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We characterized an aquaporin gene HvPIP2;5 from Hordeum vulgare and investigated

its physiological roles in heterologous expression systems, yeast and Arabidopsis,

under high salt and high osmotic stress conditions. In yeast, the expression of

HvPIP2;5 enhanced abiotic stress tolerance under high salt and high osmotic conditions.

Arabidopsis plants overexpressing HvPIP2;5 also showed better stress tolerance in

germination and root growth under high salt and high osmotic stresses than the wild

type (WT). HvPIP2;5 overexpressing plants were able to survive and recover after a

3-week drought period unlike the control plants which wilted and died during stress

treatment. Indeed, overexpression of HvPIP2;5 caused higher retention of chlorophylls

and water under salt and osmotic stresses than did control. We also observed

lower accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), an

end-product of lipid peroxidation in HvPIP2;5 overexpressing plants than in WT. These

results suggest that HvPIP2;5 overexpression brought about stress tolerance, at least in

part, by reducing the secondary oxidative stress caused by salt and osmotic stresses.

Consistent with these stress tolerant phenotypes, HvPIP2;5 overexpressing Arabidopsis

lines showed higher expression and activities of ROS scavenging enzymes such as

catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate

peroxidase (APX) under salt and osmotic stresses than did WT. In addition, the proline

biosynthesis genes, 1
1 -Pyrroline-5-Carboxylate Synthase 1 and 2 (P5CS1 and P5CS2)

were up-regulated in HvPIP2;5 overexpressing plants under salt and osmotic stresses,

which coincided with increased levels of the osmoprotectant proline. Together, these

results suggested that HvPIP2;5 overexpression enhanced stress tolerance to high salt

and high osmotic stresses by increasing activities and/or expression of ROS scavenging

enzymes and osmoprotectant biosynthetic genes.
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INTRODUCTION

Aquaporins belong to major intrinsic proteins (MIPs) that are
present from prokaryotes to plants and animals. These proteins
facilitate the transport of water and small uncharged molecules
across biological membranes (Park and Saier, 1996; Heymann
and Engel, 1999; Engel and Stahlberg, 2002; Zardoya et al.,
2002; Maurel et al., 2008, 2015). MIPs are categorized into two
groups: aquaporins that show water-specific channel activity
and glycerol-uptake facilitators (GLPs or aquaglyceroporins) that
have channel activity for additional small molecules such as
glycerol or urea (Park and Saier, 1996; Heymann and Engel, 1999;
Engel and Stahlberg, 2002; Zardoya et al., 2002; Zardoya, 2005;
Maurel et al., 2008). In plants, all MIPs, except for GlpF-like
intrinsic proteins (GIPs), exhibit water-specific channel activity;
therefore, most plant MIPs are collectively called aquaporins
(Maurel et al., 2008, 2015). Recently, it has been shown that
plant MIPs can transport other small molecules such as CO2 and
ammonia (Uehlein et al., 2003; Jahn et al., 2004).

Compared to genomes of other organisms, plant genomes
contain a higher number of aquaporins (Wang et al., 2014). For
instance, there are 35 aquaporin genes in Arabidopsis thaliana
(Maurel, 2007), 22 in Jatropha curcas (Khan et al., 2015), 36 in
Zea maize (Chaumont et al., 2001) and over 40 in Hordeum
vulgare (Hove et al., 2015) while Escherichia coli (Gomes et al.,
2009), Caenorhabditis elegans (Ishibashi et al., 2011), Drosophila
melanogaster (Spring et al., 2009), and Homo sapiens (Day et al.,
2014) contain 2, 11, 7, and 12, respectively.

The high diversity in plant aquaporins suggests variation
of their physiological roles. Indeed, aquaporins were shown
to be associated with vital physiological processes such as
photosynthesis, nitrogen fixation, nutrient uptake and other
environmental stress responses (Li et al., 2014; Hove et al.,
2015; Sun et al., 2015). Plant aquaporins are classified into five
subgroups, i.e.,: the plasma membrane intrinsic proteins (PIPs),
tonoplast intrinsic proteins (TIPs), nodulin26-like intrinsic
proteins (NIPs), small basic intrinsic proteins (SIPs) and the
recently identified uncategorized (X) intrinsic proteins (XIP)
(Maurel et al., 2015). Based on sequence divergence, PIPs are
further divided into PIP1 and PIP2 subclasses each consisting
of several isoforms which play important roles in determining
hydraulic conductivity particularly in roots (Martre et al., 2002;
Siefritz et al., 2002; Javot et al., 2003; Postaire et al., 2010).
Analyses on PIP1 and PIP2 from barley and maize revealed that
the PIP2 proteins had higher water transport activity than PIP1
proteins in Xenopus oocytes (Chaumont et al., 2000; Horie et al.,
2011). When PIP2 was co-expressed with functional or even
nonfunctional PIP1 proteins, water transport activity of PIP2
was enhanced (Chaumont et al., 2000; Fetter et al., 2004; Horie
et al., 2011). This enhanced water transport was attributed to
their ability to form heterotetramers for proper trafficking to the
plasma membrane (Fetter et al., 2004; Zelazny et al., 2007).

