
ORIGINAL RESEARCH
published: 22 November 2016
doi: 10.3389/fpls.2016.01666

Frontiers in Plant Science | www.frontiersin.org 1 November 2016 | Volume 7 | Article 1666

Edited by:

Ann E. Stapleton,

University of North Carolina at

Wilmington, USA

Reviewed by:

Marco Scutari,

University of Oxford, UK

Gunvant Baliram Patil,

University of Missouri, USA

*Correspondence:

Rajeev K. Varshney

r.k.varshney@cgiar.org

Specialty section:

This article was submitted to

Plant Genetics and Genomics,

a section of the journal

Frontiers in Plant Science

Received: 22 August 2016

Accepted: 24 October 2016

Published: 22 November 2016

Citation:

Roorkiwal M, Rathore A, Das RR,

Singh MK, Jain A, Srinivasan S,

Gaur PM, Chellapilla B, Tripathi S, Li Y,

Hickey JM, Lorenz A, Sutton T,

Crossa J, Jannink J-L and

Varshney RK (2016) Genome-Enabled

Prediction Models for Yield Related

Traits in Chickpea.

Front. Plant Sci. 7:1666.

doi: 10.3389/fpls.2016.01666

Genome-Enabled Prediction Models
for Yield Related Traits in Chickpea
Manish Roorkiwal 1, Abhishek Rathore 1, Roma R. Das 1, Muneendra K. Singh 1, Ankit Jain 1,

Samineni Srinivasan 1, Pooran M. Gaur 1, Bharadwaj Chellapilla 2, Shailesh Tripathi 2,

Yongle Li 3, John M. Hickey 4, Aaron Lorenz 5, Tim Sutton 3, 6, Jose Crossa 7,

Jean-Luc Jannink 8 and Rajeev K. Varshney 1, 9*

1 Research Program-Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India,
2Division of Genetics, Indian Agricultural Research Institute, Delhi, India, 3 Australian Centre for Plant Functional Genomics,

University of Adelaide, Adelaide, SA, Australia, 4 The Roslin Institute and Royal (Dick) School of Veterinary Studies, The

University of Edinburgh, Easter Bush, UK, 5Department of Agronomy and Horticulture, University of Nebraska, Lincoln, OR,

USA, 6Crop Improvement, South Australian Research and Development Institute, Urrbrae, SA, Australia, 7 International Maize

and Wheat Improvement Center, Mexico, Mexico, 8 School of Integrative Plant Science, Cornell University, Ithaca, NY, USA,
9 School of Plant Biology and Institute of Agriculture, The University of Western Australia, Western Australia WA, Australia

Genomic selection (GS) unlike marker-assisted backcrossing (MABC) predicts breeding

values of lines using genome-wide marker profiling and allows selection of lines prior

to field-phenotyping, thereby shortening the breeding cycle. A collection of 320 elite

breeding lines was selected and phenotyped extensively for yield and yield related

traits at two different locations (Delhi and Patancheru, India) during the crop seasons

2011–12 and 2012–13 under rainfed and irrigated conditions. In parallel, these lines

were also genotyped using DArTseq platform to generate genotyping data for 3000

polymorphic markers. Phenotyping and genotyping data were used with six statistical

GS models to estimate the prediction accuracies. GS models were tested for four yield

related traits viz. seed yield, 100 seed weight, days to 50% flowering and days to

maturity. Prediction accuracy for the models tested varied from 0.138 (seed yield) to

0.912 (100 seed weight), whereas performance of models did not show any significant

difference for estimating prediction accuracy within traits. Kinship matrix calculated using

genotyping data reaffirmed existence of two different groups within selected lines. There

was not much effect of population structure on prediction accuracy. In brief, present

study establishes the necessary resources for deployment of GS in chickpea breeding.

Keywords: genomic prediction accuracy, genetic gain, genomic selection, chickpea, training population,

population structure, prediction models

INTRODUCTION

Chickpea (Cicer arietinum) is the second largest cultivated grain legume globally which plays vital
role in ensuring food and nutritional security in Asian and sub-Saharan African regions of the
world. Because of its higher protein content chickpea serves as an important source of protein
in vegetarian diet. Chickpea also fits well in crop rotation programs because of its ability to fix
atmospheric nitrogen and improve the soil nutritional profile. It is a self-pollinated, diploid (2n =

16) annual crop with genome size of ∼740 Mbp (Varshney et al., 2013a). Currently the chickpea is
grown over 14.80 Mha area across the 55 countries globally, accounting for an annual production
of 14.24 million tons (FAOSTAT, 2014). Average chickpea productivity is<1 t ha−1 which is much
lower than its potential yield of 6 t ha−1 under optimum growing conditions, due to its exposure to

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
https://doi.org/10.3389/fpls.2016.01666
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.01666&domain=pdf&date_stamp=2016-11-22
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:r.k.varshney@cgiar.org
https://doi.org/10.3389/fpls.2016.01666
http://journal.frontiersin.org/article/10.3389/fpls.2016.01666/abstract
http://loop.frontiersin.org/people/131300/overview
http://loop.frontiersin.org/people/205359/overview
http://loop.frontiersin.org/people/370225/overview
http://loop.frontiersin.org/people/230752/overview
http://loop.frontiersin.org/people/131969/overview
http://loop.frontiersin.org/people/380819/overview
http://loop.frontiersin.org/people/191879/overview
http://loop.frontiersin.org/people/50360/overview
http://loop.frontiersin.org/people/25772/overview


