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Common wild rice (Oryza rufipogon Giriff.) represents an important resource for rice
improvement. Genetic populations provide the basis for a wide range of genetic and
genomic studies. In particular, chromosome segment substitution lines (CSSLs) are
most powerful tools for the detection and precise mapping of quantitative trait loci
(QTLs). In this study, 146 CSSLs were produced; they were derived from the crossing
and back-crossing of two rice cultivars: Dongnanihui 810 (Oryza sativa L.), an indica
rice cultivar as the recipient, and ZhangPu wild rice, a wild rice cultivar as the donor.
First, a physical map of the 146 CSSLs was constructed using 149 molecular markers.
Based on this map, the total size of the 147 substituted segments in the population was
1145.65 Mb, or 3.04 times that of the rice genome. To further facilitate gene mapping,
heterozygous chromosome segment substitution lines (HCSSLs) were also produced,
which were heterozygous in the target regions. Second, a physical map of the 244
HCSSLs was produced using 149 molecular markers. Based on this map, the total
length of substituted segments in the HCSSLs was 1683.75 Mb, or 4.47 times the
total length of the rice genome. Third, using the 146 CSSLs, two QTLs for plant height,
and one major QTL for apiculus coloration were identified. Using the two populations of
HCSSLs, the gPa-6-2 gene was precisely mapped to an 88 kb region. These CSSLs
and HCSSLs may, therefore, provide powerful tools for future whole genome large-scale
gene discovery in wild rice, providing a foundation enabling the development of new rice
varieties. This research will also facilitate fine mapping and cloning of quantitative trait
genes, providing for the development of superior rice varieties.

Keywords: rice (Oryza sativa L. subsp. indica), the Zhangpu wild rice (Oryza rufipogon Griff.), chromosome
segment substitution lines, quantitative trait loci, gene mapping

Abbreviations: CSSLs, chromosome segment substitution lines; HCSSLs, heterozygous chromosome segment substitution
lines; INDEL, insertion/deletion; MAB, marker-assisted breeding; MAS, marker-assisted selection; NILs, near-isogenic lines;
QTLs, quantitative trait loci; SSR, simple sequence repeats.
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INTRODUCTION

Given the rapid increase in world population, the next
century may witness serious global food shortage problems.
Consequently, the need to increase grain yield is critical.
Meanwhile, rice is one of the most important crops in the
world, and in order to meet the growing demand for food
driven by population growth and economic development, global
rice production must double by 2050 (Arbelaez et al., 2015).
This signals the importance of identifying, transferring, and
utilizing beneficial allele genes from wild and cultivated rice.
Over the past few decades, many different population types
have been used to map QTLs, but some factors have impeded
the fine mapping or cloning of more QTLs. Researchers have
attributed this to several factors, including insufficient population
size, unstable statistical thresholds for detecting putative loci,
minimal number of molecular markers for analyses, and low
heritability of target traits (Yano and Sasaki, 1997). For the
most part, however, limited populations prevent fine mapping or
cloning.

Early temporary primary mapping populations, such as Fj.3
and BC; families, have been used for genetic analysis and
mapping of target QTLs (Li et al., 1995; Ray et al, 1996;
Redona and Mackill, 1996). However, these populations are
difficult to maintain, and trials cannot be repeated. Therefore,
in order to confirm mapping results, doubled haploid (DH) and
recombinant inbred lines (RILs) have been developed. However,
neither method is suitable for further analysis, such as fine
mapping and cloning of target QTLs (Yano, 2001). For example,
separation distortion of RIL populations can occur in groups,
actual building construction groups do not necessarily represent
theory.

Advanced backcross populations, and NILs have also been
developed and used. For example, genetic background noise can
be eliminated, and a QTL can be visualized as a single Mendelian
factor. Each NIL carries either one or more donor segments in
the near-isogenic background of the recurrent parent, which has
distinct advantages for QTL identification. Several QTLs have
been fine-mapped or cloned on the basis of NILs (Ashikari et al.,
2005; Fan et al., 2006; Song et al., 2007; Shomura et al., 2008; Xue
etal., 2008; Huang et al., 2009; Fujita et al., 2010; Zhou et al., 2012;
Henry et al.,, 2015). However, since development is trying and
time-consuming, many researchers do not perform map-based
cloning of QTLs (Xu et al., 2010).

The development of CSSLs, as suggested by Doi et al. (1997)
and Kubo et al. (2002), allows QTL detection of complex
agronomical traits in plants and may well resolve the issues of
precise mapping of QTLs (Li et al., 2015). Specifically, CSSLs
can be used for detecting and fine mapping of QTLs as a single
Mendelian factor by blocking background genetic noise. So far,
several CSSLs in rice have been developed and many QTLs for
traits of biological and economic interest have been detected
(Kubo et al., 2002; Ebitani et al., 2005; Mei et al., 2006; Takai
et al,, 2007; Zhu et al,, 2009; Xu et al,, 2010; Chen et al., 2014;
Nagata et al., 2015; Subudhi et al., 2015). These achievements have
undoubtedly enhanced the understanding of complex traits and
promoted plant genomic studies.