Dynamic changes in the expression levels of many PIP genes
were observed in response to drought stress, suggesting their
involvement in stress responses by regulating water balance
(Afzal et al., 2016). Studies with PIP-defective mutants or
overexpressing plants also linked the roles of PIP proteins to

water-deficit stress tolerance. For example, when expression of
a tobacco PIP1 member (NtAQP1) was reduced by antisense
technology, the NtAQP1-downregulated tobacco plants showed
reduced root hydraulic conductivity and wilting phenotypes
under water stress (Siefritz et al., 2002). Physcomitrella patens
PIP2;1 or PIP2;2 knockouts showed low water permeability with
drought-sensitive phenotypes (Lienard et al., 2008). Reduction in
water permeability of protoplasts and root hydraulic conductivity
were observed respectively in Arabidopsis PIP1;2 and PIP2;2-
defective mutants but without clear developmental defects
(Kaldenhoff et al., 1998; Javot et al., 2003). Overexpression
of several PIP genes from various plants including Oryza
sativa, Vicia faba, Nicotiana tabacum, and Triticum aestivum
successfully enhanced water stress tolerance in transgenic plants
(Lian et al., 2004; Cui et al., 2008; Sade et al., 2010; Zhou
et al., 2012). Interestingly, some contrasting results (i.e., stress
sensitive phenotypes in PIP overexpressing plants) have also
been reported, implying the complexity of PIP function in plants
(Aharon et al., 2003; Katsuhara et al., 2003; Jang et al., 2007; Li
et al., 2015).

Barley (Hordeum vulgare L.) is one of the most agronomically
cultivated crops; it is more adaptable to drought, salinity and cold
than other cereal crops (Katsuhara et al., 2014; Hove et al., 2015).
These characteristics would possibly make the barley gene pool,
including barley aquaporins, as one of stress-adaptive genetic
resources. Although, several PIPs have been identified in barley,
only few of them have been functionally characterized thus far.

In this study, we overexpressed barley PIP2;5 (HvPIP2;5) in
yeast andArabidopsis and characterized these lines to understand
the functions of the barley PIP gene under high salt and high
osmotic stress conditions.

MATERIALS AND METHODS

HvPIP2;5 Expression Vector Construction
Barley (Hordeum vulgare cv. NP21) cDNA was prepared using
superscriptTM III reverse transcriptase (Invitrogen, USA), and
total RNA was extracted with TRIzol R© Reagent (Ambion,
USA). A 873 bp-length HvPIP2;5 coding sequence (GenBank
Accession number: AB377270.1) was cloned into TA cloning
vector pTOPO2.1 (Invitrogen, Carlsbad, CA, USA) using gene
specific primers (Supplementary Table 1). The coding sequences
of HvPIP2;5 was cloned into yeast expression vector pYES2.0
(Invitrogen, USA) at the EcoRI site and named pYES2:HvPIP2;5.
For plant transformation, HvPIP2;5 coding sequence was cloned
into a standard plant binary vector pCAMBIA2301. The
resulting overexpression construct was named pCAMBIA2301-
35S:HvPIP2;5.

Transformation of Yeast and Stress
Analysis
TheHvPIP2;5 coding sequence under control of GAL1 promoter
in pYES2 yeast expression vector was introduced into yeast FY3
cells. As controls, FY3 cells containing pYES2 vector only (vector
control) and FY3 strain only were used in stress assays. The
yeast strain FY3 was transformed with a pYES2 empty vector or
pYES2:HvPIP2;5 recombinant vector by lithium acetate method
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(Kawai et al., 2010) and selected on SC medium devoid of uracil.
Yeast cells expressing HvPIP2;5 along with control cells were
grown on YPD solid medium (1% Yeast extract, 2% peptone, and
2% glucose).

For stress analysis, transformed yeast cells were propagated in
SC-U medium containing 2% galactose for 12 h and cell density
was adjusted to 1.0 of OD600 followed by serial dilutions. Yeast
cell were spotted on YPD medium supplemented with PEG (4%)
or NaCl (200 mM), respectively. Plates were maintained at 30◦C
and growth was monitored after 2 days.

Generation of HvPIP2;5 Overexpressing
Arabidopsis Lines and Stress Analysis
Using Agrobacterium tumefaciens GV3101 harboring
pCAMBIA2301-35S:HvPIP2;5, Arabidopsis Columbia-0 plants
were transformed via floral dipping method (Clough and Bent,
1998). Homozygote for 35S:HvPIP2;5 insertion was selected
at T4 generation by analyzing kanamycin resistance at each
generation.

For germination analysis, the seeds of WT and homozygote
HvPIP2;5 OE Arabidopsis lines were plated on half strength
Murashige Skoog (MS) media and allowed to germinate at 22◦C
and 60% relative humidity with a 16/8 h light-dark photo cycle
after 3 day stratification at 4◦C.