Roorkiwal et al. Genome Enabled Prediction in Chickpea

several biotic and abiotic stresses including Ascochyta blight,
Fusarium wilt, drought, heat, and salinity. Among these stresses,
terminal drought is one of the major yield constraints that solely
is responsible for about 40% yield loss (Ahmad et al., 2005).
Conventional breeding approaches coupled with genomics-
assisted breeding have been successful to some extent in
enhancing the productivity from 0.60 t ha−1 in 1960s to
0.96 t ha−1 in 2014 (FAOSTAT, 2014). However, this is not
enough to meet the demand for exponentially growing world
population. Therefore, there is a need to deploy genomics-
assisted breeding approaches e.g., genomic selection (GS) for
chickpea improvement (Varshney et al., 2005).

Recent advances in the next generation sequencing (NGS)
and high-throughput genotyping technologies provide an
opportunity for translating genomics information in crop
breeding (Varshney et al., 2014a, 2015). Until few years back
chickpea was considered as one of the orphan crops with respect
to genomic resources. At present, large scale genome resources
including simple sequence repeats (SSRs; Thudi et al., 2011),
single nucleotide polymorphisms (SNPs; Hiremath et al., 2012),
genetic maps, and genotyping platforms are available in chickpea
(Varshney et al., 2012a). In order to exploit the potential of
SNP markers in the molecular breeding applications, highly
informative SNP markers were converted in to cost-effective
VeraCode assays to be used in chickpea genetics and breeding
applications (Roorkiwal et al., 2013). In addition, very recently
draft genome sequences have also become available for kabuli
(Varshney et al., 2013a) and desi (Jain et al., 2013; Ruperao et al.,
2014) type. In addition, very recently draft genome for wild
chickpea (C. reticulatum) has also become available (Gupta et al.,
2016).

In terms of translational genomics for agriculture, improved
breeding lines have been developed for drought tolerance
(Varshney et al., 2013b) and disease resistance (Varshney et al.,
2013c) by usingmarker-assisted backcrossing (MABC) approach.
For addressing complex traits such as yield under rainfed
conditions that are generally governed by many small effect
QTLs, MABC is not a very effective approach (Ribaut and
Ragot, 2007), whereas GS approach using genome-wide marker
profile has been suggested as a potential breeding approach
for developing superior lines to address such complex traits
(Meuwissen et al., 2001; Varshney et al., 2012b).

In the GS approach, testing (prediction) population are not
phenotyped but genotyped, and therefore breeding cycle time
is reduced and genetic gain per unit time is enhanced. In
plants, Bernardo and Yu (2007) were the first to show the
utility of GS in terms of genetic gains as compared to marker-
assisted selection using simulated data. Since the seminal work of
Meuwissen et al. (2001) on GS, a number of studies on assessing
the prediction accuracy in different economically important
crops, using different marker platforms and marker densities
[including genotyping by sequencing, (GBS)] applying different
parametric and non-parametric statistical models, have been
published so far (de los Campos et al., 2009, 2010; Crossa
et al., 2010, 2011; Jannink et al., 2010; González-Camacho et al.,
2012; Dawson et al., 2013). Both, simulation and empirical
studies have shown that GS has higher prediction accuracy than

standard pedigree-based prediction, and most of the benefits of
GS arise from obtaining accurate predictions at early stages of the
breeding cycle (i.e., rapid cycling of selection). Choice of model,
the size of the training population, the heritability of the trait,
the span of linkage disequilibrium (LD), the marker density, and
the strength of the genetic relationships between the training and
validation populations, are some other majors factors known to
affect genomic predictions.

Majority of GS studies in crops had emphasis on estimation
of prediction accuracy using simulated data and suggested up
to 40% better efficiency than marker assisted selection (MAS;
Bernardo and Yu, 2007). In the case of winter wheat, efficiencies
of selecting line using phenotypic selection (PS), conventional
MAS, and GS across 13 different agronomic traits were compared
and average prediction accuracy for GS was found 28% higher
as compared to MAS, as accurate as PS for selecting the lines
(Heffner et al., 2011). Similarly, in the case of pea, Illumina
GoldenGate SNPs chip has been used for assessing prediction
values in the pea diversity panel comprising of 367 accessions
(Burstin et al., 2015). In rice, GS analysis was performed on
363 elite breeding lines using five-fold GS cross-validation
(Spindel et al., 2015). GS has been effectively used in the
hybrid breeding programs of wheat (Rutkoski et al., 2012; Zhao
et al., 2014), maize (Windhausen et al., 2012), and rice (Xu
et al., 2014). Empirical selection experiment using a maize bi-
parental with temperate and tropical maize indicated the clear
advantages of GS in terms of genetic gains per unit of time
(years) over marker assisted recurrent selection (MARS) and/or
conventional selection. For grain yield and stover quality traits,
GS resulted in 14–50% gains than MARS (Massman et al.,
2013). Beyene et al. (2015) compared GS with pedigree selection
across eight biparental tropical maize populations evaluated in
drought stressed environments, and reported that the average
gain per cycle from GS across the eight bi-parental populations
was 0.086Mg ha−1. Semagn et al. (2015) reported that the
average gain per cycle using MARS across 10 populations was
0.045 Mg ha−1 under drought stressed conditions. Based on
the potential of GS for developing superior lines with higher
yield under rainfed conditions and enhancing the genetic gains
ultimately in chickpea breeding, the present study was planned
to identify the suitable GS models for predicting breeding
values using genome wide markers on elite breeding lines in
chickpea.

