 and 0.7% of
the pervious areas respectively (Table 4). Anselin Local Moran’s
I results showed that Himalayan blackberry and English ivy were
similarly clustered, with 98.5 and 99.3% of 100 m by 100 m grid
cells containing either of the species located in clusters (Table 5).
1.5% of grid cells with Himalayan blackberry and 0.7% of grid
cells with English ivy were spatial outliers (Table 5). Within parks,
Himalayan blackberry covered 0.16 km2 and English ivy covered
0.35 km2, corresponding to 0.8 and 1.8% of the pervious surface
respectively (Table 4). Although the area covered by English
ivy was greater than Himalayan blackberry in parks, Himalayan
blackberry was present in more parks (Table 4).
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TABLE 3 | Accuracy of the random forest models for detecting Himalayan blackberry (Rubus armeniacus) and English ivy (Hedera helix) in open areas
and areas with closed canopies in Surrey, BC, Canada.

Open Closed

Himalayan blackberry English ivy Himalayan blackberry English ivy

Observed Observed

Presence Absence Presence Absence Presence Absence Presence Absence

Predicted Presence 42 12 23 6 81 21 41 11

Absence 3 66 16 78 34 112 34 162

Overall accuracy (%) 87.8 82.1 77.8 81.9

True positive rate (sensitivity; %) 93.3 59.0 70.4 54.7

True negative rate (specificity; %) 84.6 92.9 84.2 93.6

False negative rate (miss rate; %) 6.7 41.0 29.6 45.3

False positive rate (fall-out; %) 15.4 7.1 15.8 6.4

Kappa 0.75 0.56 0.55 0.53

True skill statistic 0.78 0.52 0.55 0.48

Presence and absence data are in number of points collected.

FIGURE 4 | Cumulative sum of uncertainty, calculated by subtracting
the random forests probability from 1, for each classification at all of
the validation points. Lower values are more certain.

In addition to differing in their spread across the city and
parks systems, Himalayan blackberry and English ivy invasions
differed in their relationships to forest types, irradiance, and
roads. Himalayan blackberry was found more often in deciduous
areas with closed canopies than in coniferous areas with closed
canopies (Figure 7). The opposite was true of English ivy. In
both open areas and areas with closed canopies, Himalayan
blackberry did not have a strong relationship to direct irradiance
compared to absence plots, whereas English ivy occurred at
areas with less direct irradiance (Figure 8). Himalayan blackberry
and English ivy in areas with closed canopies followed similar
trends in regards to the cosine of the aspect (Figure 8). Both
species had higher relative frequencies at most south facing

aspects than absence plots, and vice versa for north facing aspects
(Figure 8). For both species in open areas, there were relatively
fewer occurrences at extreme north and south aspects compared
to absence plots, yet there were relatively more occurrences at east
or west aspects when compared to absence plots (Figure 8). For
both species in both areas, the majority of profile curvature values
occurred between 0 and 20, which corresponds to slightly concave
surfaces (Figure 8). Topographic wetness for both species in both
areas were skewed toward drier values (Figure 8). Slope was
skewed toward lower values; however, English ivy in open areas
and areas with closed canopies occurred most frequently at slopes
between 5 and 10 degrees, whereas Himalayan blackberry and
absences occurred mostly at slopes between 0 and 5◦ (Figure 8).
Himalayan blackberry had a peak coefficient of variation of
height at 0.8, whereas English ivy had a peak at 0.7 (Figure 8).
English ivy had a coefficient of variation of height more skewed
toward smaller values than Himalayan blackberry (Figure 8).
Both presences and absences for both species in open areas were
closer to impervious surfaces than in areas with closed canopies
(Figure 8).

The absolute amount of Himalayan blackberry and English
ivy decreased as the distance from roads increased, yet when
this area was considered proportionally to the land area at
various distances from roads, there were no relationships between
invasive species occurrence and the distance to a road at areas
less than 500 m from a road (Figure 9). Areas further than 500 m
away from road had proportionally higher rates of invasion than
areas within 500 m of a road (Figure 9).

DISCUSSION

Few studies have mapped the distribution of invasive shrub
species in complex urban areas using remotely sensed products.
In one of these studies, Singh et al. (2015) mapped an invasive
shrub, Chinese privet (Ligustrum sinense), in Charlotte, North
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FIGURE 5 | Variable importance as expressed by mean decrease accuracy (% decrease in overall accuracy) determined by random forest
classifications in open areas (A,B) and areas with closed canopies (C,D) for Himalayan blackberry (Rubus armeniacus) and English ivy (Hedera helix)
distributions across Surrey, BC, Canada.