Final concentration of 100–200 mMNaCl (for high salt stress)
or 10–20% PEG (for high osmotic stress) was supplemented to
the MS media for stress administration. Hereby salt stress or
osmotic stress indicates high salt stress or high osmotic stress,
respectively. Emergence of cotyledons was used as a germination
criterium. The number of germinated seeds was expressed as a
percentage of total number of seeds planted after 7 days. For
root elongation analysis, vertically grown seedlings with 1–1.5 cm
long root were transferred onto a MS vertical plate supplemented
with or without stress agents (200 mM NaCl and 20% PEG).
Root length was measured 15 days after transfer. Root length of
seedlings under stress conditions was expressed as a percentage
of their respective controls grown on normal MS medium. All
stress analysis experiments were conducted three times and each
contained 3 biological repeats. For drought test with soil-grown
plants, 4 week old seedlings were subjected to drought stress
by withholding water supply for 21 days and then re-watered.
For salt and osmotic stress, 3 week old plants were irrigated
with either half strength MS liquid (control) or half strength MS
liquid supplemented either with 200 mM NaCl or 20% PEG to
impose stress for 15 days at 2 day intervals and then harvested for
analysis. The chlorophyll, proline, and malondialdehyde (MDA)
content in control or stress treated plants were determined by the
methods reported previously by Lichtenthaler (1987), Bates et al.
(1973), and Heath and Packer (1968), respectively.

Water Loss and Relative Water Content
Analysis
Rosette leaves of 3 week old seedlings were detached, weighed and
placed on paper under the fume hood to administrate drought
stress. Fresh weights of rosette leaves were measured each hour
for 5 h. Water loss was calculated as the loss in fresh weight

of the samples. For relative water content analysis, the root
from WT and the HvPIP2;5 OE lines were excised and treated
either with 200 mM NaCl or 20% PEG or deionized water
after measuring the fresh weight. After 24 h of incubation, the
tissues were weighed again for their turgid weight and then dried
completely to obtain dry weight. The root RWC was calculated
by the following formula; RWC (%) = [(fresh weight − dry
weight)/(turgid weight− dry weight)]× 100 (Weatherley, 1950).

Reactive Oxygen Species Analysis and
Antioxidant Enzyme Activity Assay
In situ detection of superoxide by nitro blue tetrazolium
(NBT) staining and hydrogen peroxide by 3, 3’diaminobenzidine
(DAB) staining was performed according to methods previously
described by Rao and Davis (1999) and Ramel et al. (2009). For
this, 3 week old seedlings were grown on MS medium with 0,
100, 200 mM NaCl and the third leaf from the top was used.
Superoxide radicals were visualized as blue color produced by
NBT precipitation while hydrogen peroxide spots were visualized
as brown color due to DAB polymerization.

For ROS quantification and antioxidant enzyme activity assay,
3 week old plants were irrigated with either half strength MS
liquid (control) or half strength MS liquid supplemented either
with 200 mM NaCl or 20% PEG to impose stress for 15 days
at 2 day intervals and then harvested for analysis. Contents of
superoxide and hydrogen peroxide were estimated by methods
previously described by Elstner and Heupel (1976) and Sagisaka
(1976), respectively. For antioxidant enzyme assay, the samples
(200mg tissue) were homogenized in 1.5 mL of 0.1 M phosphate
buffer (pH 6.8) containing 1 mM ethylenediamine tetra-acetic
acid (EDTA) and 1% polyvinylpyrrolidone (PVP) in a chilled
pestle and mortar. The homogenate was then centrifuged at
17,000 g for 15 min at 4◦C. The supernatant was quantified by
the Bradford method (Bradford, 1976) and used for the assay
of catalase (CAT), superoxide dismutase (SOD) and glutathione
reductase (GR) (Chance and Maehly, 1955; Smith et al., 1988;
Gupta et al., 1993). For the ascorbate peroxidase (APX) activity
assay, a final concentration of 1 mM ascorbic acid was added to
the assay buffer (Nakano and Asada, 1981).

Gene Expression Analysis
Plants were treated with water for control or 300mMNaCl for 6 h
or 20% PEG for 6 h, and total RNAs were extracted using RNeasy
Plant mini Kit (Qiagen, Germany). cDNA was synthesized using
RevertAid First Strand cDNA Synthesis Kit (ThermoFisher,
USA), and resulting cDNAs were used for semi-quantitative RT
or qRT-PCR experiments for selected genes. Primer pairs used in
experiments are shown in Supplementary Table 1.

Statistical Analysis
All statistical comparisons between variances were determined by
ANOVA (Analysis of variance) and least significant differences
(LSD) between variants were calculated using Statistix 8.1
computation software. Statistically significant mean values were
denoted as ∗ (P ≤ 0.05).
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RESULTS

Sequence Analysis of HvPIP2;5
Previously, we identified several barley plasma membrane
intrinsic protein (HvPIP) genes and examined their expressions
under salt and osmotic stress conditions (Horie et al., 2011;
Katsuhara et al., 2014). For further functional and physiological
characterization, we selected HvPIP2;5 (Genbank #AB377270),
one of the HvPIP2 genes that possesses abundant transcripts
and demonstrates down-regulation of gene expression under
salt and osmotic stresses (Horie et al., 2011; Katsuhara et al.,
2014). The HvPIP2;5 gene encodes a polypeptide of 291 amino
acids with an estimated molecular mass of 30.3 KDa and an
isoelectric point of 8.28 as predicted by ExPaSy bioinformatics
tools for protein structure analysis (http://web.expasy.org/
compute_pi/). HvPIP2;5 protein shares 81% identity with
Arabidopsis PIP2;5 protein (AtPIP2;5, AT3G54820). As shown
in Supplementary Figure 1A, both HvPIP2;5 and AtPIP2;5
harbor two Asn-Pro-Ala (NPA) motifs in addition to the
highly conserved amino acid sequence “HINPAVTFG” which is
reportedly conserved among all the MIP superfamily proteins (Li
et al., 2009; Zhou et al., 2012). Conserved phosphorylation-target
serine residues were also found in the C-termini of both PIP2;5

orthologs (Supplementary Figure 1A; Hove et al., 2015). The
predicted HvPIP2;5 protein contained aquaporin-characteristic
six transmembrane spanning α-helices (H1-H6) with presence of
35.17% alpha helix, 30% random coil, 24.48% random coil, and
10.34% beta turn (Supplementary Figures 1B,C).