MATERIALS AND METHODS

Phenotyping
A set of 320 elite breeding lines from the International Chickpea
Screening Nursery (ICSN), which was tested for yield and yield
related traits at several locations for many years were used in this
study (Table S1). These lines included both desi and kabuli seed
types. The whole set was phenotyped extensively for several yield
and yield related traits at two locations in India namely, IARI,
New Delhi, and ICRISAT, Patancheru during crop seasons 2011–
12 and 2012–13. An incomplete block design was planted with
three replications per environment under irrigated and rainfed
condition. Due to seed limitation IARI during year I (2011–12)
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undertook only one rainfed experiment. However, during year II
(2012–13), because of heavy rain at the time of sowing both the
seasons were treated as irrigated.

Following four traits were selected for detailed analysis for
each year at both the locations.

• Days to flowering (DF): Number of days to achieve 50%
flowering in whole plot.

• Days to maturity (DM): Number of days to achieve the
maturity in whole plot.

• 100 seed weight (SDW): Plants were harvested and random
100 seeds were weighed.

• Seed yield (SY): Plants from each plot were harvested and
weighed to measure the seed yield.

All these four traits were further used for random cross validation
prediction using GS models.

DNA Isolation and Marker Genotyping
Plant leaves were collected from 15 days old seedlings and
genomic DNA was isolated using high throughput mini-DNA
extraction method as described by Cuc et al. (2008). DNA was
assessed using spectrophotometer (Shimadzu UV160A, Japan)
for quantification and quality. On the basis on the quality, 315
lines (162 entries of desi and 153 entries of kabuli type) were
selected for genotyping.

All selected lines were genotyped using sequencing-based
DArT genotyping platform known as DArTseq as described in
Sansaloni et al. (2011). In brief, complexity reduction methods
optimized at DArT P/L were used. Site specific barcoded
adapters were used for sequencing the DNA samples on a
single lane of Illumina Genome Analyzer IIx (Illumina Inc.,
San Diego, CA). FASTQ files resulting from the sequencing run
were filtered, split into their respective target (individual) data
using barcode splitting script and aligned. Using an analytical
pipeline developed by DArT P/L, alignment data was processed
to produce “DArT score” tables and “SNP” tables (Sansaloni
et al., 2011). The DArTseq method deploys sequencing of the
representations on the NGS platforms and generated two types of
data (i) SilicoDArTs calculated as dominant (presence/absence)
markers, and (ii) SNPs in fragments present in the representation
(http://www.diversityarrays.com/dart-application-dartseq-data-
types).

Data Analysis
Phenotyping data on 320 lines generated at IARI and ICRISAT
was curated and used for further analysis. Analysis of Variance
(ANOVA) for phenotypic data was performed for the targeted
traits (DM, DF, SDW, and SY) using SAS software version 9.4
(SAS Institute, 2013). Best Linear Unbiased Predictors (BLUP) of
entries were estimated considering replication as fixed and nested
block effect and entry factor as random using model

yijk = µ+ ri +
(

r/b
)

ij
+ gk + εijk (1)

Where yijk is the phenotypic trait analyzed; µ is the grand

mean; ri is the fixed effect of replication i;
(

r/b
)

ij
is the random

effect of block j nested with replication i with N
(

0, Iσ 2
b

)

; gk

is the random effect of entry k with N
(

0, Iσ 2
g

)

and εijk is the

random residual effect with N
(

0, Iσ 2
ε

)

. Broad-sense heritability
was calculated for each trait using method for unbalanced trials
(Piepho and Möhring, 2007). The coefficient of variations at
phenotypic and genotypic level variationwas calculated following
Johnson et al. (1955). Combined ANOVA for each location
was performed across different years using residual maximum
likelihood (REML) procedure by making the error variances
homogeneous. The model used to calculate the adjusted means
across environments was

yijkl = µ+ ei + (e/r)ij +
(

e/r/b
)

ijk
+ gl +

(

eg
)

il
+ εijkl (2)

Where yijkl is the phenotypic trait analyzed; µ is the grand mean;
ei is the fixed effect of year i; (e/r)ij is the random effect of

replication j in year i with N
(

0, Iσ 2
r

)

;
(

e/r/b
)

ijk
is the random

effect of block k nested with replication j in year iwith N
(

0, Iσ 2
b

)

;

gl is the random effect of entry l with N
(

0, Iσ 2
g

)

;
(

eg
)

il
is the

random effect of the interaction between entry l year i with N
(

0, Iσ 2
eg

)

and εijkl is the random residual effect with N
(

0, Iσ 2
ε

)

.

