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Safflower (Carthamus tinctorius L.) is a dryland oilseed crop yielding high quality edible

oil. Previous studies have described significant phenotypic variability in the crop and

used geographical distribution and phenotypic trait values to develop core collections.

However, the molecular diversity component was lacking in the earlier collections thereby

limiting their utility in breeding programs. The present study evaluated the phenotypic

variability for 12 agronomically important traits during two growing seasons (2011–12 and

2012–13) in a global reference collection of 531 safflower accessions, assessed earlier by

our group for genetic diversity and population structure using AFLP markers. Significant

phenotypic variation was observed for all the agronomic traits in the representative

collection. Cluster analysis of phenotypic data grouped the accessions into five major

clusters. Accessions from the Indian Subcontinent and America harbored maximal

phenotypic variability with unique characters for a few traits. MANOVA analysis indicated

significant interaction between genotypes and environment for both the seasons. Initially,

six independent core collections (CC1–CC6) were developed using molecular marker

and phenotypic data for two seasons through POWERCORE and MSTRAT. These

collections captured the entire range of trait variability but failed to include complete

genetic diversity represented in 19 clusters reported earlier through Bayesian analysis

of population structure (BAPS). Therefore, we merged the three POWERCORE core

collections (CC1–CC3) to generate a composite core collection, CartC1 and three

MSTRAT core collections (CC4–CC6) to generate another composite core collection,

CartC2. The mean difference percentage, variance difference percentage, variable rate

of coefficient of variance percentage, coincidence rate of range percentage, Shannon’s

diversity index, and Nei’s gene diversity for CartC1 were 11.2, 43.7, 132.4, 93.4, 0.47,

and 0.306, respectively while the corresponding values for CartC2 were 9.3, 58.8, 124.6,

95.8, 0.46, and 0.301. Each composite core collection represented the complete range

of phenotypic and genetic variability of the crop including 19 BAPS clusters. This is the
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first report describing development of core collections in safflower usingmolecular marker

data with phenotypic values and geographical distribution. These core collections will

facilitate identification of genetic determinants of trait variability and effective utilization of

the prevalent diversity in crop improvement programs.

Keywords: safflower, phenotypic data, AFLP, regional gene pools, Maximization (M) strategy, MSTRAT,

POWERCORE, core collection

INTRODUCTION

Safflower (Carthamus tinctorius L.) is a dryland oilseed crop
widely adapted to grow over a broad range of geographical
locations extending from Far East to American region (Dajue
and Mündel, 1996). It was initially cultivated for extraction of
dyes and subsequently gained importance as a source of edible
oil due to its nutritionally desirable composition of plant-based
unsaturated fatty acids namely, oleic, and linoleic acid (Ashri
et al., 1977; Dajue and Mündel, 1996; Khan et al., 2009). In
addition, the medicinal properties of safflower and its use as
a system for production of pharmaceutical products are well
documented (Weiss, 1983; McPherson et al., 2009; Carlsson
et al., 2014). Safflower is severely affected by several biotic and
abiotic stresses and is characterized by low yield and spiny nature
which have discouraged farmers from adopting its cultivation
in several countries including India (Nimbkar, 2008). Moreover,
the breeding lines and cultivars of safflower harbor low genetic
diversity (Kumar et al., 2015), which restricts their utility in
breeding programs. Therefore, an extensive characterization of
the prevalent genetic and phenotypic diversity among the global
germplasm of the crop is required to facilitate development of
effective crop improvement strategies.

Germplasm resources act as a reservoir for trait variability
and are of prime importance for crop improvement. However,
their large size and heterogeneous structure restricts their
accessibility and application (Brown, 1989a,b; Noirot et al.,
1996; van Hintum, 2000). For effective management and
utilization of these resources, Frankel (1984) introduced
the concept of “core collection.” A core collection is a
representative subset of minimum number of non-redundant
individuals capturing maximum variability prevalent in the
entire germplasm collection. Characterization and evaluation of
core collection is an easier task compared to the entire germplasm
collection. Initially, core collections were developed using
morphological parameters and/or geographical distribution
(Huaman et al., 1999; Tai andMiller, 2001; Upadhyaya and Ortiz,
2001; Upadhyaya et al., 2003, 2009; Li et al., 2005; Bhattacharjee
et al., 2007; Mahalakshmi et al., 2007). Subsequently, availability
of molecular markers and their greater efficacy in elucidating
genetic diversity have facilitated the development of more robust
core collections using molecular markers either alone (Zhang
et al., 2009) or in conjunction with phenotypic data in various
crop species (Wang et al., 2006; Ebana et al., 2008; Shehzad et al.,
2009; Belaj et al., 2012; Díez et al., 2012; Liu et al., 2015).

Until now, efforts to consolidate safflower genetic resources
into core collections were based on assessment of morphological
traits and geographical distribution. Johnson et al. (1993)

developed the first core collection in safflower consisting
of 210 accessions by evaluating a germplasm collection of
2042 accessions from ∼50 countries. Dwivedi et al. (2005)
developed another core collection comprising 570 accessions
from a total collection of 5522 safflower accessions from 38
countries. However, since most agronomically important traits
are quantitative in nature, they are significantly influenced by
genotype × environment (GE) interactions. Therefore, the data
types (morphological and geographical information) used for
development of the initial core collections in safflower would
have under-represented the genetic diversity present in the crop
due to lack of allelic information. Efforts are required to include
genetic diversity based on molecular markers for development of
a more effective and robust core collection in safflower.