It has been recently reported that the barley genome comprises
at least 40 aquaporin genes with 5 PIP1 genes and 9 PIP2
genes (Hove et al., 2015). Multiple sequence alignment using all
reported HvPIP2 isoforms was performed using Mega 6 software
(http://www.megasoftware.net). As expected, HvPIP2 proteins
showed high degree of homology among them, and HvPIP2;5
was located in the same clade as HvPIP2;1 with 85% identity to
HvPIP2;1 (Supplementary Figure 1D).

Increased Tolerance of
HvPIP2;5-Expressing Yeast under High Salt
and Osmotic Stresses
A yeast expression system was employed to examine the
functions of the HvPIP2;5 gene under high saline and high
osmotic conditions. As shown in Figure 1A, yeast strains
transformed with HvPIP2;5 or empty vector and FY3 cells
could grow up to 10−6 dilution on YPD plates. In the

FIGURE 1 | Effect of HvPIP2;5 expression in yeast under salt and osmotic stresses. Yeast cells harboring the HvPIP2;5 expressing construct (HvPIP2;5), yeast

cells only (yeast), and yeast cells with the vector pYES2 only (vector only) were subjected to 200 mM NaCl and 4% PEG. Cell density was adjusted to OD-600 at 1.0

and serial dilutions were made at each step. Ten microliter of each dilution was spotted on (A) YPD plates without stress. (B) YPD plates supplemented with 200 mM

NaCl. (C) Supplemented with 4% PEG. Photographs were taken after 48 h of incubation at 30◦C.
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presence of 200 mM NaCl, pYES2 vector-containing FY3
cells grew only until 10−3 dilution, whereas the yeast strain
transformed with HvPIP2;5 was able to grow until 10−6 dilution
(Figure 1B). Similarly, empty vector containing cells grew only
to 10−3 dilution on the YPD medium supplemented with 4%
polyethylene glycol (PEG), while yeast cells with HvPIP2;5
displayed growth until 10−6 dilution under the same condition
(Figure 1C). Taken together, these results showed that HvPIP2;5
expression in yeast resulted in increased stress tolerance under
high salt and high osmotic conditions.

Enhanced Stress Tolerance of
HvPIP2;5-Overexpressing Arabidopsis
To investigate the functional roles of HvPIP2;5 in planta,
we expressed HvPIP2;5 in Arabidopsis under the control
of CaMV 35S promoter (Supplementary Figure 2A). Two
independent homozygous HvPIP2;5 overexpressing (OE) lines
were selected. PCR analysis confirmed the presence of the
HvPIP2;5 gene in transgenic plants (data not shown) and
semi quantitative RT-PCR for HvPIP2;5 expression analysis
demonstrated that transgenic lines were overexpressingHvPIP2;5
gene (Supplementary Figure 2B).

Germination under 200 mM NaCl (high salt stress) and 20%
PEG (high osmotic stress) was first tested for two independent
HvPIP2;5 OE lines along with WT. On the control medium, all
lines germinated successfully after 7 days of planting. On the
medium supplemented with 200 mM NaCl, WT germination
ratios were decreased to about 50%, whereas HvPIP2;5 OE
lines displayed a 59–60% germination ratio on salt medium
(Figures 2A,D). Also, HvPIP2;5 OE lines displayed a 41–44%
germination ratio in MS medium with 20% PEG whereas WT
germination was reduced to 18% (Figures 2A,D).

Root growth under salt and osmotic stress conditions was
also compared. In root growth assays, we observed increased
tolerance of HvPIP2;5 OE lines under salinity and osmotic
stresses compared to WT. The relative root length of HvPIP2;5
OE lines was significantly higher in the presence of 200 mMNaCl
(59–62% vs. 34%) or 20% PEG (47–50% vs. 28%) compared to
that of WT (Figures 2B,E).

We further evaluated growth performance of WT and
HvPIP2;5 OE lines during drought stress. WT and HvPIP2;5
OE plants were grown in well-watered conditions for 4 weeks
and then subjected to drought conditions. After 21 days of
water withdrawal, WT lines became wilted with retarded growth,
whereas HvPIP2;5 OE lines did not wilt as severely as WT.
Upon re-watering, WT plants were so severely damaged that
they were unable to resume growth. In contrast, the transgenic
lines were able to recover and retained survival upon rehydration
(Figure 2C).