Genotyping data for 3000 polymorphic markers including
SilicoDArTs and DArT-SNP markers were analyzed collectively
for 315 elite lines. Marker statistics such as polymorphism
information content (PIC) value, gene diversity, minor allele
frequency (MAF) and missing percentage were calculated
using PowerMarker V3.0 (Liu and Muse, 2005). DARwin-5.0
program (Perrier et al., 2003) was used to construct a tree
using unweighted neighbor joining method to examine the
genetic structure and diversity existing in population undertaken.
Linkage disequilibrium was measured by the parameter r2

calculated as

r2 =
(PABPab − PAbPaB)

2

PAPBPaPb
(3)

where pA, pB, pa, and pb are the frequencies of alleles A, B, a, and
b in the population. Haplotype frequencies of allele combinations
are denoted as pAB, pAb, paB, and pab, respectively. r2 and LD
decay were computed using an R package Synbreed.

Prediction Models
Six different models including Ridge Regression Best
Linear Unbiased Predictor (RR-BLUP), Kinship GAUSS
(semiparametric model), Bayes Cπ, Bayes B, Bayesian Least
Absolute Shrinkage, and Selection Operator (Bayesian LASSO)
and Random Forest (RF) (machine learning algorithm) were
used for prediction of GEBVs. RR-BLUP assumes that all
markers have common variances with small but non-zero
effect and therefore shrinks equally for each marker effect
(Meuwissen et al., 2001). Bayesian based methods such as Bayes
Cπ assumes a common marker effect variance for all markers
which follows a scaled inverse prior with parameters (Habier
et al., 2011). Bayes B method assumes that only a proportion
of the markers explain total genetic variance and most other
markers explain zero variance (Meuwissen et al., 2001). Bayes
B method considers every marker for estimating the variance
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using a prior distribution that assumes that this variance is
small and has a predefined probability. Bayesian LASSO method
estimates a marker specific shrinkage based on a regularization
parameter. The RF algorithm is a collection of classifications
on bootstrap subsets aiming to capture non-additive effects
(Heslot et al., 2012). RF was implemented using the R package
“RandomForest” (Liaw and Wiener, 2002). All analyses were
performed in R 3.0.2 (R Core Team, 2013).

Effect of Missing Marker Data and MAF on
Prediction Accuracy
In order to assess the impact of marker attributes viz missing
marker data and MAF on prediction accuracies, genotyping data
for 315 elite lines along with the phenotyping data for 100 seed
weight for ICRISAT location was taken under consideration.
Nine different combinations of missing marker data and MAF
(including markers in combination with 0%, ≤10%, and ≤30%
missing data, and 0%, ≥5%, and ≥10% MAF) were used with
all six different GS models for estimating prediction accuracies.
For calculating the prediction accuracy, marker effects were
calculated using standard linear model using following equation:

y = Fψ + Xβ + e (4)

where y denotes the vector of adjusted phenotypes of order and
ψ is a px1 vector of fixed effects, F is a known incidence matrix
corresponding to fixed effects, X is a matrix of genotypes for
markers, β is the vector of marker effects and e is a vector of
random residual terms.

Estimation of Model Prediction Accuracy
For fitting the GS model, separate analyses were performed
for four yield and yield related traits viz. DM, DF, SDW, and
SY for both locations and seasons as well. To estimate the
prediction accuracy of GEBV, the approach of cross-validation
(CV) was employed. Five-fold cross-validation was performed to
predict the breeding values in different environments and also
in pooled environment conditions. Five-fold CV was performed
by randomly assigning 80% of the lines as training population
and the remaining 20% as testing candidates. The whole process
was repeated 20 times, resulting in a total of 100 CV runs.
The prediction accuracy was measured as Pearson correlation
between the observed adjusted phenotypic values (i.e., BLUP)
and the prediction values computed by the different models.

Effect of Population Structure on
Prediction Accuracy
In order to assess the effect of population structure and
population size on GEBV/prediction accuracy, population
structure was considered as one of the factor for calculating
the prediction accuracy. With genotyping data on 315 elite
lines, number of natural genetic groups (K) and the distribution
of individuals among these groups were estimated using
STRUCTURE 2.3 (Pritchard et al., 2000). Based on the number
of groups identified using diversity and STRUCTURE analysis,
GEBVs were calculated for each group. Prediction accuracy were

estimated individually for each group and population structure,
K matrix were included during the prediction accuracy analysis.

RESULTS

Descriptive Interpretation of Phenotyping
Data
Phenotyping data for two different treatments viz. irrigated (IR)
and rainfed (RF) at ICRISAT and IARI for five seasons were used
to calculate coefficient of variation (CV), genetic variance (GV),
phenotypic coefficient of variation (PCV), genotypic coefficient
of variation (GCV), and broad sense heritability (H2) and
environmental coefficient of variation (ECV) for yield and yield
related traits viz. Days to flowering (DF); Days to maturity
(DM); 100 seed weight (SDW; g); Seed yield (SY; g per plot;
Table 1). Significant differences were observed in DF and DM
pattern of both the locations (ICRISAT and IARI) with higher
values in IARI. High broad sense heritability up to 0.99 was
observed for all the four traits (Table 1). The highest variability
(GCV and PCV) was recorded for SY and the lowest for DM
(Table 1).