The present study describes the phenotypic evaluation of
a global representative collection of 531 safflower accessions
and development of a robust core collection in safflower using
maximization strategy. To the best of our knowledge, this is the
first report of a composite core collection in safflower utilizing
molecular variability along with geographical distribution and
phenotypic data. This collection will be useful in designing
crop improvement programs in a more effective manner and in
dissecting the molecular determinants of trait variability.

MATERIALS AND METHODS

Germplasm Resources
The safflower germplasm used in the present study comprised
of 531 accessions. The details of the accessions including their
PI numbers, country of origin and regional pool along with the
strategy used for their selection has been described by Kumar
et al. (2015).

Measurement of Phenotypic Data
The accessions were grown and characterized in two consecutive
seasons (2011–12 and 2012–13) at Agricultural Research Station,
University of Delhi, Bawana Road, New Delhi, India (Latitude:
28◦ 38′ N, longitude: 77◦ 12′ E and altitude: 252 m). Ten seeds of
each accession were sown in a single row of 2m with an average
distance of 0.2m between plants and a gap of 0.6m between
each row. Locally adopted agronomic practices were followed for
raising a healthy crop.

Phenotypic characterizationwas done following the guidelines
of International Plant Genetic Resources Institute (IPGRI) for
safflower. Each accession was characterized for 12 traits which
included 8 pre-harvest and 4 post-harvest traits. The pre-harvest
traits were growth habit (GH), plant height (PH), spininess (SP),
number of primary branches (PB), branch location (BL), number
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of heads per plant (HD), flower color (FC), and days to 50%
flowering (DTF). The post-harvest traits were 100-seed weight
(SW), seed oil content (OC), oleic acid content (OA), and linoleic
acid content (LA). The data was recorded for three healthy plants
of each accession.

Growth habit of the plant was recorded as “erect” or
“sprawling” on ground. For plant height, main shoot length was
measured from soil surface to the highest inflorescence of the
plant. Spininess of the accessions were recorded at the onset
of flowering and reported as “present” or “absent.” Number
of branches originating from the main axis was counted as
number of primary branches. Distribution of primary branches
on the main shoot determined branch location in safflower
and was categorized as basal, upper one-third, upper two
third, and from base to apex of the plant. The total number
of inflorescences (primary, secondary, and tertiary) per plant
was recorded as number of heads per plant. Flower color
was documented as yellow, orange, red and off-white at full
bloom stage. For each accession, the number of days from
planting to onset of flowering in 50% plants was considered
as days to 50% flowering. Seed weight of 100 achenes from
each plant was measured in grams and recorded as 100-seed
weight. Oil content was measured by Near-Infrared Reflectance
Spectroscopy (NIRS) (Foss, Germany). Oil content in seed
samples of 300 safflower accessions was estimated by Soxhlet
method and used for the development and calibration of NIRS
equations for oil content measurement in safflower (manuscript
under preparation). Fatty acid composition (oleic and linoleic
acid content), was determined by methyl esterification followed
by gas chromatography using Clarus 580 (Perkin Elmer, USA) as
per manufacturer’s instructions.

Statistical Analysis of Phenotypic Data
Phenotypic correlations between different quantitative traits
(computed as Pearson correlation coefficient, r), cluster analysis
based on Euclidean distance and two-dimensional Principal
coordinate analysis (PCoA) were performed using PAST version
3.10 (Hammer et al., 2001). Frequency distribution of accessions
for different classes of traits was calculated. Evaluation of seasonal
variation for the traits under consideration was conducted
through Multivariate Analysis of Variance (MANOVA) using
SPSS version 18 (Statistical Package for the Social Sciences; SPSS
Inc. Released, 2009. PASW Statistics for Windows, Version 18.0.
Chicago: SPSS Inc.).

Development of Core Collections
MSTRAT (Gouesnard et al., 2001) and POWERCORE (Kim
et al., 2007) were used for development of independent core
collections using phenotypic data of seasons 2011–12, 2012–13
and genotypic data reported by Kumar et al. (2015). In MSTRAT,
20 replicates and 100 iterations were tested at a fixed sample
size of 10%. The core collection with highest Shannon’s diversity
index was selected. POWERCORE was used as described in the
user’s manual (Kim et al., 2007).

Evaluation of Core Collections
Core collections were evaluated by estimating Shannon’s diversity
index (I) and Nei’s gene diversity (H) using POPGENE version

1.32 (Yeh et al., 1999). Additionally, mean difference percentage
(MD%), variance difference percentage (VD%), variable rate of
coefficient of variance (VR%), and coincidence rate of range (CR%)
were calculated to assess the level of diversity captured in core
collection with respect to the entire collection (Hu et al., 2000).
T-test and F-test were performed to study difference in mean
and variance of traits between the entire collection and composite
core collections. The “coverage” criterion described by Kim et al.
(2007) was used to evaluate the percentage diversity captured for
each variable in the composite core collections.

RESULTS

Analysis of Pre-harvest Traits
Analysis of pre-harvest traits revealed significant phenotypic
variability among the safflower accessions used in the current
study. Erect growth was observed in 529 accessions while two
accessions (PI-305204 and PI-306912) showed sprawling growth
in both the seasons (2011–12 and 2012–13). Plant height of the
studied accessions ranged from 94 to 226 cm in 2011–12 and
from 73 to 211 cm in 2012–13 growing seasons (Supplementary
Figures 1A,B). Although these values suggest a minor shift in the
overall range between the two seasons, plant height of individual
accessions did not show a markable difference. In our study,
around 21% of the accessions (111) were non-spiny while 79%
of accessions (420) were spiny in nature. The number of primary
branches in the studied accessions ranged from 4 to 34 in 2011–
12 season and from 5 to 33 for 2012–13 season. The position
of branch emergence is associated with the bushy nature in
safflower. A large number of accessions (38%) had branches
located in the upper one third portion of the plant followed by
31% of accessions with branches in the upper two third portion.
The remaining 31% of accessions had branches originating from
the base till the apex giving it a more bushy appearance.