Chlorophyll degradation is among the changes caused by
salt and osmotic stresses. No remarkable differences were
observed between WT and HvPIP2;5 OE lines grown under
control conditions; however, after stress treatments with 200
mM NaCl or 20% PEG, HvPIP2;5 OE lines showed less
chlorophyll degradation when compared withWT.Measurement
of chlorophyll contents of stress-treated plants confirmed the

better retention of chlorophyll A in OE lines than in WT
(Figure 2F). WT under salinity stress with 200 mM NaCl
contained only 23% of chlorophyll A levels under normal
conditions, while OE lines under salt stress had largely higher
levels of chlorophyll A retention (27–43%). Additionally, osmotic
stress with 20% PEG caused 51 and 25–31% chlorophyll A loss in
WT and HvPIP2;5 OE, respectively (Figure 2F).

Low Water Loss and High Water Retention
in HvPIP2;5 Overexpressing Lines under
Stresses
Dehydration tolerance in HvPIP2;5 lines was assessed by
measuring the water loss percentage. For this, rosette leaves from
WT and HvPIP2;5 OE lines were detached, placed on paper for
dehydration and fresh weight measured. After 5 h of dehydration,
the leaves of WT plants lost ∼45% of their original fresh weight,
whereas leaves of the HvPIP2;5 OE lines lost only about 30–35%
from their initial fresh weight (Figure 3A).

In addition, relative water content (RWC) was measured from
the root tissues of WT and HvPIP2;5 OE lines under salt or
osmotic stress. Under salt stress with 200 mM NaCl, WT lines
held 68.1% RWC, whereasHvPIP2;5OE lines kept 75–77% RWC
(Figure 3B). Likewise, OE lines contained largely higher RWC
than did WT under osmotic stress with 20% PEG (Figure 3B).

Reduction of Oxidative Stress in HvPIP2;5

Overexpressing Lines under stresses
Reactive oxygen species (ROS) are generated in plants
under drought, salt, and temperature stresses. Using
nitro blue tetrazolium (NBT) staining for superoxide and
diaminobenzidine (DAB) staining for hydrogen peroxide, we
measured the levels of ROS in WT and HvPIP2;5 OE lines under
high salt (200 mM NaCl) and high osmotic stress (20% PEG).
Compared to WT, the HvPIP2;5 OE lines showed significantly
weaker NBT staining and less O−

2 amount under osmotic or salt
stress conditions (Figures 4A,B). Similarly, DAB staining and
quantification of H2O2 content revealed lower amounts of H2O2

in the OE lines than inWT after NaCl treatment (Figures 4C,D).
However, HvPIP2;5 OE lines did not seem to display very
significant reduction in H2O2 levels after PEG treatment when
compared to WT.

Malondialdehyde (MDA) is an end product of lipid
peroxidation of cell membrane lipids and a good indicator
of oxidative damage (Diao et al., 2011). After salt stress (200
mM NaCl) and osmotic stress (20% PEG), MDA content was
significantly lower in HvPIP2;5 OE lines than in WT, which
implicates lesser membrane damage in HvPIP2;5 OE lines
(Figure 4E). These results suggested that enhanced stress
tolerance in HvPIP2;5 OE lines might be due, at least in part,
to reduced levels of oxidative stress caused by salt and osmotic
stresses.

Increased Activities of ROS Scavenging
Enzymes in HvPIP2;5 Overexpressing Lines
To assess the contribution of ROS scavenging enzymes in
reduction of oxidative stress caused by salt and osmotic stresses,
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FIGURE 2 | Phenotypes of HvPIP2;5 overexpressing Arabidopsis under salt and water-deficit stresses. WT and two HvPIP2;5 overexpressing Arabidopsis

lines (OE1,OE2) were used for analysis. (A,D) Seed germination of WT and OE lines on MS media containing 200 mM NaCl or 20% PEG. The number of germinated

seeds was expressed as a percentage of total number of seeds planted. (B,E) Root elongation on WT and OE lines on MS media containing 200 mM NaCl or 20%

PEG. Pictures for root elongation comparison were taken 21 days after planting. (C) Effects of drought on WT and OE lines. Four week old seedlings were subjected

to drought stress by withholding water supply for 21 days and then re-watered. (F) Measurement of chlorophyll A in WT and OE lines after 200 mM NaCl or 20% PEG

treatment. Bars indicate standard error and significant differences between WT and OE lines were marked with asterisks (P < 0.05).

FIGURE 3 | Water loss and retention in HvPIP2;5 overexpressing Arabidopsis under water stress. (A) Comparison of water loss from detached rosette

leaves of WT and OE lines, control plants. Water loss was calculated from the loss in fresh weight of the samples. (B) Relative water content estimation in roots of WT

and OE lines after 200 mM NaCl or 20% PEG treatment. Bars indicate standard error and significant differences between WT and OE lines were marked with asterisks

(P < 0.05).

we measured the activities of catalase (CAT) and superoxide
dismutase (SOD) in WT and HvPIP2;5 OE lines under salt and
osmotic stress conditions. Although, CAT activity was elevated

in both WT and HvPIP2;5 OE lines, consistent with increase
of osmotic and saline stresses (Figure 5A), the level of increase
of CAT activity was significantly higher in HvPIP2;5 OE lines
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FIGURE 4 | Analysis of superoxide, hydrogen peroxide, malondialdehyde contents in HvPIP2;5 overexpressing lines under salt and osmotic stresses.