Polymorphism Features and Linkage
Disequilibrium across the Population
As mentioned in the Methods section, 315 chickpea lines
were selected on the basis of genomic DNA quality from a
set of 320 elite breeding lines. These lines were genotyped
using sequencing-based DArT genotyping platform known as
DArTSeq. In total 1432 SilicoDArTs and 1568 DArT-SNP
markers were found polymorphic across the lines. As expected
these lines are elite breeding lines with very low genetic diversity,
estimated PIC value ranged from 0.01 to 0.38 for SilicoDArTs
across these genotypes with a mean PIC value of 0.20 (Figure 1A;
Table S2). Gene diversity of these SilicoDArTs across these lines
ranged from 0.01 to 0.50 with a mean gene diversity value of 0.24
(Figure 1A; Table S2). However, in the case of DArT-SNPs, the
PIC value ranged from 0.01 to 0.38 across the genotypes with a
mean PIC value of 0.19 (Figure 1B; Table S3).

Marker sequences for SilicoDArTs and DArT-SNPs were
aligned to the kabuli reference genome (Varshney et al., 2013a)
for identifying the physical map position of markers and selected
set of 970 markers [combined set of SilicoDArTs (633) and
DArT-SNPs (337)] were used for LD analysis. Using r2 = 0.2
as threshold, LD was found extending up to 500–2500 kb on
CaLG02 and CaLG04 (Figure 2; Figure S1). One huge LD block
was observed on CaLG04 (Figure 2). The heat map developed
using kinship matrix showed a very close relationship within
these lines and reaffirms existence of two different groups existing
among these 315 lines that is possibly attributed by two different
seed types of chickpea; i.e., desi and kabuli (Figure 3).

Effect of Missing Marker Data and Minor
Allele Frequency on Prediction Accuracy
Different prediction accuracies were obtained with 9 different
combination of percentage of missing marker data and minor
allele frequency (MAF; Table 2). The best prediction accuracy
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TABLE 1 | Analysis of variance (ANOVA) and genetic estimates for days to flower, days to maturity, 100 seed weight and seed yield.

Trait Seasons Mean SD CV GV H2 GCV PCV ECV

Days to flowering (DF) ICRISAT-IR-12 38.93 2.13 5.48 30.20 0.95 14.12 15.14 5.48

ICRISAT-IR-13 42.60 2.29 5.39 30.62 0.94 12.99 14.06 5.39

ICRISAT-RF-13 44.76 2.10 4.69 8.29 0.84 6.43 7.96 4.69

IARI-IR-12 66.46 0.81 1.22 232.01 0.99 22.92 22.95 1.22

IARI-IR-13 65.48 0.33 0.50 606.18 0.99 37.60 37.61 0.50

Days to maturity (DM) ICRISAT-IR-12 103.11 2.05 1.99 1.73 0.54 1.28 2.36 1.99

ICRISAT-IR-13 93.93 1.86 1.98 14.63 0.92 4.07 4.53 1.98

ICRISAT-RF-13 91.62 2.60 2.84 8.98 0.79 3.27 4.33 2.84

IARI-IR-12 153.24 0.93 0.61 11.74 0.96 2.24 2.32 0.61

IARI-IR-13 153.16 0.18 0.12 12.29 0.99 2.29 2.29 0.12

100 seed weight (SDW; g) ICRISAT-IR-12 26.65 1.17 4.39 57.16 0.99 28.36 28.70 4.39

ICRISAT-IR-13 28.44 1.69 5.95 67.32 0.99 28.84 29.45 5.95

ICRISAT-RF-13 28.96 2.29 7.92 68.81 0.98 28.64 29.72 7.92

IARI-IR-12 32.29 0.52 1.62 68.59 0.99 25.65 25.70 1.62

IARI-IR-13 27.12 0.35 1.31 67.99 0.99 30.40 30.43 1.31

Seed yield (SY; g per plot) ICRISAT-IR-12 122.13 13.55 11.10 1318.21 0.95 29.73 31.73 11.10

ICRISAT-IR-13 134.47 18.94 14.09 385.92 0.76 14.61 20.29 14.09

ICRISAT-RF-13 119.23 14.20 11.91 567.20 0.89 19.97 23.26 11.91

IARI-IR-12 140.50 35.42 25.21 2854.12 0.82 38.03 45.62 25.21

IARI-IR-13 233.98 5.20 2.22 10304.00 0.99 43.38 43.44 2.22

SD, Standard deviation; CV, Coefficient of variation; GV, Genetic Variance; GCV, Genotypic Coefficient of Variation; H2, Heritability (broad sense); PCV, Phenotypic Coefficient of Variation;

ECV, Environmental Coefficient of variation.

(0.713) was obtained for RandomForest model with combination
of markers including all markers with 0% missing marker data
and≥5%MAF, whereas lowest accuracy (0.655) was obtained for
Bayes B model on including markers with 0% missing marker
data and ≥10% MAF (Table 2). However, for further analysis
combination of genotyping data with≤30%missing marker data
and marker data with≥10%MAF was used based on consistency
of results on repetitive analysis.

Cross Comparison of Performance of
Different GS Model
Six different statistical methods used in the present study for each
of the four traits, were selected on the basis of their demonstrated
ability to estimate the GEBVs. Performance of models was found
to vary across the different seasons and traits, however there were
not much difference in performance of models within a season
for an individual trait (Table 3). In general, high prediction
accuracies were observed for DF and SDW, however prediction
accuracies for DM and SY were varying for different locations
and seasons (Table 3; Figure S2). For DF and SDW, highest
prediction accuracies were obtained for ICRISAT-IR-12 and least
for ICRISAT-RF-13. In case of DM and SY highest prediction
accuracies were obtained for ICRISAT-IR-13 and IARI-IR-12,
respectively (Table 3).