Carolina at a 5 m by 5 m resolution using LiDAR data and
a RF classifier and achieved overall accuracies between 81
and 89%. The results of this present study were similar to
those found in Singh et al. (2015) with overall classification
accuracies of 77.8 and 87.8% (Table 3). The true skill statistic,
a metric of classification performance that is independent of
prevalence, which the kappa coefficient and overall accuracy are
not (Allouche et al., 2006), showed that Himalayan blackberry
was actually better classified than English ivy in all cases due
to the low true positive rates in the English ivy classifications
(Table 3). The relatively low true positive rates for English ivy in
both open areas and areas with closed canopy indicate that the RF
classifier may have underestimated the area covered by English
ivy. The low true positive rates may also indicate that the classifier
confused English ivy with other species surveyed in Surrey, and
the estimated area may not be inaccurate. However, English ivy is
more specialist than Himalayan blackberry (Metcalfe, 2005; Gaire
et al., 2015), thus the second possibility is less likely considering
the high accuracies of the Himalayan blackberry classifications.
Additionally, the uncertainty analysis showed that Himalayan
blackberry classifications actually had higher uncertainties that
the English ivy classifications (Figure 4), indicating that instead
of confusing English ivy with other species the RF classifier was
likely to underestimate the species range for other reasons. As
English ivy covered more areas in parks and across the city
than Himalayan blackberry, but was present in a proportionately

smaller number of parks (Table 4), English ivy was likely more
clustered than Himalayan blackberry. Anselin Local Moran’s I
results did not corroborate this, however, as the number of 100 m
by 100 m grid cells that were considered parts of Himalayan
blackberry or English ivy clusters were similar for the two
species (Table 4). It is logical that English ivy was clustered
when considering its habitat preferences. As English ivy prefers
coniferous forests (Clergeau, 1992; Figure 7), its potential range
was limited to a few patches across the city.

Open areas were classified with higher accuracies than areas
with closed canopies for both Himalayan blackberry and English
ivy. This is likely due to the inclusion of the rule images
from the hyperspectral imagery in the model. The SAM rule
images provided a continuous variable on which the RF model
could make decisions. Other SAM classifications, such as that
classifying Himalayan blackberry and English ivy in Chance
et al. (2016), transform the continuous rule image into a binary
classification image by defining a threshold SAM value, below
which is classified as presence and above which is classified
as absence. By keeping the classification results as continuous,
the RF model had greater flexibility in defining this threshold
based on the values of the other predictor variables. For both
Himalayan blackberry and English ivy, the SAM rule images were
highly ranked as important (Figure 5). More specifically, the
SAM rule images produced from the subset of spectral channels
were chosen for the final models rather than those produced
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FIGURE 6 | Detected locations of Himalayan blackberry (Rubus armeniacus) and English ivy (Hedera helix) across Surrey, BC, Canada displayed with
a 7 m filter and subsets with actual detected areas.

with all channels as they were ranked as more important.
This is consistent with previous results comparing detection
accuracies of different channel selections. For example, Cho et al.
(2010) used an SAM-based spectral channel selection process
to increase overall detection accuracies of savanna tree species.
Naidoo et al. (2012) used RF- and SAM-based spectral channel
selections and showed that structural information combined
with spectral information increases classification accuracy of
tree species in RF models. More recent studies utilizing a
subset of spectral channels for classification include Somers and
Asner (2013) and Kuo et al. (2014), both of which showed
an increase in classification accuracies using channel subsets.
Additional considerations for the hyperspectral imagery are the
phenology of deciduous trees in the study area and the timing
of the imagery, as leaf-off conditions for deciduous trees while
understory invasive plants have leaves present increases the area
for spectral analyses. However, as hyperspectral imagery is often

collected to serve multiple purposes, catering the acquisition
timing to one or even several species may be difficult. Thus,
satellite imagery programs have been well-suited to mapping
invasive understory plants in deciduous forests due to their
multiple acquisition dates (Bradley, 2014). For example, Resasco
et al. (2007), Wilfong et al. (2009), and Shouse et al. (2013)
all used Landsat sensors during fall or winter conditions
to map the understory invasive plant, honeysuckle (Lonicera
maackii) across different environments. Kimothi et al. (2010)
map Lantana camara during leaf-off conditions in India. While
these studies successfully mapped plant invasions, the canopies
in the forests were dominated by deciduous trees. Such an
approach would not cover as wide as breadth in coniferous-
dominated forests. However, there is an opportunity to explore
utilizing hyperspectral imagery over the deciduous portions of
this forest in leaf-off conditions to detect understory invasive
plants.
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TABLE 4 | Total area covered across the parks system and the city, and
number of parks and 10 m by 10 m cells covered by English ivy (Hedera
helix) and Himalayan blackberry (Rubus armeniacus) in Surrey, BC,
Canada.