The number of heads per plant varied from 11 to 203 and from
9 to 189 for 2011–12 and 2012–13 growing seasons, respectively.
Safflower shows different shades for its corolla color varying from
yellow, orange, red to off-white. In our study, yellow was the
most common color (76% of accessions) followed by orange (11%
of accessions). Days to 50% flowering was recorded for each
accession as described above. The trait distribution was observed
to be asymptotically normal in both the seasons (Supplementary
Figures 1C,D). Based on these observations, accessions were
categorized as early flowering (tail of the distribution curve; 119–
128 days and 137–146 days for 2011–12 and 2012–13 seasons,
respectively), mid flowering (129–151 days for 2011–12 and 147–
174 days for 2012–13, respectively) and late flowering (tail of the
distribution curve; 152–160 days and 175–182 days for 2011–12
and 2012–13 season, respectively; Supplementary Figures 1C,D).
Although days to 50% flowering shifted between the two seasons,
no change was observed in the associated categories of accessions
between the seasons. Based on the above analysis, we identified
14 early-flowering, 490 mid-flowering, and 27 late-flowering
accessions.

Analysis of Post-harvest Traits
The hundred seed weight value ranged from 1 to 8 g for 2011–
12 season and from 2 to 8 g in 2012–13 season. No significant
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difference was observed in the phenotypic range between the two
seasons. Estimation of oil content was performed using NIRS.
The oil content among the analyzed accessions ranged from 16
to 50% in 2011–12 while for the 2012–13 season it ranged from
15 to 47% (Supplementary Figures 1E,F). Accessions with oil
content <22% were considered as “low oil content” while those
with >40% oil content were categorized as “high oil content”
(Supplementary Figures 1E,F). Accessions with low and high
oil content remained consistent in both the seasons. The oleic
acid content ranged from 9 to 82% with most accessions (93%)
falling in the lower range of oleic acid content (below 25%) and
a few (7%) having medium and high oleic acid content (>75%).
Linoleic acid content varied from 13 to 87% with most accessions
(90%) showing high linoleic acid content (65–80%) and few
accessions having very high (3%), medium or low linoleic acid
content (6.6%). Table 1 includes list of accessions with high oil
content (>40%), high oleic acid (>75%), and very high linoleic
acid (≥80%) observed in the current study.

Correlation Analysis between Traits
Correlation analysis indicated a significant negative correlation
(r = −0.99) between oleic and linoleic acid content of safflower.
The correlation values for all other traits were below the
significance level of 0.50. The highest positive correlation value
was observed between number of heads per plant and number
of primary branches (0.45). The correlation coefficient values for
the analyzed traits are listed in Table 2.

Distribution of Traits within and between
Regional Gene Pools
The 531 accessions used in this study represented all the
10 regional gene pools defined by Ashri (1975) based on
morphological parameters. The distribution of different

phenotypic classes among the safflower regional gene pools
is given in Supplementary File 1. Although morphological
delineation was not prominently observed between different
regional gene pools for most traits, a few character states were
more pronounced in some gene pools. Accessions with increased
plant height (>155 cm) were limited to Iran-Afghanistan,
Turkey, Far East, and Europe. The majority of accessions with
low head count per plant were from the Far East. A higher
number of primary branches (25–33) was found only among
accessions from the Indian subcontinent, Far East, America, and
Iran-Afghanistan. Early flowering accessions were found only
among genotypes from Far East, Indian subcontinent, Egypt, and
America. On the other hand, all other pre-harvest traits namely
growth habit, spines, location of branches on the main axis of
plant and flower color did not show any preferential distribution
to any regional gene pool.

Among post-harvest traits, high oil content was observed only
in accessions from the American region while some accessions
from the Indian subcontinent had up to 40% of oil content
(Supplementary File 1). High oleic acid content (>75%) was
found only in accessions from America and Indian subcontinent.
All accessions from Near East, Turkey, Egypt, Sudan, Europe,
and Iran-Afghanistan had low oleic acid content. Higher ranges
of 100 seed weight (6–8 gm) were found predominantly among
Indian accessions and to a limited extent from American region.

Cluster Analysis and Principal Coordinate
Analysis (PCoA)
The inter-relationships and genetic distance between safflower
accessions based on phenotypic data was assessed through
unweighted pair group method with arithmetic mean (UPGMA)
clustering using Euclidean distance matrix (Figure 1). Safflower
accessions were grouped in five major clusters designated as CL

TABLE 1 | List of safflower accessions with high oil content (>40%), linoleic acid content (≥80%), and oleic acid content (>75%).

Oil content (>40%) Linoleic acid (≥80%) High Oleic acid (>75%)

PI number Country

of origin

Oil

content (%)

PI number Country

of origin

Linoleic acid

content (%)

PI number Country of origin Oleic acid

content (%)

537635 USA 50 250081 Egypt 87 613394 USA 82

537701 USA 48 544025 China 82 560177 USA 81

560169 USA 47 560188 USA 81 560165 USA 81

537662 USA 46 305198 India 81 560173 USA 81

560175 USA 45 543992 China 81 560166 USA 80

560172 USA 45 514624 China 80 560169 USA 79

560168 USA 43 613459 Portugal 80 401474 Bangladesh 78

537693 USA 43 537654 USA 80 560172 USA 77

537110 USA 43 560185 USA 80 560168 USA 77

560177 USA 42 560176 USA 80 401589 India 77

537677 USA 42 537645 USA 80 537712 USA 77

560171 USA 42 537653 USA 80 470942 Bangladesh 77

537696 USA 41 251987 Turkey 80 401470 Bangladesh 76

537656 USA 41 426186 Afghanistan 80 401477 Bangladesh 76

537645 USA 41 306685 Israel 80 401476 Bangladesh 76

– – – – – – 401479 Bangladesh 76
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TABLE 2 | Correlation coefficient between eight quantitative traits studied

in the entire safflower collection.