There was no overall best performer or underperformer
model while estimating prediction accuracies. For instance, in DF
trait, Kinship Gauss model was found best performer for three

seasons (ICRISAT-IR-13: 0.707; ICRISAT-RF-13: 0.635; IARI-IR-
12: 0.701) and for the rest two seasons Random Forest model
was found producing highest prediction accuracies (IARI-IR-
13: 0.683; ICRISAT-IR-12: 0.851). While the least prediction
accuracy was observed with RR BLUP [ICRISAT-RF-13: 0.556;
IARI-IR-12: 0.663 (equivalent to Bayes Cp); ICRISAT-IR-12:
0.823], Bayes B (ICRISAT-IR-13: 0.647); IARI-IR-13: 0.673
(equivalent to Bayes LASSO; Table 3).

Impact of Population Structure on
Estimation of GEBVs
Prediction accuracies were estimated for all 315 elite lines
altogether considering them as a single set as well as separately
as two groups by considering desi and kabuli type. Further, to
estimate the effect of population structure on the prediction
accuracy, prediction accuracies were also estimated by taking the
population structure in account. It was observed that prediction
accuracies calculated individually for desi and kabuli seed type
varied to a large extent when compared with the prediction
accuracy for all 315 lines. For instance, in the case of DF,
maximum prediction accuracy observed was 0.851, whereas
when calculated individually using groups of desi and kabuli lines
showed significantly lower prediction accuracy values (0.681 and
0.573, respectively; Table 4). Similarly for DM and SY, variations
in prediction accuracies were observed when it was calculated
separately for desi and kabuli type.
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FIGURE 1 | Estimation of polymorphism information content (PIC) value and gene diversity of markers used (A) SilicoDArTs (B) DArT-SNP markers.

FIGURE 2 | Genome-wide LD heat map constructed using SilicoDArTs and DArT-SNP markers across the 315 elite lines of chickpea. Linkage

disequilibrium was calculated using r2 = 0.2 as threshold. Genome-wide LD extend up to 500–2500 kb in CaLG02 and CaLG04. One huge LD block on CaLG04 was

observed.

However, while estimating the prediction accuracy for
SDW, the prediction accuracies were consistently lower when
calculated for desi and kabuli seed type in comparison to
single set of 315 lines. For instance, the highest prediction
accuracy obtained for SDW was 0.912 when calculated
using 315 elite lines as single group, while prediction
accuracies when calculated individually for desi and kabuli
groups, were found reducing at a lesser extent; i.e., 0.742
and 0.727, respectively, in comparison to other traits
(Table 4).

Similarly to assess the effect of population structure on the
prediction accuracy, calculated “K” matrix was included in the
script as one of the variable while calculating the GEBVs. The
prediction accuracies estimated by considering the population
structure showed slight increase in value (Figure S2). In addition
to prediction accuracy, another measuring factor, regression
coefficients were calculated for all traits across both locations
by considering 315 elite lines together as one group and desi
and kabuli groups separately. For data from three seasons at
ICRISAT, regression coefficients for DM, DF, and SY varied
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FIGURE 3 | Genetic relatedness among the 315 elite lines. Distance matrix was calculated using average linkage clustering. Heat map of the kinship matrix and

dendrogram analysis using genotyping data clearly depicts the existence of two different group among the elite lines.

TABLE 2 | Effect of missing marker data and minor allele frequency on prediction accuracy.

Method 0% missing 0% missing 0% missing ≤10% missing ≤10% missing ≤10% missing ≤30% missing ≤30% missing ≤30% missing

- 0% MAF - ≥5% MAF - ≥10% MAF - 0% MAF - ≥5% MAF - ≥10% MAF - 0% MAF - ≥5% MAF - ≥10% MAF

Ridge Regression 0.681 0.679 0.669 0.669 0.676 0.671 0.660 0.674 0.670

Kinship Gauss 0.697 0.710 0.702 0.692 0.701 0.695 0.688 0.698 0.702

Bayes Cπ - 0.678 0.662 - 0.688 0.674 - 0.668 0.683

Bayes B - 0.674 0.655 - 0.680 0.660 - 0.663 0.663

Bayes LASSO 0.660 0.681 0.666 0.684 0.671 0.665 0.672 0.657 0.680

Random Forest 0.694 0.713 0.705 0.709 0.694 0.693 0.698 0.689 0.697

Miss, Missing marker data; MAF, Minor Allele Frequency.

significantly when compared at whole population level and at
individual group level, like prediction accuracies. However, the
regression coefficients were found comparatively stable for SDW
(Figure 4A). In a similar manner, two season’s data at IARI
showed variable regression coefficients for DM, DF, and SY
when dealing with desi, kabuli groups and all lines separately
(Figure 4B).