Himalayan
blackberry

English ivy

Parks Total area (km2) 0.16 0.35

Proportion of parks with occurrence 90.8 88.3

City Total area (km2) 1.18 1.51

Number of cells (N) = 1179195 for Himalayan blackberry and N = 1507252 for
English ivy.

TABLE 5 | Percent of area invaded by Himalayan blackberry (Rubus
armeniacus) and English ivy (Hedera helix) in significant clusters and
outliers as determined by Anselin’s Local Moran’s I in Surrey, BC, Canada.

Percent of invaded area Himalayan blackberry English ivy

In clusters 98.5 99.3

In outliers 1.5 0.7

In this present study, LiDAR data effectively modeled
the species distributions even without combining it with
hyperspectral data, highlighting the applicability of LiDAR data
to be a source of information for ecological models. While this
has been shown in the past using orographic and structural
information derived from LiDAR data, this present study added
LiDAR-derived irradiance to the ecological models. In terms of
the use of specific LiDAR products, direct irradiance was more
highly ranked than diffuse irradiance, hence it being included
in the final models. Direct irradiance was also highly ranked
for English ivy detection in open areas (Figure 5). Consistent
with the known habitat preferences of the English ivy for
cooler, shaded areas, and of Himalayan blackberry for open
areas (Clergeau, 1992; Gaire et al., 2015), Himalayan blackberry
preferred areas with more direct irradiance than English ivy
(Figure 8), indicating that when in open areas, English ivy
still established in shaded locations. Direct irradiance was likely
important for determining the areas of English ivy in open areas
due to the limited sites at which direct irradiance conditions
suit English ivy in open areas. Forest structural characteristics
were more important than orographic variables in areas with
closed canopies for both species (Figure 5). Specifically, measures
of the vertical distribution of LiDAR points, the coefficient of
variation of height and skewness, were important predictors
(Figure 5). Based on Figure 8, English ivy had a different
preference for coefficient of variation than absent plots. This
indicates that English ivy either established in sites with certain
structural characteristics, influences the structure, or both.
Previous research indicates that English ivy plants prefer shaded
forests with trees with large trunks (Schnitzler and Heuzé, 2006),
which in Surrey may be forest stands with relatively tall, older
trees of similar ages. Additionally, as English ivy can decrease
the amount of understory cover by other species (Biggerstaff
and Beck, 2007), many of which in Surrey are taller shrubs; the
standard deviation of height of these stands may decrease.

While Himalayan blackberry and English ivy distributions
may be more related to forest structural characteristics than
orographic ones, the pixel resolution may influence this signal.
Gu et al. (2015) used a pixel size of 20 m to map forest
composition with LiDAR-derived forest structural variables and
hyperspectral imagery, and found that the imagery was more
important for their purposes, perhaps due to the limitations
caused by the large pixel size. Numerous studies have shown
that increasing the coarseness of the spatial resolution of
hyperspectral imagery can decrease its applicability for detecting
species (e.g., Underwood et al., 2007; Peña et al., 2013), however,
few studies have quantified the effects of LiDAR footprint sizes
or point densities for ecological mapping of single understory
plant species. A review of some relevant studies indicates that
point densities of 25 points per m2 sampled to 1 m pixels, as
are present in this current study, may be at a finer scale than
needed for modeling or management purposes as follows. One
study focusing on estimating biomass of one understory species
from LiDAR data found that pixel sizes between 5 and 30 m
produced better models than those at 1 m (Li et al., 2015). As
previously mentioned Singh et al. (2015) mapped understory
plant invasions at a 5 m pixel size. Barber et al. (2016) used LiDAR
data with 1.4 points per m2 sampled to 25 m pixels to estimate
understory shrub abundance based on ecological relationships.
Furthermore, Brubaker et al. (2013) tested the accuracies of
LiDAR-derived DEMs and differences between derived products
such as curvature, slope, and roughness and found no substantial
differences between DEMs produced from LiDAR data with
more than 10 points per m2 and less than 1 point per m2. As
evidenced by these varying results, point densities, and pixel sizes,
more research is needed to quantify ideal LiDAR resolutions for
different applications. Moreover, in urban areas where LiDAR
data is often collected for multiple purposes (e.g., engineering,
flood control, forestry), the data may need to be downgraded after
acquisition to suit certain purposes.

The land cover classification, a product of both the
hyperspectral imagery and the LiDAR data, was ranked as the
variable with the lowest importance in all models (Figure 5).
Because water, paved areas, and buildings were masked, only
coniferous forests, deciduous forests, and areas of grass were
considered in the RF model. The spatial breadth of these classes
may have contributed to the low importance of the land cover
classification, as other variables could likely better explain the
spatial distributions of the invasive species. However, analysis of
the locations of the invasions found that Himalayan blackberry
and English ivy differed in abundance between deciduous
and coniferous forests (Figure 7), with Himalayan blackberry
showing a preference for deciduous forests and English ivy for
coniferous forests, consistent with the habitat preferences of the
two species (Clergeau, 1992; Gaire et al., 2015).