OC OA LA SW PH NH NB DTF

OC *

OA 0.133 *

LA −0.142 −0.996 *

SW 0.044 −0.088 0.094 *

PH −0.130 −0.122 0.120 −0.185 *

NH 0.065 −0.049 0.039 0.077 0.005 *

NB 0.109 0.024 −0.028 −0.039 0.134 0.450 *

DTF 0.164 0.027 −0.033 −0.053 0.098 0.033 0.090 *

OC, oil content; OA, oleic acid content; LA, linoleic acid content; SW, 100-seed weight;

PH, plant height; NH, number of heads per plant; NB, number of primary branches; DTF,

days to 50% flowering.

*Denotes correlation between same trait.

FIGURE 1 | UPGMA cluster analysis illustrating the genetic

relationships between 531 safflower accessions based on 12

morphological traits. Five clusters (I–V) with internal sub-groupings are

shown. Color codes correspond to region of origin.

I–CL V. Information on distribution of accessions in different
clusters is given in Table 3. CL V is the largest cluster with 215
accessions. All clusters, except Cluster III, were dominated by
accessions from the Indian subcontinent and America. Cluster
III had significant representation of accessions from Iran-
Afghanistan, Far-East, and Europe.

In principal coordinate analysis (PCoA), coordinate axes 1
and 2 captured 42.5 and 22.4%, respectively of the total existing
variation among the accessions (Figure 2). Accessions from
Indian subcontinent were mainly present in quadrants III and IV
with minor representation in quadrants I and II. Accessions from
American region were homogenously distributed among all the
quadrants of PCoA obtained using phenotypic data. Accessions
from Iran-Afghanistan region were mainly found in quadrants

I and II with a few accessions in quadrants III and IV. Far East
accessions were restricted to quadrants I and IV while accessions
from the European region were limited to quadrant I and II.
Accessions from the Near East region were found to be part of
quadrants I and II while Sudanese accessions were distributed in
all the four quadrants. Accessions from Turkey and Egypt were
predominantly found in quadrants I and II.

Analysis of Seasonal Variations and
Development of Core Collections Using
POWERCORE and MSTRAT
MANOVA analysis indicated significant seasonal effects as
well as significant interaction effect between seasons and
accession effects by considering all quantitative traits together
(Table 4). Therefore, phenotypic data for both the seasons (2011–
12 and 2012–13) and molecular marker data were treated
independently for development of core collections. Usage of the
two maximization (M) strategy based programs resulted in the
generation of six core collections (CC1-CC6).

In our earlier work, molecular profiling of the 531 accessions
identified 157 polymorphic AFLP markers (Kumar et al., 2015).
Core collections were developed with these AFLP markers using
POWERCORE and MSTRAT and designated as CC1 and CC4,
respectively. CC1 included 14 accessions (2.6% of the entire
collection) belonging to six out of 10 regional gene pools while
CC4 comprised 26 accessions (4.9% of the entire collection)
belonging to seven regional gene pools (Table 5). Phenotypic
data of seasons 2011–12 and 2012–13 was used to develop core
collections CC2 and CC3, respectively using POWERCORE.
CC2 consisted of 26 accessions (4.9% of the entire collection)
from six regional gene pools (Table 5) and regions of secondary
introduction (Australia and America). CC3 consisted of 27
accessions (5.1% of the entire collection) from six regional
gene pools of safflower. Core collections CC5 and CC6, were
developed using phenotypic data of season 2011–12 and 2012–
13, respectively using MSTRAT. CC5 consisted of 47 accessions
(8.8% of the entire collection) from seven regional gene pools
and regions of secondary introduction (America and Australia).
CC6, comprising 54 accessions (10% of the entire collection) had
representation from eight regional gene pools along with regions
of secondary introduction.

The ranges, means, and variances for all the quantitative
traits were calculated for core collections developed using
phenotypic data (CC2, CC3, CC5, and CC6) and compared with
corresponding values for the entire collection (Supplementary
Tables 1, 2). MD% displays the difference in averages between
the core and the entire collection and should be <20% for
a representative core collection. MD% ranged from 6.36 to
15.45% for the four core collections (Table 6). VD% indicates the
variance captured by a core collection and ranged from 36.4 to
59% in the current analysis. The coefficient of variance (VR%)
captured in the core collection should have a value higher than
100%. CC5 and CC6 had high VR% above 105% while CC2 and
CC3 showed a value of∼96.1% (Table 6). The range distribution
of traits in a core collection in comparison to entire collection is
measured by CR% whose value should be greater than 80%. All
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TABLE 3 | Distribution of accessions from different regional gene pools of safflower in clusters of UPGMA dendrogram constructed using phenotypic

data.