DISCUSSION

Integration of genomics tools in conventional breeding is offering
efficient, cost, and time effective, precise solution for agriculture
to fulfill current and future food demands as well as crisis arising

due to changing global environment. In order to enhance the
chickpea productivity, efforts are being done with conventional
and modern breeding approaches. At molecular level various
advances have been made using available resources. For instance
using linkage mapping a genomic region “QTL-hotspot” was
identified on CaLG04 of chickpea that harbor several QTLs for
controlling the drought tolerance related root traits and several
other yield related traits (Varshney et al., 2014b). Following
studies have indicated the role of several small effect QTLs for
conferring drought tolerance in chickpea (Jaganathan et al., 2015;
Kale et al., 2015). Successful identification andmapping of several
drought responsive gene(s)/genomic region(s) (Roorkiwal et al.,
2014; Thudi et al., 2014) further widen the scope of selection of
genomic regions for breeding purposes. Efforts to introgress the
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TABLE 3 | Comparative analysis of prediction accuracies of different GS models for four yield related traits across chickpea population.

ICRISAT-IR-13 ICRISAT-RF-13 IARI-IR-13 IARI-IR-12 ICRISAT-IR-12

Methods Correlations SE Correlations SE Correlations SE Correlations SE Correlations SE

Days to flowering (DF) Ridge Regression 0.665 0.005 0.556 0.006 0.674 0.005 0.663 0.006 0.823 0.003

Kinship Gauss 0.707 0.005 0.635 0.005 0.673 0.005 0.701 0.006 0.847 0.003

Bayes Cπ 0.663 0.005 0.564 0.006 0.675 0.005 0.663 0.006 0.824 0.003

Bayes B 0.647 0.005 0.560 0.006 0.673 0.005 0.664 0.006 0.825 0.003

Bayes LASSO 0.666 0.005 0.562 0.006 0.673 0.005 0.664 0.006 0.827 0.003

Random Forest 0.693 0.005 0.626 0.006 0.683 0.004 0.695 0.006 0.851 0.003

Days to maturity (DM) Ridge Regression 0.794 0.004 0.478 0.006 0.301 0.008 0.325 0.009 0.374 0.007

Kinship Gauss 0.808 0.004 0.539 0.006 0.304 0.008 0.320 0.008 0.394 0.007

Bayes Cπ 0.799 0.004 0.495 0.006 0.304 0.009 0.324 0.009 0.379 0.007

Bayes B 0.798 0.004 0.510 0.006 0.289 0.009 0.331 0.009 0.395 0.007

Bayes LASSO 0.797 0.004 0.476 0.006 0.301 0.008 0.329 0.009 0.376 0.007

Random Forest 0.815 0.004 0.531 0.007 0.254 0.009 0.300 0.009 0.407 0.007

100 seed weight (SDW) Ridge Regression 0.893 0.002 0.797 0.004 0.816 0.004 0.898 0.002 0.909 0.002

Kinship Gauss 0.893 0.002 0.798 0.003 0.817 0.004 0.909 0.002 0.912 0.002

Bayes Cπ 0.892 0.002 0.797 0.003 0.817 0.004 0.901 0.002 0.909 0.002

Bayes B 0.887 0.002 0.792 0.004 0.816 0.004 0.903 0.002 0.908 0.002

Bayes LASSO 0.892 0.002 0.799 0.004 0.817 0.004 0.900 0.002 0.909 0.002

Random Forest 0.897 0.002 0.801 0.004 0.815 0.004 0.909 0.001 0.912 0.002

Seed yield (SY) Ridge Regression 0.523 0.006 0.172 0.008 0.166 0.008 0.604 0.005 0.222 0.008

Kinship Gauss 0.522 0.006 0.148 0.008 0.138 0.008 0.602 0.005 0.218 0.008

Bayes Cπ 0.520 0.007 0.175 0.008 0.163 0.008 0.602 0.005 0.216 0.008

Bayes B 0.517 0.006 0.171 0.008 0.168 0.008 0.597 0.005 0.209 0.009

Bayes LASSO 0.524 0.006 0.182 0.008 0.163 0.007 0.598 0.006 0.216 0.008

Random Forest 0.493 0.006 0.186 0.008 0.165 0.009 0.606 0.005 0.205 0.009

SE, Standard Error.

identified “QTL-hotspot” in to elite chickpea cultivar JG 11 using
MABC approach have resulted in development of improved
introgression lines with higher root traits [rooting depth (RDp),
root length density (RLD), and root dry weight (RDW)] as
compared to the recurrent (JG 11) as well as donor parent
(ICC 4958) (Varshney et al., 2013b). Application of the first
generation molecular breeding approaches such as MABC has
resulted in enhanced yield under drought but still there is huge
gap between actual and potential yield for chickpea. As discussed
earlier success of MABC is limited to the simple traits but not to
the complex traits (Ribaut and Ragot, 2007). Thus, efforts to use
modern breeding approaches such as genomic selection with the
ability to contribute to simple as well as complex traits are already
underway to enhance the rate of genetic gain for various crops
and livestock (Goddard et al., 2010; Heffner et al., 2010; Gorjanc
et al., 2015).

With the availability of draft genome sequences (Jain et al.,
2013; Varshney et al., 2013a; Ruperao et al., 2014; Gupta et al.,
2016) and re-sequencing data for several hundred lines in
chickpea, millions of markers have become available now. Ability
of GS to address the complex traits and availability of increasing
genomic resources enabling the application of emerging markers

system like GBS and SNP array for estimating the prediction
accuracy, sets the rationale for deployment of this molecular
breeding tool for chickpea improvement. Selection of complex
traits for the study was completely dependent on the nature of
traits i.e., SDW under rainfed and irrigated condition provides a
direct measure of drought tolerance and other three traits (DM,
DF, SDW, and SY) are important yield parameters (Varshney
et al., 2014b).