However, rice breeding still faces the problem of yield plateaus
and weak resistance, caused by the narrow genetic basis of
parental materials (Tanksley and McCouch, 1997; Tian et al.,
2006). Sun et al. (2002) compared the genetic diversity between
common wild rice and cultivated rice, and the results showed
that the number of alleles of cultivated rice was only 60% that
of wild rice, indicating that many alleles were lost during the
course of domestication from wild to cultivated rice. Therefore,
exploitation and utilization of favorable alleles of wild rice
previously lost in cultivated rice might overcome the yield
plateaus.

The ZhangPu wild rice was found in Zhangpu County in 1982,
and it was the only wild rice in Fujian province. However, since
it is the easternmost distribution of wild rice in China, it may
contain many elite genes, including those for disease resistance,
high-yield and resistance to stresses (Li, 2010). This wild rice may
contain many genes of use to breeders, such as novel resistance
genes to biotic or abiotic stresses, because it was not exposed to
selective pressure for all of these traits in its native environment
(Furuta et al., 2014). Therefore, systematic and further research
on ZhangPu wild rice is needed in order to discover favorable
gene resources and enhance our understanding of the molecular
basis. Dongnanihui 810 (Oryza sativa L.), an indica rice cultivar,
is an excellent restorer. Ganyou 810, derived from the CMS
line Ganxiang A and a restorer line Dongnanihui 810, was
certified and released for commercial production in 2014 in
Fujian province'.

In this study, we described the development of a novel
population of CSSLs in rice. The population was derived from
the crossing and back-crossing of two rice cultivars: Dongnanihui
810, an indica cultivar as the recipient and ZhangPu wild rice,
as the donor. Meanwhile a physical map of 146 CSSLs and
the 244 HCSSLs was produced on the basis of estimates of
lengths and locations using 149 molecular markers. Using the
bin map converted from the ultrahigh-quality physical map
associated with the purple apiculus of the 146 CSSLs, the gPa-6-
2 gene was precisely mapped to an 88 kb region that contained
the OsCI gene. This research will facilitate fine mapping and
cloning of quantitative trait genes, leading to the development of
superior rice varieties. Furthermore, it will be possible to illustrate
the genetic mechanisms of complex traits in plant functional
genomics.

MATERIALS AND METHODS

Plant Materials

To develop CSSLs and HCSSLs, Dongnanihui 810, a restorer
indica cultivar, was used as the recipient, and ZhangPu wild
rice was used as the donor. The F; plants were generated from
Dongnanihui 810 as female and ZhangPu wild rice as male. The
F; plants were back-crossed with Dongnanihui 810 to produce
the BCF; generation. These BC,F; plants were backcrossed
to Dongnanihui 810 to produce BCFy. In the same way, 156
BC3F; individuals were obtained. MAS with a whole-genome

'http://www.ricedata.cn/variety/varis/614685.htm
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survey of 156 BC3F; lines, which were selected at random by
taking three from each line, identified 213 plants in which most
genomic regions were homozygous for Dongnanihui 810 alleles.
However, more than four heterozygous substituted segments
from ZhangPu wild rice were excluded.

The Choice of Polymorphism Markers

A lot of 302 SSR markers were selected from dense rice
microsatellite maps (McCouch et al, 2002), and 206 InDel
markers were developed using Primer Premier 5.0 software
according to the publicly available rice genome sequence
comparisons between Nipponbare and 9311%. Of the 506 markers,
149 (29.4%) displayed better polymorphisms between the two
parents.

PCR Amplification and Marker Detection
Plant DNA was extracted from the frozen leaves of rice plants
using the CTAB method (Murray and Thompson, 1980) with
minor modifications. The extracted DNA was dissolved in
ddH,O. DNA amplification was performed by PCR with the
following parameters: 5 min at 94°C, 35 cycles of 1 min at
94°C, 1 min at 60°C (for Indel) or 55°C (for SSR), and 50s
at 72°C, with a final extension of 10 min at 72°C. For PCR
amplification of markers, each 20 L reaction mixture contained
50 ng DNA, 5 pmol of each primer, 10x PCR buffer [100 mM
Tris (pH 8.3), 500 mM KCl, 15 mM MgCly, 2 pg gelatin], 250 uM
of each dNTP and 0.5 U of Tagq polymerase. Amplified PCR
products were separated through electrophoresis on a 6% non-
denaturing polyacrylamide gel, and bands were revealed using a
silver staining procedure.

Determination of the Length of
Substituted Segment in CSSLs

The substituted segment was determined based on its location
on the rice microsatellite map (McCouch et al, 2002). The

*http://rgp.dna.affrc.go.jp

length of substituted segment in CSSLs was estimated based
on graphical genotypes (Young and Tanksley, 1989; Zhu
et al.,, 2009). A chromosome segment flanked by two markers
of donor genotype (DD) was considered to have a 100%
donor genotype, while a chromosome segment flanked by
two markers of recipient genotype (RR) was considered to
be 0% donor genotype. A chromosome segment flanked by
one marker of donor type and one marker of recipient type
(DR) was considered as 50% donor genotype. Therefore, the
length of DD plus the length of two half DR was considered
to be the estimated length of a substituted chromosome
segment.