(A) NBT (nitro blue tetrazolium) staining for superoxide detection in WT and OE lines after NaCl treatment. (B) Quantification of superoxide contents in WT and OE

lines after 200 mM NaCl or 20% PEG treatment. (C) DAB (3, 3-diaminobenzidine) staining for hydrogen peroxide detection in WT and OE lines after NaCl treatment.

(D) Quantification of hydrogen peroxide contents in WT and OE lines after 200 mM NaCl or 20% PEG treatment. (E) Quantification of MDA (malondialdehyde) levels in

WT and OE lines after 200 mM NaCl or 20% PEG treatment. Bars indicate standard error and significant differences between WT and OE lines were marked with

asterisks (P < 0.05).

than in WT. Patterns largely similar to those found in the CAT
activity assay were observed in SOD activity assay. SOD activity
in HvPIP2;5 OE lines were higher than those in WT under salt
and osmotic stresses (Figure 5B). Interestingly, both CAT and

SOD activities in HvPIP2;5 OE lines were generally higher than
those of WT even under normal conditions.

In addition, we measured the activities of glutathione
reductase (GR) and ascorbate peroxidase (APX) in HvPIP2;5 OE
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FIGURE 5 | Activities of reactive oxygen species scavenging enzymes in HvPIP2;5 overexpressing lines under salt and osmotic stresses. (A) Activities of

catalase (CAT) in WT and OE lines after 200 mM NaCl or 20% PEG treatment. (B) Activities of superoxide dismutase (SOD) in WT and OE lines after 200 mM NaCl or

20% PEG treatment. (C) Activities of glutathione reductase after NaCl treatments in WT and OE lines. (D) Activities of ascorbate peroxidase after NaCl treatments in

WT and OE lines. Bars indicate standard error and significant differences between WT and OE lines were marked with asterisks (P < 0.05).

lines under 100 and 200 mM NaCl conditions. GR and APX are
major enzymes for the ascorbate-glutathione cycle which is an
important component of the ROS scavenging system in plants
(Pang andWang, 2010). Generally, elevated activities of APX and
GR have been shown to correlate with increased salt tolerance in
plants (Pang and Wang, 2010). The activities of GR were higher
in HvPIP2;5 OE lines than in WT under both normal and salt
conditions (Figure 5C). The activities of APX were also largely
higher in HvPIP2;5 OE lines than in WT under normal and salt
conditions (Figure 5D).

Taken together, these results indicated that reduction of
oxidative stress in HvPIP2;5 OE lines under salt and osmotic
stresses is possibly related to enhanced activities of ROS
scavenging enzymes.

Increased Levels of Proline in HvPIP2;5

Overexpressing Lines
The amino acid proline acts as an osmolytes and an antioxidant,
and high levels of proline enhance stress adaptation under
unfavorable conditions (Bates et al., 1973; Hayat et al., 2012).
Thus, we investigated expression patterns of the Arabidopsis
proline biosynthesis genes,11-Pyrroline-5-Carboxylate Synthase

1 and 2 (P5CS1 and P5CS2) in WT and HvPIP2;5 OE lines.
Real time PCR analysis revealed that gene expression levels of
P5CS1 and P5CS2 were higher in HvPIP2;5 OE lines than in
WT under salt and osmotic stresses (Figures 6A,B). We also
measured proline levels in WT and HvPIP2;5 OE lines and
found that even under normal conditions, HvPIP2;5 OE lines
demonstrated slightly higher proline levels thanWT (Figure 6C).
After salt treatment, proline levels were increased in both WT
and HvPIP2;5 OE lines with much higher increase in OE lines
than in WT (Figure 6C). Interestingly, our PEG treatment
did not seem to induce proline accumulation. Still, proline
levels remained higher in the HvPIP2;5 OE lines than in WT
(Figure 6C). This salt-induced proline accumulation correlated
with the up-regulation of P5CS1 and P5CS2 expression in
HvPIP2;5 OE lines, suggesting a possible molecular mechanism
behind the enhanced stress tolerance in HvPIP2;5 OE lines.

DISCUSSION

Water-deficit stress such as salt and osmotic stress and impede
plant growth and development by affecting plant water balance.
Aquaporins play important roles as water channels in regulating
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FIGURE 6 | Analysis of P5CS1 and P5CS2 gene expression and proline levels in HvPIP2;5 overexpressing lines under salt and osmotic stresses. The

expression levels of (A,B) P5CS1 and P5CS2 in WT and OE lines were estimated by quantitative real time PCR. Arabidopsis clatharin gene was used as an internal

control for normalization. The expression levels of each gene in WT control (calibrator) were assumed as 1. Three biological replicates were averaged and bars indicate

standard error. (C) Proline contents in WT and OE were quantified with three biological replicates. Bars indicate standard error and significant differences between WT

and OE lines were marked with asterisks (P < 0.05).

plant water status; thus, many aquaporin genes from diverse plant
species have been used in transgenic research to improve water-
deficit stress tolerance in plants (Martre et al., 2002; Cui et al.,
2008; Khan et al., 2015).