Analysis of the distance between roads and invasion showed
that both absolute coverage of Himalayan blackberry and English
ivy was inversely related to the distance from roads (Figure 9).
These results have management implications, as they indicate
target areas for city managers to direct resources toward curbing
the spread of invasion. Additionally, targeting areas near roads
may be relatively low effort as field crews can access invasion
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FIGURE 7 | Percent of area covered by Himalayan blackberry (Rubus armeniacus) and English ivy (Hedera helix) in deciduous and coniferous forests
in Surrey, BC, Canada. N = 1179195 for Himalayan blackberry and N = 1507252 for English ivy.

patches without traveling far into urban natural areas. However,
when considered proportionally, the area covered by Himalayan
blackberry and English ivy was not related to the distances from
roads (Figure 9). This contradicts the general trend shown in
previous research on English ivy ecology, which shows decreasing
proportional cover of English ivy with increasing distance from
roads (Arévalo et al., 2008). However, this previous study differs
from the present study in that it did not occur in an urban
area; the forest was made up of mostly deciduous trees, and
only analyzed species composition up to 60 m from roads. The
distance to impervious surfaces, while not directly analogous
to distance to roads, is also indicative of human activity and
is somewhat important for predicting Himalayan blackberry
distributions in open areas and areas with closed canopies
according to Figure 5. Figure 8 shows that occurrences in open
areas are more frequently closer to impervious surface than in
areas with closed canopies, but this is likely due to there being
more open area closer to impervious areas. One reason that
impervious surfaces may not be a strong indicator of invasions
in this study are that impervious surfaces relate better to the
beginning of invasions, but once invasions are established, the
relationship weakens (Beauséjour et al., 2015). Another reason
may be that because this study is in an urban area, all areas
are close enough to roads and impervious surfaces not enough
variation exists to observe a substantial effect. Additionally, both
roads and impervious surfaces aid in dispersal, but there may be
other variables that ultimately lead to the invasion remaining on
the landscape (Beauséjour et al., 2015).

This present study highlights a trend in ecological and remote
sensing research of combining the two disciplines. Often remote
sensing scientists create data products without consideration
for how the products are going to be used. In these cases,
ecologists must find ways to cater these products to their research.
This present study shows that processing remotely sensed data
specifically for ecological modeling of certain plant species is
effective. Therefore, land managers and researchers modeling

invasive species distributions should consider the goals of the
modeling in conjunction with the spectral and spatial resolutions
of remotely sensed data before processing it.

CONCLUSION

Current municipal operational approaches for detecting plant
invasions rely on field crews that cannot produce spatially
contiguous information across a large area about the distribution
of plant species. Remote sensing technologies can augment
this approach by detecting plants across large urban areas
with a single methodology. This study produced detection
models for Himalayan blackberry and English ivy across
Surrey, BBC, Canada. RF models were used in conjunction
with variables from hyperspectral imagery and LiDAR data to
detect Himalayan blackberry and English ivy invasions across
open and forested areas of the city. Spatial relationships on
the resulting maps were quantified by analyzing clusters and
relationships with environmental variables. The resulting RF
detection models classified Himalayan blackberry with 78.8
and 87.8% accuracies and English ivy with 81.9 and 82.1%
accuracies, with plants in open areas being better detected
than those in areas with closed canopies. Spatial analysis of
the resulting maps showed that Himalayan blackberry occurred
more often in deciduous forests whereas English ivy tended to
occur in coniferous forests. Both species were found to have a
negative relationship with distance from roads when considering
absolute area. This study highlights the applicability of LiDAR
data and hyperspectral imagery in mapping plant species,
specifically invasive plant species distributions in open areas
and areas with closed canopies. This study also demonstrates
that creating LiDAR- and hyperspectral-derived products specific
to species to is an effective way to model their distributions.
Furthermore, this present study shows that novel LiDAR-
derived products, such as irradiance models, may be useful
for ecological models over large extents. Some limitations
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FIGURE 8 | Relative frequencies of values in Himalayan blackberry (Rubus armeniacus) and English ivy (Hedera helix) presence and absence plots
for (A) direct radiation, (B) topographic wetness index, (C) cosine of aspect (“northness”), (D) slope, (E) profile curvature, (F) the coefficient of
variation of height, and (G) the distances to impervious surfaces in Surrey, BC, Canada.

of the study include its reliance on data from public land
and its applicability to only mature plants. Future research
could address these limitations by broadening the training
datasets to include private property and plants of different life
stages.
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