Identification and Substitution Mapping

of QTLs for Purple Apiculus and Plant
Height

Dongnanihui 810, ZhangPu wild rice, and 146 CSSLs were grown
in a paddy field under natural conditions at the experimental
farm of Fujian Academy of Agricultural Sciences (Fuzhou,
China), in early of 2015. The field experiment was designed
in randomized plots with one plot per genotype. For parents
and each CSSL, 60 plants were planted in six rows, and 12
plants in the center of each plot were selected to investigate the
characters of purple apiculus. Plant height was the mean value
of 6 plants from the middle section of each plot, and QTLs
were identified on the basis of significant differences between
parents and each CSSL, as determined by ¢-test. All plants were
grown according to standard commercial practices, with spacing
of 13.3 cm between plants within each row and 26.4 cm between
rows. Field management essentially followed normal agricultural
practices, and the amounts of N, P,O5 and K,O applied were
127.5 kg/hm?, 45.0 kg/hm?, and 30.0 kg/hm?, respectively.

Observed Agronomic Characteristics of
146 CSSLs

According to standard commercial practices, 146 CSSLs were
grown in a paddy field under natural conditions at the

TABLE 1 | Summary of the markers used to develop the CSSLs.

Chromosome SSR InDel Total Number Percentage Density(Mb)
1 31 23 54 15 27.8 2.93
2 35 19 54 20 37.0 1.84
3 27 30 57 16 28.1 2.36
4 24 18 42 12 28.6 2.93
5 24 16 40 14 35.0 2.14
6 26 16 42 12 28.6 2.62
7 23 15 38 13 34.2 2.32
8 27 15 42 ih 26.2 2.66
9 19 12 31 8 25.8 2.91
10 24 13 37 10 27.0 2.31
1 22 14 36 9 25.0 3.21
12 20 15 35 9 25.7 3.06
Total 302 206 506 149 29.4 2.53

SSR, InDel, and Total refer to the number of markers tested on each chromosome while Number refers to the final markers selected on each chromosome.
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experimental farm of Fujian Academy of Agricultural Sciences
(Fuzhou, China). All materials were planted in the same field,
the level height of field was consistent, N, P,Os5 and K,O were
applied in the following amounts: 127.5 kg/hm?, 45.0 kg/hm?,
and 30.0 kg/hm?, respectively, and the amount and time of
fertilization was uniform. Plant height, panicle length, number
of effective panicles, spikelet number per panicle, seed setting
rate and 1000-grain weight were all measured at maturity in
2015.

Physical Map Construction of Target

Gene

The physical map of the qPa-6-2 gene was constructed
by bioinformatics analysis using the published sequences of
BAC and Pl-derived artificial chromosome (PAC) clones of
cv. Nipponbare released by the International Rice Genome
Sequencing project (IRGSP?).

3http://rgp.dna.affrc.go.jp/IRGSP/index.html
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FIGURE 1 | Locations of the 149 polymorphic markers in the rice physical map.
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RESULTS

Polymorphisms Detected between the

Two Parents

Polymorphisms were detected by SSR and InDel markers
between the two parents, and were used in this study to
survey the polymorphisms between the two parents (Table 1).
302 SSR markers were selected from dense rice microsatellite
maps (McCouch et al., 2002). A total of 206 InDel markers
were developed using Primer Premier 5.0 software according
to the publicly available rice genome sequence comparisons
between Nipponbare and 9311*. Of the 506 markers, 149
(29.4%) displayed better polymorphisms between the two parents
(Supplement Table S1). The length of the interval between two
polymorphic markers ranged from 0.1Mb to 12.5 Mb, with an
average of 2.53 Mb on the rice physical map (Figure 1; Table 1).
The polymorphic markers were utilized further for the further
development of CSSLs and HCSSLs.

CSSL and HCSSL Development

The CSSL and HCSSL development procedure was summarized
in Figure 2. In total, we identified 213 BC3F; plants in which the
majority of genomic regions were homozygous for Dongnanihui
810 alleles, and 31 BCsF; plants that had one substituted
segment were self-pollinated to produce thirty-one BC3F; lines.
Then, 21 plants from each BC3F, line were genotyped with
the polymorphic markers on the target-substituted segments to
select plants that had one homozygous substituted segment from
ZhangPu wild rice. Heterozygous substituted segments from
ZhangPu wild rice were also selected. As a result, 42 CSSLs
were obtained, and 36 HCSSLs were obtained. The remaining
182 BC3F; plants, which had two to four substituted segments,
were back-crossed with Dongnanihui 810 to produce the BC4F;
lines, and these plants were self-pollinated to produce BC4F,
lines. Twenty-one plants from each line were genotyped on
the target region to select plants that had one homozygous
substituted segment. Forty-five plants from each line were
genotyped on the target region to select plants that had two
homozygous substituted segments. Ninety-three plants from
each line were genotyped on the target region to select plants that
had three homozygous substituted segments. At the same time,
heterozygous substituted segments from ZhangPu wild rice were
selected. As a result, 104 CSSLs were obtained, and 208 HCSSLs
were selected. Using these techniques, a total of 146 CSSLs and
244 HCSSLs were selected. Of these CSSLs, eight carried two
substituted segments and one carried three substituted segments.
Nine HCSSLs, which contained the target region, were planted.
Then nine CSSLs were obtained, but only one carried two
substituted segments.