Regional gene pools

Clusters CL I CL II CL III CL IV CL V

III A III B IV A IV B IV C V A V B V C

1. Far East (FE) 1 3 3 20 12 7 5 7 1 7

2. Indian subcontinent (IS) 8 12 1 3 34 8 14 15 41 30

3. Iran-Afghanistan (IA) − 5 15 9 6 1 − 11 4 4

4. Near East (NE) − 1 8 − 3 2 − 2 3 10

5. Turkey (TU) − 6 7 4 1 2 − 2 3 1

6. Egypt (EG) − 5 6 1 2 1 − 3 2 1

7. Sudan (SU) − 1 − 2 − 1 1 3 2 −

8. Kenya (KE) − − − − − − − 1 − −

9. Ethiopia (ET) − − − 1 1 − − − −

10. Europe (EU) − 4 8 2 8 − − 6 7 2

11. America (US) 13 12 4 6 17 11 5 17 16 11

12. Australia (AUS) − − − − 1 − − 1 1

13. Unknown origin (UN) 1 1 − − − − − − − 1

Total number of genotypes 23 50 52 48 85 33 25 68 80 67

FIGURE 2 | Principal coordinate analysis of 531 safflower accessions based on Euclidean distance matrix using 12 morphological traits. Color codes

correspond to region of origin.

the analyzed core collections displayed high CR% value ranging
from 94.25 to 143.52%. Shannon-Weaver diversity index (I) was
calculated for all the core collections and ranged from 0.44 to
0.53. The core collections, CC1 and CC4 derived using molecular
marker data, showed highest Shannon-Weaver diversity index
with a value of 0.53 and 0.49, respectively which was higher than
the corresponding values obtained for core collections derived
using phenotypic data (Table 6). Nei’s genetic diversity (H) for

the six core collections ranged from 0.273 to 0.346. Similar to
Shannon’s diversity index, the highest value of H was recorded
for CC1 (0.346) and CC4 (0.318) (Table 6).

Development and Evaluation of Composite
Core Collections
Based on the various indices described above, all the core
collections developed in our study appeared to represent the
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prevalent diversity of the entire collection. However, none of
the core collections contained representation from all the 19
clusters derived by Bayesian Analysis of Population Structure
(BAPS) (Table 7), which captured diverse combinations of alleles
and resulted in meaningful genetic stratification of the collection
(Kumar et al., 2015). In order to capture the maximum range of
allelic diversity/trait state in a core collection and prevent trade-
off between two data types when used together, we attempted
to combine phenotypic and molecular variability by merging
core collections derived from each strategy separately (Figure 3).
The core collections developed by POWERCORE, i.e., CC1 (14
accessions), CC2 (26 accessions), and CC3 (27 accessions) were
combined to form a non-redundant composite core collection
referred to as CartC1 (Supplementary File 2). CartC1 comprised
57 accessions (10.7% of initial collection) representing 19 BAPS
clusters, eight regional gene pools and two regions of secondary
introduction for safflower (Tables 5, 7). Similarly, the core
collections derived through MSTRAT, i.e., CC4 (26 accessions),
CC5 (47 accessions), and CC6 (54 accessions) were merged
resulting in a non-redundant composite core collection referred
to as CartC2 (Supplementary File 2). CartC2 consisted of 106
accessions (∼20% of initial collection) including representation
from all 19 BAPS clusters, ten regional gene pools and two

TABLE 4 | Multivariate analysis of variance (MANOVA) to study seasonal

differences in quantitative traits.

Effect Value F Sig.

Accession 0.001 22.807 <0.001

Season 0.209 1860.796 <0.001

Replication 0.966 8.541 <0.001

Accession * Season 0.104 3.306 <0.001

Based on Wilks’ Lambda.

regions of secondary introduction for safflower (Tables 5, 7).
Forty four accessions were common among the two composite
core collections (Figure 3).

The ranges, means and variances for all the quantitative traits
for CartC1 and CartC2 are provided in Table 8. Homogeneity
tests were performed to evaluate the difference in means (t-
test) and variances (F-test) of traits between the entire collection
and composite core collections (α = 0.05; Table 8). For a core
collection to be representative of the entire collection, it is
expected that the difference in mean should not deviate by more
than 20% for the traits (Hu et al., 2000). Difference between the
mean of the entire collection and CartC1 was non-significant
for oil content, 100 seed weight, plant height, number of heads
per plant, number of primary branches per plant, and days
to 50% flowering. We observed non-significant differences in
variance for three traits (100 seed weight, plant height, number
of primary branches per plant) between CartC1 and the entire
collection (Table 8). T-test provided non-significant differences
for oil content, 100 seed weight, plant height, number of heads
per plant, and days to 50% flowering while F-test revealed non-
significant variance for only two traits (100 seed weight and plant
height) between CartC2 and the entire collection. In “Coverage”
analysis (Kim et al., 2007), CartC1 and CartC2 showed 100%
coverage value for different phenotypic and genetic variables
under consideration.

The composite core collections were validated for their
representativeness of the entire collection through evaluation
indices which are given in Table 6. The Shannon’s diversity
index (I) and Nei’s genetic diversity (H) were 0.47 and 0.306,
respectively for CartC1 and 0.46 and 0.301, respectively for
CartC2. We assessed distribution of accessions of CartC1 and
CartC2 in the dendrogram obtained through phenotypic and
genetic analysis of entire collection. CartC1 and CartC2 showed
balanced distribution in all the clusters of Neighbor Joining
(genetic analysis; Figure 4) and UPGMA (phenotypic analysis;

TABLE 5 | Representation from different regional gene pools of safflower in developed core collections (CC).

