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Flavonoids, the compounds that impart color to fruits, flowers, and seeds, are the

most widespread secondary metabolites in plants. However, a systematic analysis of

these loci has not been performed in Brassicaceae. In this study, we isolated 649

nucleotide sequences related to flavonoid biosynthesis, i.e., the Transparent Testa (TT )

genes, and their associated amino acid sequences in 17 Brassicaceae species, grouped

into Arabidopsis or Brassicaceae subgroups. Moreover, 36 copies of 21 genes of the

flavonoid biosynthesis pathway were identified in Arabidopsis thaliana, 53 were identified

in Brassica rapa, 50 in Brassica oleracea, and 95 in B. napus, followed the genomic

distribution, collinearity analysis and genes triplication of them among Brassicaceae

species. The results showed that the extensive gene loss, whole genome triplication, and

diploidization that occurred after divergence from the common ancestor. Using qRT-PCR

methods, we analyzed the expression of 18 flavonoid biosynthesis genes in 6 yellow- and

black-seeded B. napus inbred lines with different genetic background, found that 12 of

which were preferentially expressed during seed development, whereas the remaining

genes were expressed in all B. napus tissues examined. Moreover, 14 of these genes

showed significant differences in expression level during seed development, and all but

four of these (i.e., BnTT5, BnTT7, BnTT10, and BnTTG1) had similar expression patterns

among the yellow- and black-seeded B. napus. Results showed that the structural

genes (BnTT3, BnTT18, and BnBAN), regulatory genes (BnTTG2 and BnTT16) and three

encoding transfer proteins (BnTT12, BnTT19, and BnAHA10) might play an crucial roles

in the formation of different seed coat colors in B. napus. These data will be helpful for

illustrating the molecular mechanisms of flavonoid biosynthesis in Brassicaceae species.

Keywords: Brassica napus L., Brassicaceae species, expression profile, flavonoid biosynthesis pathway,

phylogenetic analysis, seed coat color

Abbreviations: TT: Transparent Testa, Bn: Brassica napus L., TTG: TRANSPARENT TESTA GLABRA, PAL: Phenylalanine

ammonia-lyase, C4H: cinnamate 4-hydroxylase, FLS: flavonol synthase, LDOX: leucoanthocyanidin dioxygenase, BAN:

BANYULS, AHA10: H+-ATPase isoform 10, PAs: proanthocyanidins, Bj: Brassica juncea, BLAST: basic local alignment search

tool, BRAD: Brassica Database, PGDD: PLANT GENOME DUPLICATION DATABASE, DAP: days after pollination.
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INTRODUCTION

Rapeseed (Brassica napus) is the most important source of edible
vegetable oil and protein-rich meal in the world diet, and the
seeds, which store protein and oil, are the major harvested plant
organ (Nesi et al., 2008). However, the quality of rapeseed oil and
meal is greatly affected by the pigments and polyphenols derived
from flavonoid biosynthesis that remain after oil extraction.
Rapeseed use is limited by the concentration of anti-nutritional
factors, including phenolic compounds, lignin, tannins, and
proanthocyanidins, it contains. Previous research showed that
yellow-seeded B. napus has a thinner seed coat, less pigmentation,
and higher protein and oil contents than does black-seeded B.
napus in the same background, rendering it a more nutritional
feed for livestock (Chen and Heneen, 1992; Tang et al., 1997;
Meng et al., 1998). Thus, selecting lines with a stable yellow-seed
trait is one of the most important breeding aims for B. napus.

In plant kingdom, flavonoid biosynthesis pathway play
important roles in the coloration of fruits, flowers, and seeds,
and numerous evidences had showed that TT-type genes and
their homologs are crucial for the accumulation of flavonoids
and their derivatives (Nesi et al., 2001; Winkel-Shirley, 2002; Xie
et al., 2003; Baudry et al., 2004; Hoffmann et al., 2006; Lepiniec
et al., 2006; Kasai et al., 2007). In the model plant Arabidopsis
thaliana, the formation of transparent and colorless testa (seed
coat) were associated with tt loci that are disrupted the flavonoid
synthesis pathway in the loss-of-function mutations (Wan et al.,
2002; Winkel-Shirley, 2002; Baudry et al., 2004; Lepiniec et al.,
2006). To date, 17 genes involved in this pathway have been
cloned and functionally characterized, including eight structural
genes (i.e., TT3, TT4, TT5, TT6, TT7, FLS1, LDOX, and BAN;
Albert et al., 1997; Devic et al., 1999; Xie et al., 2003; Routaboul
et al., 2006; Chiu et al., 2010), six regulatory genes (TT1, TT2,
TT8, TTG1, TTG2, and TT16; Nesi et al., 2000, 2001; Baudry
et al., 2006; Routaboul et al., 2006), and three encoding transfer
proteins (TT12, TT19, andAHA10; Debeaujon et al., 2001; Baxter
et al., 2005), which were also classified as Early Biosynthetic
Genes (CHS, CHI, and F3H etc.) and Late Biosynthetic Genes
(BAN, DFR, and TTG1, etc.) (Nesi et al., 2000, 2001; Winkel-
Shirley, 2001; Lepiniec et al., 2006). Homologs of some of these
genes, named TT–type genes, have also been identified and
shown to be involved in the flavonoid biosynthetic pathway.
These genes are thus candidate genes for the molecular basis
of seed color manifestation (Supplementary Table S1). TTG1 in
Brassica rapa has the same gene function as its orthologs in A.
thaliana, i.e., it influences root hairiness and the color of the
seed coat (Zhang et al., 2009). BrTT8 was recently shown to
regulate the accumulation of proanthocyanidins (PAs) in the seed
coat and to regulate the expression of the late biosynthetic genes
(LBGs) of the flavonoid pathway in B. rapa, and an analysis in
the “sarson” line of B. rapa showed that the yellow-seeded trait
was caused by loss of BrTT8 function (Li X. et al., 2012). In
addition, BjuA.TT8 and BjuB.TT8 co-segregated perfectly with
the seed coat color phenotype in allotetraploid Brassica juncea
(Padmaja et al., 2014). However, the inheritance of seed coat
color is complex in B. napus. In previous studies, a stable major
quantitative trait locus (QTL) for seed coat color of B. napus was
detected in different generations and environments, and TT10