Physical Map of CSSLs and HCSSLs

According to the physical locations and genotypes of the 149
molecular markers in the 146 CSSLs, the lengths and locations
of the substituted chromosome segments were estimated. Then,

“http://rgp.dna.affrc.go.jp
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FIGURE 2 | Flowchart of the development of CSSLs and HCSSLs in the
present study.

using the results of the estimation, a physical map of the
146 CSSLs was constructed (Figure 3). In addition, based
on 149 molecular markers in the 244 HCSSLs, a physical
map, which contained the 244 HCSSLs, was also constructed
(Figure 4).

Number, Length and Distribution of
Chromosome Substituted Segments in
the CSSLs and HCSSLs

From the physical map constructed with molecular markers, the
146 CSSLs carried 147 homozygous substituted segments. Only
one CSSL on chromosome 1 carried two substituted segments
and the remaining 145 carried only one substituted segment
(Table 2). In the 146 CSSLs, the length of substituted segments
ranged from 550 kb to 24.75 Mb, but averaging 7.79 Mb. The
length of 81 substituted segments was shorter than 7.0 Mb
and 15 were longer than 16.0 Mb (Figure 5). The average
number of substitution segments per chromosome was 12.2, but
the distribution of the segments was not random among the
12 chromosomes. Different substituted frequencies existed in
different chromosomes. For example, 17 existed on chromosome
4, 14 existed on chromosome 1, 4, and 6, while only six existed on
chromosome 11 (Table 2).

The physical map constructed with molecular markers
indicated that the 244 HCSSLs carried 244 heterozygous
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FIGURE 3 | Physical map of the 146 CSSLs. Each row represented a CSSL and each column represented a molecular marker locus. The black areas indicate
regions that were homozygous genotype for ZhangPu Wild Rice alleles: the white areas indicate regions homozygous for Dongnanihui 810 alleles.

substituted segments and one homozygous substituted segment.
Of these, only one HCSSL carried two substituted segments,
which contained one heterozygous and one homozygous
segment, while the remaining 243 HCSSLs carried only one
heterozygous substituted segment (Table 2). The length of
heterozygous substituted chromosome segments in the 244
HCSSLs ranged from 300 kb to 23.45 Mb, but averaging
6.90 Mb. Overall, 152 heterozygous segments were shorter
than 7.0 Mb, and 21 heterozygous segments were longer
than 16.0 Mb (Figure 6). The average number of substitution
segments per chromosome was 20.3 in the 244 HCSSLs. However,
different introgressed frequencies were identified among the
12 chromosomes in that 38 heterozygous segments existed on
chromosome 3, while 12 heterozygous segments existed on
chromosome 12 (Table 2).

Genome Coverage of Substituted

Segments in the CSSLs and HCSSLs

The physical map indicated that the average length of substituted
segments per chromosome was 95.47 Mb in the CSSLs, ranging
from 44.30 Mb on chromosome 10-144.80 Mb on chromosome
4. The total length of substituted segments in the CSSLs was
1145.65 Mb, which was 3.04 times the total length of the rice
genome, and there were different in 12 chromosomes, ranging
from 1.65 times on chromosome 11-4.11 times on chromosome
4. All of the chromosomes had 100% coverage in both cases
(Table 3).

The physical map showed that the average length of
substituted segments per chromosome was 140.31 Mb in the
HCSSLs, ranging from 74.35 Mb on chromosome 10-340.10 Mb
on chromosome 3. The total length of substituted segments in the
HCSSLs was 1683.75 Mb, which was 4.47 times the total length of
the rice genome, and different frequencies in rice chromosome,
ranging from 2.81 times on chromosome 2 to 9.02 times on
chromosome 3. The average coverage of substituted segments per
chromosome was also 100% (Table 3).

Substitution Mapping of QTLs for Plant
Height in the CSSLs

In order to evaluate the potential advantages of the CSSLs
for QTL detection, phenotypic variations of plant height were
observed in 146 CSSLs.

The two parents showed highly significant differences in plant
height. Using six CSSLs, two QTLs were identified, in which
qPH-1-1 was mapped in the marker intervals between Ind 1-
20 and Ind 1-23 (7.1 Mb) on rice chromosome 1 (Figure 7A),
while gPH-7-1 was mapped between Ind7-1 and RM427, which
spanned 2.0 Mb in genetic distance on rice chromosome 7
(Figure 7B).