We found that overexpression of barley PIP2;5 (HvPIP2;5)
in both yeast and Arabidopsis improved tolerance to high
salt and high osmotic stresses (Figures 1–3). These improved
tolerances in HvPIP2;5 overexpressing Arabidopsis were
also observed in milder stress conditions (100 mM NaCl
and 10% PEG) (Supplementary Figures 3, 4). Increased
stress tolerance in HvPIP2;5 overexpressing Arabidopsis was
correlated with lower levels of stress-induced ROS (Figure 4
and Supplementary Figure 5), high activity of ROS scavenging
enzymes (Figure 5), higher induction of proline biosynthetic
gene expression and high levels of osmoprotectant proline
(Figure 6). In particular, HvPIP2;5 overexpressing Arabidopsis
displayed lower water loss in shoots and higher relative water
contents in roots than did WT under salt and osmotic stresses.

While HvPIP2;5 overexpression improved water-stress
tolerance in both yeast and Arabidopsis, Arabidopsis PIP2;5
(AtPIP2;5) overexpression brought about reduced osmotic
stress tolerance in Arabidopsis and tobacco (Jang et al., 2007).
These seemingly contradicting results are not uncommon. In
fact, many aquaporin overexpression studies have produced
contrasting results—aquaporin-overexpressing plants have
shown either positive or negative effects on stress tolerance
(Maurel et al., 2008; Martinez-Ballesta and Carvajal, 2014; Zhou
et al., 2014). Even overexpression of aquaporins with high
homology has resulted in different sensitivities to dehydration
stress. For example, Arabidopsis AtPIP1;2, rice RWC3, and
tobacco NtAQP1 share approximately 80% sequence identity.
Despite this, overexpression of AtPIP1;2 in tobacco has caused
reduced stress tolerance (Aharon et al., 2003) while RWC3
overexpression in rice and NtAQP1 overexpression in tomato
have shown enhanced tolerance under drought and salt stress,
respectively (Lian et al., 2004; Sade et al., 2010). In addition,
Arabidopsis pip2;2 mutants display defects in hydraulic

conductivity despite the expression of a very close homolog
AtPIP2;3 which shares >96% homology, demonstrating that
close aquaporin homologs could not function redundantly even
within the same plant (Javot et al., 2003).

Although, HvPIP2;5 and AtPIP2;5 share high sequence
homology, there are differences in gene regulation. AtPIP2;5
expression levels remain low in Arabidopsis and are only up-
regulated by drought and cold (Jang et al., 2007). However,
HvPIP2;5 is one of the highly expressed PIPs in barley which
is down-regulated by osmotic stress (Katsuhara et al., 2014).
These different patterns of gene expression might indicate the
divergent functions of PIP2;5 in Arabidopsis and barley, and may
be attributed to contrasting stress responses in HvPIP2;5 and
AtPIP2;5 overexpressors.

Another explanation for the contrasting results might lie
in the difference in protein sequence between HvPIP2;5 and
AtPIP2;5 proteins. Amino acid sequence differences are mainly
found in the N-terminus which is expected to be exposed on the
cytosol side (Walz et al., 1997; Supplementary Figures 1A, 6).
Thus, it is tempting to speculate that contrasting stress
phenotypes may be due to differences in the N-termini of
PIP2;5 proteins which may contain important motifs such as
for activity regulation, protein stability, protein interaction, or
even subcellular localization. Although transcriptional control of
aquaporins appeared to be important for physiological functions
(Alexandersson et al., 2005; Guo et al., 2006; Jiang et al.,
2016), aquaporin activity is also post-translationally regulated
by protein modification including phosphorylation (Johansson
et al., 1998; Santoni et al., 2003; Daniels and Yeager, 2005).
We have found some differences in phosphorylation sites at the
N-terminus of two PIP2;5 proteins (Supplementary Figure 6)
which might be important for PIP2;5 function. This differential
protein modification might cause variable functional activities of
PIP2;5 in plant tissue, particularly where proteins are ectopically
expressed due to constant promoter activity. It is interesting
to note that Arabidopsis PIP2;1, an AtPIP2;5 close homolog
was shown to be a drought response-negative regulator which
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is a target of ubiquitination and degradation by a RING
membrane-anchor 1 E3 ubiquitin ligase (Lee et al., 2009). Thus, it
might be possible that this kind of Arabidopsis regulation system
might function differently on the endogenous PIP2;5 (AtPIP2;5)
and the heterologous PIP2;5 (HvPIP2;5) due to the different
amino acid residues in the N-termini.

We found, in HvPIP2;5 overexpressing Arabidopsis, up-
regulation of P5CS2, high levels of proline, and increased
activities of SOD, CAT, GR, and APX with reduced levels of
ROS under drought and salt stress conditions. Particularly,
up-regulation of the key proline biosynthetic P5CS genes
coincided with increased levels of osmoprotectant proline
under salt stress (Figure 6). Proline mainly functions in
defense and turgor pressure maintenance against water-deprived
conditions (Oregan et al., 1993; Kishor et al., 1995; Khedr
et al., 2003). Thus, enhanced stress tolerance in HvPIP2;5
overexpressing plants seemed to result, at least in part,
from increased expression of proline biosynthetic genes and
elevated activities of ROS scavenging enzymes. Similar to our
findings, the overexpression of wheat TaAQP7, one of the
closest homologs of HvPIP2;5, in tobacco enhanced drought
tolerance in correlation with decreased levels of MDA and
H2O2 and increased activities of SOD and CAT enzymes
(Zhou et al., 2012). Improved osmotic stress tolerance by up-
regulation of stress-induced genes and an increase of ROS
scavenging enzyme activity suggest thatHvPIP2;5 overexpression
might sensitize transgenic plants, making the overexpressors
react faster to osmotic stress signals and eventually induce
enhanced stress defense. Thus, onemight speculate thatHvPIP2;5
aquaporins in transgenic plants might activate osmotic and
salt stress sensing or upstream steps in signaling pathways
to induce better stress-tolerance mechanism than WT under
stress conditions. Consistent with our speculation, it has been
suggested that aquaporins may be part of an osmotic stress
signaling cascade (Maurel et al., 2008); additionally, it has even
been proposed that aquaporins may act as osmosensors (Hill
et al., 2004). Further, study will be required to investigate this
possibility.