Regional gene pools Entire collection POWERCORE MSTRAT Composite core collections

CC1 CC2 CC3 CC4 CC5 CC6 CartC1 CartC2

Far East (FE) 67 2 4 4 2 7 9 7 14

Indian subcontinent (IS) 167 5 5 8 7 12 13 14 26

Iran-Afghanistan (IA) 54 1 3 0 4 5 7 4 13

Near East (NE) 26 0 2 1 3 2 0 3 5

Turkey (TU) 29 1 1 0 3 0 1 2 4

Egypt (EG) 20 1 2 2 0 4 3 4 5

Sudan (SU) 10 0 0 0 1 0 0 0 1

Kenya (KE) 1 0 0 0 0 0 1 0 1

Ethiopia (ET) 2 0 0 1 0 1 1 1 1

Europe (EU) 37 2 2 3 2 2 5 7 7

America (US) 112 2 6 7 4 13 12 14 27

Australia (AUS) 3 0 1 1 0 1 1 1 1

Unknown origin (UN) 3 0 0 0 0 0 1 0 1

TOTAL 531 14 26 27 26 47 54 57 106
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TABLE 6 | Evaluation indices for developed core collections.

Core Collection MD% VD% VR% CR% I H

CC 1 1.38 12.4 106.55 100 0.52 0.346

CC 2 13.49 54.64 96.14 143.52 0.45 0.293

CC 3 11.03 49.81 96.1 136.42 0.42 0.273

CC 4 3.8 18.76 95.5 66.5 0.48 0.318

CC 5 6.36 36.4 116.8 94.25 0.44 0.289

CC 6 15.45 59 147.25 95.75 0.44 0.289

CartC1 11.2 43.7 132.4 93.4 0.47 0.306

CartC2 9.3 58.8 124.6 95.8 0.46 0.301

MD%, mean difference; VD%, variance difference; VR%, variable rate; CR%, coincidence

rate of range; I, Shannon’s diversity index, and H, Nei’s genetic diversity.

Figure 5). Thus, CartC1 and CartC2 provided a more rational
and exhaustive representation of all the phenotypic and genetic
variability than the independent core collections (CC1–CC6)
developed in the present study.

DISCUSSION

A vast collection consisting of 25,179 accessions of safflower is
available in 22 gene banks of 15 countries around the world
(Zhang and Johnson, 1999). Phenotypic characterization of
safflower germplasm in earlier studies demonstrated significant
variability for several agronomic traits (Knowles, 1969; Ashri,
1975; Johnson et al., 2001; Amini et al., 2008; Khan et al.,
2009). In spite of substantial diversity in its germplasm, yield
enhancement in the crop has achieved limited success. Breeding
strategies often focus on a limited set of agronomic traits resulting
in cultivars with a narrow genetic base. For example, Kumar
et al. (2015) showed that the cultivars and breeding lines of
safflower from the Indian subcontinent have a narrow genetic
base although extensive genetic diversity was present in the
regional germplasm. This makes the cultivars highly susceptible
to environmental changes and vulnerable to yield penalties. One
of the main limitations of earlier approaches has been the over-
dependence on morphological and geographical parameters due
to lack of information on the genetic structure of safflower
germplasm based on molecular markers. The present study
attempted to address the above issue by generating two composite
core collections in safflower that include data on molecular
variability of the crop in addition to phenotypic and geographical
parameters.

Phenotypic Diversity of the Crop and
Identification of Accessions with Desirable
Agronomic Traits
Significant variation was observed among the 531 accessions for
12 agronomic traits. More than 85% of accessions had plant
height <155 cm, which is desirable due to ease of mechanical
harvesting from shorter plants (Weiss, 1983). Most safflower
varieties and genotypes grown around the world have spines on
the leaves and bracts of the plant (Dajue and Mündel, 1996).
Spiny nature of the crop is one of the factors responsible for

TABLE 7 | Distribution of accessions of developed core collections in

different BAPS clusters derived based on AFLP markers by Kumar et al.

(2015).

BAPS

clusters

Number of accessions

CC1 CC2 CC3 CC4 CC5 CC6 CartC1 CartC2

Bacl 1 − 1 1 − 3 2 2 4

Bacl 2 2 1 1 2 1 3 4 5

Bacl 3 − 1 1 3 2 6 1 7

Bacl 4 1 1 1 3 2 2 2 6

Bacl 5 1 3 2 − 5 5 5 7

Bacl 6 1 − − 2 − 2 1 4

Bacl 7 1 1 3 2 5 3 6 8

Bacl 8 1 1 − 1 − 1 2 2

Bacl 9 1 2 2 1 3 3 2 6

Bacl 10 − 1 2 − 4 4 2 6

Bacl 11 1 1 − 2 1 2 2 5

Bacl 12 1 3 − 3 4 2 4 8

Bacl 13 − 2 2 − 1 3 4 7

Bacl 14 1 3 4 2 5 5 8 12

Bacl 15 − 1 1 − 1 2 1 2

Bacl 16 1 1 4 − 2 4 5 4

Bacl 17 − 1 1 2 1 1 1 4

Bacl 18 1 1 1 2 3 4 2 8

Bacl 19 1 1 1 1 − − 3 1

reluctance of farmers to grow safflower, especially in countries
like India where harvesting is done manually. Spiny types were
widely represented in our collection of 531 accessions. It was
hypothesized that non-spiny varieties are generally low in yield
and oil content (Dajue and Mündel, 1996). However, we did
not observe a significant association between presence of spines
and seed oil content. We identified 15 spiny accessions with
high seed oil content (Table 1) and several spiny accessions
with low seed oil content in the representative collection. The
genetics of oil content and spines needs to be investigated further
in order to design effective breeding strategies involving these
traits.