Substitution Mapping of QTLs for Purple

Apiculus in the CSSLs

For purple apiculus, ZhangPu wild rice displayed purple
apiculus, while the indica variety, Dongnanihui 810,
displayed green apiculus. Using four CSSLs, one major
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FIGURE 4 | Physical map of the 244 HCSSLs. Each row represented a HCSSL and each column represented a molecular marker locus. The black areas indicate
regions that were homozygous genotypes for ZhangPu Wild Rice alleles; the white areas indicate regions homozygous for Dongnanihui 810 alleles; the green areas
indicate regions that were heterozygous genotypes for Dongnanihui 810 and ZhangPu Wild Rice.

80

QTL for purple apiculus was identified, in which gPa-6-2
was located between Ind6-1 and RM276, which comprised
57 Mb in physical distance on rice chromosome 6
(Figure 8).

Genetic Analysis of the gPa-6-2 Gene for

Purple Apiculus

The two segregating populations, HCSSL132 and HCSSL136,
which were heterozygous in the target region and showed purple
apiculus (Table 4), were grown in a paddy field under natural
conditions at the experimental farm of Fujian Academy of
Agricultural Sciences (Fuzhou, China), in late 2015. Segregating
plants were therefore recorded as either purple or green apiculus.
The segregation of purple to green apiculus based on 4932 F,
plants fitted a ratio of 3:1(x > = 0.330 ~ 0.688, P > 0.05) (Table 4),

indicating that the gene for purple was dominant over green color
and was controlled by a major gene.

Fine Mapping of the gPa-6-2 Gene

To map the gene to a smaller region, 1241 recessive individuals
were identified from the two HCSSL populations (Table 4).
A higher precision map was constructed using published
markers’ in the region between Ind6-1 and RM276 (Figure 9A).
All recombinants were genotyped using seven polymorphic
markers. The results showed that the gPa-6-2 gene was
mapped between molecular markers RM19551 and RM19590
on chromosome 6 and that the physical distance between the
two markers was 539 kb with a physical distance (Figure 9B;
Table 5).

Shttp://archive.gramene.org/markers/
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TABLE 2 | Segments carried by CSSLs and HCSSLs.

Chromosome Number of CSSLs Number of HCSSLs
One segment Two segments One segment Two segments
1 14 1 20 1
2 15 0 24 0
3 14 0 38 0
4 17 0 21 0
5 16 0 25 0
6 14 0 22 0
7 10 0 16 0
8 11 0 17 0
9 12 0 19 0
10 7 0 15 0
11 6 0 14 0
12 9 0 12 0
Total 146 244
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FIGURE 5 | Distribution of the length of the substituted chromosome segments in the 146 CSSLs based on the physical map constructed with
molecular markers.

To fine map the gPa-6-2 gene, five polymorphic InDels were
selected from 12 new InDels (Table 5). The InDel markers were
designed from the publicly available rice genome sequences, and
the likelihood of detecting polymorphism between ZhangPu wild
rice and Dongnanihui 810 was predicted by comparing sequences
from Nipponbare® and Indica cultivar 93-117. Firstly, the BAC

Shttp://rgp.dna.affrc.go.jp/
"http://rice.genomics.org.cn/

clone’s sequences of japonica and indica were aligned, then
primers were designed using Primer premier 5.0 based on the
polymorphism region between the two rice subspecies and the
polymorphic markers were used for gene mapping. Recombinant
screening with five markers (S6-2, S6-3, S6-6, S6-9 and S6-11),
which were more internal to the gPa-6-2locus, detected four, two,
one, three and eight recombinants, respectively. Thus, the gPa-6-
2 gene was precisely mapping in an 88 kb region by $6-3 and S6-6
(Figure 9C).
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FIGURE 6 | Distribution of the length of the substituted chromosome segments in the 244 HCSSLs based on the physical map constructed with

TABLE 3 | Chromosome coverage of substituted segments in CSSLs and HCSSLs.

Chromosome Length (Mb) Times Coverage length (Mb) Coverage rate (%) Chromosome length (Mb)
CSSLs HCSSLs CSSLs HCSSLs CSSLs HCSSLs CSSLs % HCSSLs % CSSLs
1 136.1 179.90 3.10 410 43.90 43.90 100 100 43.90
2 80.40 103.10 2.19 2.81 36.70 36.70 100 100 36.70
3 140.50 340.10 3.73 9.02 37.70 37.70 100 100% 37.70
4 144.80 153.40 411 4.36 35.20 35.20 100 100 35.20
5 112.10 160.60 3.75 5.37 29.90 29.90 100 100 29.90
6 101.35 149.70 3.23 4.77 31.40 31.40 100 100 31.40
7 62.20 86.30 2.07 2.87 30.10 30.10 100 100 30.10
8 96.40 114.60 3.29 3.91 29.30 29.30 100 100% 29.30
9 91.20 125.05 3.91 5.37 23.30 23.30 100 100% 23.30
10 44.30 74.35 1.92 3.22 23.10 23.10 100 100% 23.10
1 47.65 86.90 1.65 3.01 28.90 28.90 100 100% 28.90
12 88.65 109.15 3.22 3.97 27.50 27.50 100 100% 27.50
Genome 1145.65 1683.75 3.04 4.47 377.00 377.00 100 100% 377.00

Length, total length of all substituted segments on a chromosome, Coverage length, length of cover on a chromosome, Times refers to Length/Chromosome length.