In conclusion, we have shown that HvPIP2;5 can improve
tolerance to salt and osmotic stresses when overexpressed in yeast
and Arabidopsis. Our results contrast with a previous AtPIP2;5
overexpression study where osmotic stress sensitive phenotypes
in AtPIP2;5 overexpressing plants were reported (Jang et al.,
2007). These results suggest the diversity of PIP regulation and
function in acquiring stress tolerance in plants. Further studies
should be conducted to understand the functional differences
among aquaporins for crop improvement under abiotic
stress.
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Supplementary Table 1 | Sequences of primers used in the study.

Supplementary Figure 1 | Sequence analysis and structure prediction of

HvPIP2;5 protein. (A) Alignment of full-length deduced amino acid sequences of

HvPIP2;5 and its Arabidopsis homolog, AtPIP2;5. Asterisks below the alignment

indicate identical amino acids. The MIPS domain is marked with a black bar below

the alignment. The highly conserved amino acid sequence “HINPAVTFG” and two

NPA motifs are marked with a solid-line box and a dotted-line box, respectively.

The conserved phosphorylation-target serine residues in the C-termini were

shown in bold. (B) Six predicted transmembrane helical regions (H1–H6) were

indicated with boxes in the protein sequence alignments in HvPIP2;5 and

AtPIP2;5 sequences. The prediction was made by TMPred online software. (C)

HvPIP2;5 secondary structure prediction using SOPMA online program. (D)

Phylogenetic analysis of members of barley PIP2 clade aquaporins. GenBank

accession numbers for barley PIP2 clade proteins are as follows: HvPIP2;1

(BAE02729.1), HvPIP2;2 (BAG06230.1), HvPIP2;3 (BAF33069.1), HvPIP2;4

(BAE06148.1), HvPIP2;5 (BAG06231.1), HvPIP2;7 (ADW85675.1), HvPIP2;8

(BAJ90410.1), HvPIP2;9 (BAJ92749.1), HvPIP2;10 (BAK04917.1). Neighbor-end

joining (NJ) method was applied using MEGA6 with a tree file produced by Clustal

omega. The scale bar indicates 0.2 substitutions per site.

Supplementary Figure 2 | Generation of HvPIP2;5 overexpressing

Arabidopsis. (A) Schematic illustration of the binary vector region used for

HvPIP2;5 overexpression in Arabidopsis. The complete ORF of HvPIP2;5 was

cloned in pCAMBIA-2301 vector carrying CaMV35s promoter. (B) Detection of the

HvPIP2:5 transcripts from the HvPIP2;5 overexpressing Arabidopsis lines by

semi-quantitative RT-PCR. Ubiquitin gene was used as an internal

control.

Supplementary Figure 3 | Seed germination and root growth of HvPIP2;5

overexpressing lines. (A,C) Seed germination of WT and OE lines on MS media

containing 100 mM NaCl or 10% PEG. (B,D), Root elongation on WT and OE

lines on MS media containing 100 mM NaCl or 10% PEG.

Supplementary Figure 4 | Chllorophyll and relative water contents in

HvPIP2;5 overexpressing lines. (A) Chlorophyll A contents under salt (100 mM)

or osmotic stress (10% PEG) conditions. (B) Relative water contents under salt

(100 mM) or osmotic stress (10% PEG) conditions. Bars represent means ± SE

and values with asterisks indicate significance at P < 0.05.

Supplementary Figure 5 | Analysis of superoxide, hydrogen peroxide,

malondialdehyde contents in HvPIP2;5 overexpressing lines under salt

and osmotic stresses. (A) Quantification of superoxide contents in WT and OE

lines after 100 mM NaCl or 10% PEG treatments. (B) Quantification of hydrogen

peroxide contents in WT and OE lines after 100 mM NaCl or 10% PEG treatments.

(C) Quantification of MDA (malondialdehyde) levels in WT and OE lines after 100

mM NaCl or 10% PEG treatments. Bars indicate standard error and significant

differences between WT and OE lines were marked with asterisks (P < 0.05).

Supplementary Figure 6 | Predicted phosphorylation sites in PIP2;5

proteins. Predicted phosphorylation sites in (A) HvPIP2;5 and (B) AtPIP2;5

(At3554820). Phosphorylation site prediction was carried out using NetPhos 2.0

(http://www.cbs.dtu.dk/services/NetPhos/). Peaks above the threshold line (red)

indicate the phosphorylation sites with high probability.
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