GS is known to enhance genetic gain with model using
marker information as compared to pedigree based models. G
× E interaction across different environments is also believe
to significantly affect the genetic variability which controls
the marker effect estimates (Crossa et al., 2010). Factors that
affect prediction accuracy for estimating the GEBVs include
statistical models (Heslot et al., 2012), number and type of
molecular markers (Chen and Sullivan, 2003; Poland and Rife,
2012), linkage disequilibrium (Habier et al., 2007), effective
population size (Daetwyler et al., 2008), relationship between
calibration and test set (Pszczola et al., 2012) and population
structure (Windhausen et al., 2012). In general, populations
with higher genetic diversity require larger size of population
for achieving better precision in GEBVs (Mujibi et al., 2011).
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FIGURE 4 | Regression of true breeding value on breeding values estimated with different methods (A) for ICRISAT location; (B) for IARI location.

Several studies have suggested to have minimum of 100–150
training population size for obtaining the optimum prediction
accuracy (Bernardo and Yu, 2007). Considering these factors, we
undertook a population with size of >300 lines that included
two different seed types; i.e., desi and kabuli, each having >150
lines for optimal estimation of prediction accuracy (Table S1).
High prediction accuracies were observed in the current study
hence revalidating the results obtained in other crop plants in
chickpea.

Small training populations of self-crossing reproduction
species and/or bi-parental cross derived populations results in
high prediction accuracies for GS analysis (Nakaya and Isobe,
2012), whereas application of further larger population size
undertaken in the current study could also be attributed as
an important factor for obtaining higher prediction accuracies.

Inclusion of only elite lines in the current study could also be one
of the critical factor in obtaining the higher prediction accuracies,
hence selection of appropriate germplasm can also be considered
as important factor as having a direct impact on prediction
accuracies for GS.

Another important factor affecting the prediction accuracy
is extent of LD decay which defines the minimum number of
markers required for estimation of prediction accuracy. In the
case of non-inbred lines there is a significant decrease in LD
therefore requires large number of markers to compensate the
fast decay in LD (Liu et al., 2015). LD calculated using squared-
allele frequency correlations (r2; when r2 < 0.20) with mapped
markers extended upto 500 kb (CaLG02)–2500 kb (CaLG04).
Training population used in the present study included the
elite breeding lines, LD analysis using genotyping data for
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these lines suggested presence of the huge LD blocks which
could be one of the reasons for such high prediction accuracy
(Table 3).

In general higher prediction accuracies are observed for the
traits with less complexity while accuracy decreases with increase
in the trait complexity (Zhang et al., 2014). In the current
study, best prediction accuracy was observed for SDW (Table 3;
Figure S2) as the trait is known to be less affected by other
factors such as G × E interaction and treatments. Possible
reason of SY having lower prediction accuracy in comparison
to DM, DF, and SDW could be the variable nature of trait
seed yield that is affected by several factors including G × E
(Kashiwagi et al., 2006), which further affect prediction accuracy.
Another possible reason for lower GS accuracy for SY could
be that genomic region affecting the trait might not have been
covered in the current genotyping data. Six different models
(RR-BLUP, Kinship Gauss, Bayes Cπ, Bayes B, Bayes LASSO,
and Random Forest) used for four yield and yield related traits
including DM, DF, SDW, and SY using genotyping data from
970 SilicoDArTs and DArT-SNPs. Large variations observed in
prediction accuracies were due to comparison made across the
seasons and locations. However, there were not much variation
in prediction accuracies across different models when comparing
with-in same season and/or location. To some extent, Bayesian
based methods and ridge regression models were found slightly
stable as compared to rest others. Our results are supports earlier
reports that suggestsmore or less similar performance of different
models (Jannink et al., 2010). Few other studies comparing
cross validation for different GS models suggested that trait
genetic architecture did not affect similarity in performance of
the model and most of the linear models like ridge regression
and hierarchical Bayesian methods perform similarly (Heslot
et al., 2012). Based on simulation data, Iwata and Jannink (2011)
suggested the superiority of ridge regression methods over the
Bayesian methods.

Further higher prediction accuracies could be the design
of the study in such a manner that training set as well as
testing set were phenotyped in same environment (Burstin et al.,
2015). Diversity and population structure analysis using mapped
markers suggested the presence of two different groups whereas
no significant impact of population structure on prediction

accuracy was observed. Our results were in complete accordance
with results obtained in GS study on pea (Burstin et al.,
2015).

Cattle breeding is one of the major beneficiaries of GS
revolution and similar approach is being implemented in plant
breeding for enhancing the rate of genetic gain by reducing
the long duration selection cycles and increasing the selection
intensity and efficiency. GS can play significant role in improving
the traits with longer generation cycle and complex mechanism
involving large number of small effect QTLs. Preliminary work
in genomic selection for chickpea improvement has produced
encouraging results with application of DArT markers system.
It further opens a possibility to deploy high density genotyping
methods like GBS and SNP arrays, which may result in more

improvement in prediction and finally enhancement in the rate
of genetic gain in chickpea.
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