DISCUSSION

Excellent Resources in Wild Rice
Oryza Rufipogon Griff., a wild rice, is the progenitor of the
cultivated rice O. sativa L. As such, it is well recognized as a

natural gene bank that conserves many specific genes. During
the course of domestication from common wild rice to cultivated
rice, profound changes in morphology and molecular genetic
profile occurred via natural and artificial selection. Over the years,
polymorphisms have been identified between wild and cultivated

Frontiers in Plant Science | www.frontiersin.org

November 2016 | Volume 7 | Article 1737


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Yang et al.

Chromosome Segment Substitution Lines’s Development

A
Marker Ind 117 Ind 19 Ind 120 Ind I-23
Genetie  distance (Mb) 209 35.2 368 a7 439
a7 1 L 1 1
2 ! I I I ——— Lines Plant height
PH-I-1
# CSSL 15 1076 (em)
1 CSSL 16 108.2° " (em)
— 1 ihui 810 1182 (em)
B TInd 7-1  RM3325 RM427 RMA098  RM6ST4 Ind 7-7
Marker 0.7 12 27 32 47 13.3
Genetic  distance (Mb) | | | l | :
C T I | 1 1 I I Lines Plant height
CSS1.93 I1S78" (em)
"SSL 94 1582°° (em)
CSSL 9% 190 (em)
CSS1.97 15717 (em)
I ihui 810 1182 (em)

FIGURE 7 | Substitution mapping of plant height. (A) Substitution mapping of the gPH-7-1 gene on rice chromosome 1; (B) Substitution mapping of the
qPH-7-1 gene on rice chromosome 7. The substituted segments from ZhangPu wild rice were denoted by dark bars. The substituted segments from ZhangPu wild
rice were denoted by black bars with the assumption that a segment flanked by one marker of donor type and one marker of recipient type was 50% donor
genotype. Note: **Shows significant at 0.01 level. For the purposes of mapping, however, the full region between one marker of donor type and one marker of

recipient type was used as the boundary on each end. The vertical bars through the CSSLs designate the region to which the gene was mapped.
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FIGURE 8 | Substitution mapping of Pa-6-2 for purple apiculus on rice chromosome 6. The substituted segments from ZhangPu wild rice were denoted by
dark bars; the green areas indicate regions that were heterozygous genotypes for Dongnanihui 810 and ZhangPu Wild Rice; the substituted segments from
ZhangPu wild rice were denoted by black bars with the assumption that a segment flanked by one marker of donor type and one marker of recipient type was 50%
donor genotype. For the purposes of mapping, however, the full region between one marker of donor type and one marker of recipient type was used as the
boundary on each end. The vertical bars through the CSSLs designate the region to which the gene was mapped.

ZhangPu wild rice Purple apiculus

TABLE 4 | Plants segregating for purple apiculus.

Serial number Phenotype F> population ¥2(3:1) P
Green apiculus Purple apiculus Total plants

HCSSL132 Purple apiculus 603 1839 2442 0.1202 <1.0

HCSSL136 Purple apiculus 638 1852 2490 0.3102 0.5-0.75

aDenotes the segregation ratio of normal plants to mutant plants complied with 3:1 at 0.05 significant probability level.

rice, including some that affect yield, disease resistance, or insect
resistance (Tian et al., 2006; Jena, 2014).

Major resistance genes have been transferred to cultivated
rice from O. nivara and O. longistaminata (Khush, 1977; Khush
et al., 1990). A new gene, Xa-23, which showed resistance to
bacterial blight was discovered and cloned from common wild
rice of Guangxi (Wang et al., 2014, 2015). The new resistance
gene for Magnaporthe oryzae, Pi9, was identified from wild
rice (Zhuang et al., 1998; Jiang et al., 2012). The major gene
for Magnaporthe oryzae, Pi40, was discovered from the wild
rice O. australiensis (Jeung et al., 2007). The new genes, Bphl4
and Bph15, which showed resistance to the brown planthopper,

were identified from the wild rice (Oryza officinalis Wall) (Yang
et al, 2004; Du et al, 2009). Meanwhile, Li et al. (2002)
identified two high-yielding QTLs from Dongxiang common
wild rice of China. Tan et al. (2008) cloned the PROGI
gene from common wild rice, and progl variants identified in
O. sativa disrupt progl function and inactivate progl expression,
leading to erect growth, greater grain number and higher grain
yield in cultivated rice. At the same time, the flowering time
QTL dth3, was detected from wild rice species (Bian et al,
2011), and the seed dormancy QTL was also isolated in the
genetic populations derived from wild rice species (Gu et al.,
2004).
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FIGURE 9 | Genetic and physical maps of the gPa-6-2 gene. (A) Primary mapping of the gPa-6-2 gene. The gene was mapped to the region between markers
Ind6-1 and RM276; (B) Further mapping of the gPa-6-2 gene. The gene was mapped to the region between markers RM19551 and RM19590; (C) Fine mapping of
the gPa-6-2 gene. The gPa-6-2 gene was finally defined in an 88 kb region, and the recombinants number between markers and target gene was indicated under
the physical distance.