Traits such as number of primary branches and heads per
plant influence seed yield (Ashri et al., 1974; Patil et al., 1994;
Dajue and Mündel, 1996). We found significant variation in
the above traits and accessions with high number of primary
branches and increased number of heads were identified.
Analysis of seed yield for these accessions is required to identify
promising genotypes. Days to 50% flowering varied between the
two growing seasons and ranged from 119 to 160 days (in 2011–
12) and from 137 to 182 days (in 2012–13). Delayed flowering
in the second year was attributable to cooler temperatures in
February and March than in the previous year. The average
maximum temperature recorded for the months of February
and March 2012 was ∼29◦C while the corresponding value
was ∼23◦C in 2013. (http://www.weatherspark.com). Though
temperature fluctuations did affect developmental stages as well
as flowering-related events, the early flowering accessions were
consistent between the two seasons.
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FIGURE 3 | Flowchart describing the strategy and results of development of core collection for safflower. Numerical values in parenthesis indicate the

number of accessions in respective cores. Values indicated above the double-headed arrows depict the number of accessions common between different core

collections.

TABLE 8 | Ranges, means, and variances for the entire collection and composite core collections, CartC1 and CartC2.

Phenotypic

Traits*

Entire collection# CartC1 (POWERCORE) CartC2 (MSTRAT)

Range Mean Variance Range Mean Variance T-test F-test Range Mean Variance T-test F-test

OC (%) 16–50 31 20.2 18–50 31.4 35.3 NS S 16–50 32 32.7 NS S

OA (%) 9–82 19 161.2 10–79 28.9 503.1 S S 10–79 24 359.0 S S

LA (%) 13–87 71 151.7 13–87 61.7 476.8 S S 13–87 67 344.3 S S

SW (g) 1–8 5 2.0 1–8 4.3 2.2 NS NS 1–8 4 2.4 NS NS

PH (cm) 94–226 154 578.3 109–226 155 712.1 NS NS 94–226 156 735.9 NS NS

NH 11–203 74 1508 16–203 84 3382 NS S 16–203 79 2330.8 NS S

NB 5–33 14 25.5 6–33 16 47.5 NS NS 6–33 16 40.1 S S

DTF 119–160 141 44.0 120–160 141 75.4 NS S 119–160 141 91.0 NS S

*Abbreviations for phenotypic traits provided in footnote of Table 2; #Data for season 2011–2012 presented.

Identification and use of high oil yielding genotypes is
important for increasing oil content in safflower cultivars.
Breeding efforts in America led to the development of cultivars
with increased seed oil content ranging from 45 to 55% (Bergman
et al., 1985; Rubis et al., 2001). However, such improvements are
lacking among Indian cultivars which have oil content ranging
from 27 to 35%. Evaluation of oil quantity in the 531 accessions
by NIRS identified 15 accessions with high oil content (>40%).
These would serve as important breeding material in safflower.
All the high oil yielding accessions (>40%) had low 100-seed
weight (3–4 gm) in our study. This observation is in consonance
with earlier reports, which suggest that increased hull thickness
enhances seed weight but reduces oil content (Ranga Rao et al.,
1977; Dajue and Mündel, 1996). Safflower oil has a desirable fatty
acid composition. High linoleic lines of safflower are favored for
animal feed and in the paint and varnish industry (Knowles,

1989; Bergman et al., 2001) while high oleic lines are nutritionally
desirable because of its hypo-cholesterolemic effect and greater
oxidative stability (Fuller et al., 1967). A high oleic line of Indian
origin (Knowles and Bill, 1964) was effectively utilized in various
safflower breeding programs in the USA (Mündel and Bergman,
2009). The safflower collection used in this study contained 17
accessions with high oleic acid content and 15 accessions with
high linoleic acid content (Table 1). Accessions with desirable
traits identified in the present study could be incorporated in
breeding programs for crop improvement.

Assessment of Regional Gene Pools Based
on UPGMA Analysis of Phenotypic Data
Accessions from the Indian Subcontinent and American region
were distributed in all the five clusters (Figure 1) suggesting
that they harbor maximum phenotypic diversity for the studied
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FIGURE 4 | Distribution of accessions of composite core collections

(CartC1 and CartC2) in different clusters of Neighbor joining

dendrogram (molecular data). Six clusters (NJcl I–VI) are shown.

Accessions unique to CartC1 and CartC2 are represented by pink and orange

color, respectively. Accessions common between these two collections are

represented by blue.

traits. Knowles (1969), based on morphological analysis of
accessions from the Indian subcontinent, reported them as a
uniform assemblage resulting from a single introduction. In
contrast, our assessment indicates that accessions from the
Indian subcontinent are phenotypically diverse. Morphological
diversity among accessions from the Indian subcontinent was
reported in earlier studies (Kupsow, 1932; Chavan, 1961; Hanelt,
1961). Indian accessions have also been shown to harbor
significant genetic diversity (Kumar et al., 2015). The American
germplasm was found to be phenotypically diverse in the current
study but was genetically conserved (Kumar et al., 2015). Near
East and Iran-Afghanistan accessions clustered together based on
phenotypic data, supporting our earlier proposal of considering
them as a single gene pool (Kumar et al., 2015). Accessions
from European region were distributed in several clusters based
on phenotypic data similar to the observation obtained through
molecular data analysis. Interestingly, accessions from Far East,
Turkey and Egyptian region were present in all the clusters
although they exhibited low genetic diversity (Kumar et al., 2015).
These results indicate that UPGMA analysis based on phenotypic
data alone is unable to accurately define the genetic relationships
among safflower accessions.