TABLE 5 | Simple sequence repeats and Indel molecular marker developed for gPa-6-2 gene mapping.

Marker Sequence of forward primer Sequence of reverse primer Locations
RM1985 TCATACCCATTTAAATTGAG GTTTGAAGCAAGTACAAAAG OSJNBa0062J13
RM190 CTTTGTCTATCTCAAGACAC TTGCAGATGTTCTTCCTGATG OSJNBa0007020
RM587 ACGCGAACAAATTAACAGCC CTTTGCTACCAGTAGATCCAGC OSJNBa0007020
RM585 CAGTCTTGCTCCGTTTGTTG CTGTGACTGACTTGGTCATAGG PO681F10
RM2434 CATATCACCCAGAATTCTAA AAGAGATTTAAGTTGCACTC P0568D10
RM19551 CCCACCAGCTGCTACTTTGTGC CGCCAGGAAGTCGAGGATAGG 0OJ1147_D11
S6-2 CATCTGATCTCGCATGCACTTGG GTCTCTCTGCCGCTGGATCG OSJNBb0015B15
S6-3 TTGTGGTTGTAGTGTGCTTGTGC CGGAACGAGAGGACAATGTACG OSJNBb0015B15
S6-6 GGAGGTTCGAGTGCCACTACTGC AAAGCACCACCACCACCACTCC P0529B09

S6-9 TCCTTCAAGAGTGCAAAACC GCATTGTCATGTCGAAGCC P0529B09

S6-11 ACTTCGACGTCAGGTTCGACACG CCGCCTCAAGGAAGAGGTAATGC P0664C05
RM19590 CAATCCCGAGCCTAAACCAAACC GCTGGATCTCCTCGGACACG P0021C04

CSSLs as a Platform for QTL Mapping

and Cloning

Chromosome segment substitution lines were a series of NILs
in which the substituted segments of containing the entire
information of the donor, and each CSSL carried one or more

donor chromosome segments. Since the main characteristic
of CSSLs is that the substituted segment of each CSSL was
homozygous and stable, they were useful for genetic studies and
fine mapping of QTLs for genome-wide target traits. In the
present study, we developed 146 CSSLs in the genetic background
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TABLE 6 | Comparison of main agronomic traits among eight CSSLs and Dongnanhui 810.

Name Plant height (cm) Panicle length (cm) Number of Spikelets per Seed setting rate (%) 1000-grain weight (g)
effective panicles panicle

Dongnanhui 810 118.2 24.8 8.0 127.2 92.79 30.25
CSSL15 107.6** 22.1% 13.2%* 121.4* 93.47 29.67
CSSsL42 115.2 24.2 8.6 124.2 98.25** 29.17
CSSL53 119.1 25.2 10.6™* 126.2 92.04 30.55
CSSL77 116.8 30.9%* 8.2 142.2%* 92.46 30.45
CSSL78 117.2 31.2% 7.9 146.4** 91.94 29.95
CSSL102 119.2 24.3 7.8 125.7 94.74* 34.47*
CSSL123 116.8 25.2 8.2 126.6 97.48** 30.15
CSSL138 119.0 25.2 850 126.7 92.99 32.45*

*Shows significant at 0.05 level; **Shows significant at 0.01 level; The seed setting rate was filled grains per panicle /total grains per panicle x 100%.

of rice restorer Dongnanihui 810. The 146 CSSLs had different
agronomic traits, including, for example, long grain, plant height,
panicle length, effective panicle, and long flag leaf. Using these
lines, we mapped two QTLs for plant height. The gPH-1-1
mapped in this study was probably an allele of sdl (Sasaki
et al., 2002; Ye et al, 2015), while gPH-7-1 might be a novel
QTL. The qPH-1-1 mapped between the markers Ind1-20 and
Ind1-23 in this study, which contained the sdl locus, a gene
known to play a significant role in height in rice. These results
demonstrated that the uniformity of the genetic background of
the lines facilitated the identification of a number of QTLs by
direct comparison between each line and the recipient parent. For
further fine mapping and positional cloning of interesting QTLs,
secondary F, populations could be derived from a further back-
cross between the target CSSL and the recurrent parent (Frary
et al., 2000; Yano et al., 2000). Therefore, CSSLs simplified the
process of data analysis and increased the accuracy of the results.
In this study, using the 146 CSSLs, one major QTL for purple
apiculus was identified. Here, the gPa-6-2 was located between
two markers Ind6-1 and RM276 on rice chromosome 6. More
importantly, the gPa-6-2 gene was precisely mapped to an 88
kb region, which contained the rice OsCI gene (Saitoh et al,,
2004). The occurrence of varying degrees of apiculus coloration
(also shows purple apiculus) due to anthocyanin pigmentation,
which was reported to be caused by a series of alleles at the C
locus, and the C gene appears to be the rice homolog (OsClI)
(Saitoh et al., 2004). In our study, we identified the qPa-6-2
for purple apiculus, which was also located in the same region.
Meanwhile, the Pa-6 gene was also mapped to the same region
with a genetic distance of 41.7 kb (Liu et al., 2012). It is well
known that male sterile lines play very important in hybrid rice.
Meanwhile, purple apiculus is helpful to increase outcrossing
rate of male sterile lines in rice. Therefore, fine mapping and
positional cloning of purple apiculus are of great significance in
hybrid rice breeding.

The CSSLs as a Platform for Rice

Molecular Breeding

Plant breeding, which aimed to improve the genetic basis
of new varieties of crops with increased productivity and
quality, combines art with science (Xi et al, 2006). In a

general way, traditional breeding was predominantly based
on phenotypic assays. Facilitated by the recent developments
in genome sequencing, molecular markers and bioinformatics,
plant breeding systems entered an era of molecular breeding,
shortening the breeding period, improving efficiency, and
overcoming the traditional shortcoming of low accuracy with
broad applications. Thus, it became the standard in plant
breeding programs to combine phenotype and genotype (Xu
etal., 2010).

However, this approach only targeted the QTLs with very few
traits for genetic improvement. On the other hand, CSSLs, which
selected at the level of the whole genome with multi-trait breeding
objectives, have expanded targets and thus become important in
improving the properties of plants (Xu et al., 2010). Therefore,
CSSLs for rice breeding were considered as a key tool in the
ongoing technological innovation of plant breeding (Xu et al.,
2010).

The indica cultivar Dongnanihui 810, used as the recipient
in this study, has been planted on a large scale as an
excellent restorer. Ganyou 810, derived from the CMS line
Ganxiang A and a restorer line Dongnanihui 810, was certified
and released for commercial production in 2014 in Fujian
province. The ZhangPu wild rice, used as the donor in the
present study, was the only wild rice in Fujian province.
Interestingly, eight elite CSSLs in this wide population had a
genetic background similar to that of Dongnanihui 810, but
their agronomic traits were better than those of Dongnanihui
810 (Table 6). The effective panicle, each panicle contains
at least five seeds (including 5) in per plant, was one of
the important indicators of yield traits. For example, CSSL15
had lower plant height and more effective panicle than
Dongnanihui 810. CSSL42, CSSL102 and CSSL123 had higher
seed setting rate, and CSSL53 had more effective panicle.
CSSL77 and CSSL78 had longer panicle and more spikelets,
while CSSL102 and CSSL138 both had higher 1000-grain
weight. None of these eight CSSLs had poor agronomic traits.
Therefore, they could be used to create new varieties with
direct marketing applications and, as a parent, create new
hybrids. Furthermore, favorable alleles could be combined
through MAS to improve the production of superior rice
varieties.
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Why Should We Develop the HCSSLs in
This Paper?

HCSSLs showed technological innovation in rice genetic
research. Up to now, after developing CSSLs in rice, many
HCSSLs, which carried one or more donor heterozygous
chromosome segments, were discarded. However, for further fine
mapping and positional cloning of interesting QTLs, secondary
F, populations were reconstructed, which should be derived from
a further back-cross between the target CSSL and the recurrent
parent. Obviously, this not only increased experimental cost, but
also reduced efficiency. In the present study, 244 HCSSLs were
produced on the basis of estimates of lengths and locations,
and the total length of substituted segments among HCSSLs was
1683.75 Mb, or 4.47 times the total length of the rice genome.

It was convenient to perform gene mapping and analysis of
genetic characteristics for agronomic traits using the HCSSLs.
In this paper, using the 146 CSSLs, the major qPa-6-2 for
purple apiculus was identified. To confirm this, further analysis
showed that both HCSSL132 and HCSSL136 were heterozygous
in the target region and showed purple apiculus. Meanwhile,
HCSSL132 and HCSSL136 were planted. Further observation of
these two populations showed that the gene for purple apiculus
was dominant over green and was controlled by a major gene.
Importantly, without reconstructing secondary F, populations,
the gPa-6-2 was precisely mapping in an 88 kb region using the
two HCSSLs populations.

It was easy to improve the development of CSSLs carrying
overlapping chromosome segments of the whole rice genome
using HCSSLs. From a genetics perspective, the number of
heterozygous plants, as a separate population, was nearly twice
that of homozygous plants. Regrettably, only homozygous
substituted plants were selected, while many heterozygous
substituted plants were discarded. As a result, CSSLs could barely
cover the whole genome of donor parents. However, incomplete
coverage of a donor genome in the CSSL population might, in
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