Composite Core Collections Effectively
Capture the Global Molecular, Phenotypic,
and Geographical Variability of the Crop
In recent years, increased availability of molecular resources
has enabled their utilization in development of core collections

in crop species (Belaj et al., 2012; El Bakkali et al., 2013) but
until now, no such attempts have been made in safflower. Use
of molecular markers for development of core collections is
advantageous as they reflect diversity at the DNA level as opposed
to morphological markers wherein different genotypes might
show similar phenotypic traits due to environmental effects.
Additionally, molecular markers are more effective in identifying
and minimizing redundancy. Several studies have emphasized
on use of maximization (M) strategy for development of highly
robust core collections (Bataillon et al., 1996; McKhann et al.,
2004). The M strategy retains maximum number of alleles at
each locus and is considered as the most powerful approach for
maintaining diverse alleles (Schoen and Brown, 1993). MSTRAT
and POWERCORE programs have been successfully used for
construction of core collection in various plant species such as
grapes, olive and sesame (Le Cunff et al., 2008; Belaj et al., 2012;
Zhang et al., 2012). A combination of molecular markers and
maximization (M) strategy has been utilized for the first time in
our study for construction of a core collection in safflower.

Earlier studies reported significant GE interactions in
safflower and emphasized on multi-location and multi-seasonal
trials to evaluate heritability of characters for their effective
utilization in breeding programs (Singh et al., 2004; Mahasi et al.,
2006). In our study, MANOVA analysis indicated prominent
GE interactions (Table 4). Therefore, seasonal datasets were
treated independently for developing core collections. The six
core collections thus generated, efficiently captured the entire
range of trait variability but failed to include complete genetic
diversity represented in 19 clusters derived earlier (Kumar
et al., 2015) through Bayesian analysis. Additionally, many
accessions were common between different core collections. For
example, in core collections developed using POWERCORE,
10 accessions were common between CC1 (marker-based) and
CC2/CC3 (phenotype-based). Only 4 accessions were unique
to CC1 while 16 and 17 accessions were unique to CC2
and CC3, respectively. In MSTRAT-derived core collections,
19 accessions were common between CC4 (marker-based) and
CC5/CC6 (phenotype-based). The number of accessions unique
to CC4, CC5, and CC6 were 7, 28, and 35, respectively. The
presence of common accessions between core collections derived
using different types of data indicates an overlap in genetic
and phenotypic components of the studied accessions. These
accessions represent a subset of genotypes that are highly diverse
at both molecular and phenotypic level.

The core collections developed using each program were
merged to derive a more robust and non-redundant composite
core collection (CartC1 by POWERCORE and CartC2 by
MSTRAT). The vast phenotypic diversity of the initial collection
was retained in both collections. Accessions with desirable
agronomic traits and extreme phenotypes, which were present
in very low numbers in the entire collection and scattered
in the initial core collections were captured in the composite
core collections (Table 8). Both the composite core collections
provided comprehensive coverage of allelic diversity and had
representation from all the 19 BAPS clusters identified earlier
for safflower (Kumar et al., 2015; Table 7). Evaluation indices
(MD%, VD%, VR%, CR%, I, H) for CartC1 and CartC2 were
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FIGURE 5 | Distribution of accessions of composite core collections (CartC1 and CartC2) in different clusters of UPGMA dendrogram (morphological

data). Accessions unique to CartC1 and CartC2 are represented by pink and orange color, respectively. Accessions common between these two collections are

represented by blue.

comparable and reflect their effectiveness in capturing diversity
of the crop (Table 6). Our approach of deriving independent
core collections from molecular and phenotypic data and their
subsequent merger to create composite core collections avoided
trade-off between the diversity captured using the molecular and
phenotypic data sets.

Geographical distribution influences the extent of genetic
variability of a species. The effect is more prominently seen
in case of in-breeding species (Rao and Hodgkin, 2002).
Geographical patterning is evident in safflower which is highly
self-pollinating in nature and is grown in different agro-climatic
regions across the world (Knowles, 1969; Ashri, 1975; Chapman
et al., 2010). The two composite core collections showed minor
variations in representation of the 10 regional gene pools. CartC1
included 8 regional pools excluding Sudan and Kenya while
CartC2 contained representation from all the 10 regional gene
pools (Table 5). Similar to the entire collection, both CartC1
and CartC2 showed predominance of accessions from Indian
subcontinent and America accounting for ∼50% of the total

entries. In contrast, the earlier core collection developed by
Johnson et al. (1993) had a major proportion of accessions
(∼46%) from the Mediterranean region and South-West Asia
while the core collection derived by Dwivedi et al. (2005)
consisted of∼78% accessions from South and South-East Asia.

The number of accessions in a core collection is an important
factor determining its effective utilization (Brown and Spillane,
1999). The core collections developed earlier for safflower
consisted of 210 accessions (Johnson et al., 1993) and 570
accessions (Dwivedi et al., 2005) while the composite core
collections developed in the present study are comparatively
smaller with 57 (CartC1) and 106 (CartC2) accessions. The larger
size of the core collections developed in earlier studies could be
due to the larger number of accessions in their initial germplasm
collection. However, the advantage of the present study is that
the initial collection used for development of composite core
collections has been characterized extensively for both molecular
and phenotypic diversity and the generated core collections have
therefore effectively captured the global genetic and phenotypic
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diversity of the crop. Additionally, CartC1 has better utility value
in comparison to CartC2 due to its smaller size and comparable
diversity.

The present study is the first attempt where molecular
diversity data has been used in conjunction with phenotypic
data and geographical distribution to develop core collections
in safflower. The small size of the composite core collections
would be advantageous for field studies and associationmapping.
These collections will provide access to genetically diverse
and agronomically important germplasm that would be useful
in widening the genetic base of the crop and facilitate
characterization of genetic determinants of trait variability. This
information can be used to design more effective breeding
programs to increase the global utility of safflower as an oilseed
crop.
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