was considered as a candidate gene involved in seed coat color,
based on microsynteny of this QTL with Arabidopsis genome
sequences (Fu et al., 2007). The following findings showed
that BnTT10 functions in proanthocyanidin polymerization and
lignin biosynthesis, as well as seed coat pigmentation in B. napus
(Zhang et al., 2013). Additionally, Chai et al. (2009) found that
TT12 was also a candidate gene for seed coat color in B. napus.
Moreover, several key loci isolated from B. napus by our group,
such as F3’H, PAL1, TTG1, and TT2, showed no or limited down-
regulation in the yellow-seeded lines (Wei et al., 2007; Xu et al.,
2007; Ni et al., 2008; Lu et al., 2009). Based on a marker closely
linked with a major QTL for seed fiber and color in B. napus,
Stein et al. proposed that the transparent testa gene AHA10 has a
strong effect on both seed color and lignin content (Stein et al.,
2013). Undoubtedly, the inheritance of seed color in B. napus
is also sensitive to environmental influences, such as lighting,
temperature, maturity, and harvest time (Chen and Heneen,
1992; Deynze et al., 1995). Therefore, the molecular mechanism
underlying the yellow seed coat trait is unclear in Brassica species.

The family Brassicaceae is well known for its large variation
in chromosome numbers, common occurrence of polyploids and
many reports of interspecific gene flow (Marhold and Lihová,
2006). Moreover, Brassicaceae plants arose form a common
ancestor, of which B. napus (AACC, genome size ∼849.7
Mb) was allotetraploid species formed ∼7500 years ago by
hybridization between B. rapa (AA, genome size ∼312 Mb)
and Brassica oleracea (CC, genome size ∼540 Mb), followed
by genome duplications and mergers during the evolutionary
process (Chalhoub et al., 2014). Therefore, Brassica is an ideal
model to increase knowledge of polyploid evolution (Parkin et al.,
2005; Albertin et al., 2006), which is usually assumed that the
physiology and developmental biology of TT genes in A. thaliana
are highly similar to those of other Brassicaceae plants. Although
dozens of genes involved in the flavonoid biosynthesis pathway
of A. thaliana were identified based on tt mutations (Holton and
Cornish, 1995; Devic et al., 1999;Wan et al., 2002; Xie et al., 2003;
Baudry et al., 2006; Lepiniec et al., 2006; Routaboul et al., 2006;
Saito et al., 2013), only some of these have been characterized in
other Brassicaceae plants, and to date no comprehensive study
of these genes has been reported. We previously conducted a
systematic study of the expression profiles of related genes in B.
napus seeds at different stages of development (Qu et al., 2013).

In this study, we identified 21 genes involved in the flavonoid
biosynthesis pathway in 17 sequenced Brassicaceae species.
We systematically analyzed the phylogenetic relationships and
triplication events of these genes among the Brassicaceae plants.
Additionally, the inheritance of flavonoid biosynthesis pathway
in B. napus is quite complicated, and the regulatory mechanisms
underlying the biosynthesis of the relevant genes were not well
understood. Hence, using quantitative real-time PCR (qRT-PCR)
analysis, we identified significant differences (Student’s t-test,
P < 0.05 or 0.01) in the expression patterns of 18 genes associated
with the flavonoid biosynthesis pathway in the stems, leaves,
buds, flowers, siliques, and pericarps, and at five different stages
of seed development (10, 20, 30, 40, and 50 DAP) in six inbred
rapeseed lines, which were used to represent typical yellow-
and black-seeded genotypes of B. napus, have different genetic
backgrounds (Figure 1, Table 1). These results provide useful
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information for identifying key genes or regulatory nodes that
control yellow seed coat formation, and provide insight into the
inheritance of qualitative differences between the yellow- and
black-seeded B. napus.

MATERIALS AND METHODS

Plant Materials
Plant materials were collected from yellow-seeded and black-
seeded B. napus in different genetic backgrounds (Table 1,
Figure 1). The yellow seed degree are calculated using the
published reports (Li et al., 2012). The B1 and B2 were inbred lines
ZY821 and ZS11, and Y1 and Y2 were GH06 and 05E258-1, which
were used to represent typical black-seeded and yellow-seeded
genetic types of B. napus, respectively. B3 and Y3 were represent
two near isogenic lines of black- and yellow-seeded B. napus,
selected from the successive backcross of the sixth generation
with parent ZS11 and recurrent parent 06E241 (Qu et al.,
2015). The plants were grown under normal field conditions at
Chongqing Rapeseed Technology Research Center (CRTRC) in
2014. Field management essentially followed normal agronomic
procedures. Various tissue organs, including stems (St), leaves
(Le), flowers (Fl), buds (Bu), silique pericarps (SP), and seeds
harvested at 10, 20, 30, 40, and 50 days after pollination (DAP)
were sampled and stored at−80◦C until used.

Identification of Flavonoid Biosynthesis
Pathway Gene Members in Brassicaceae
Species
The full genome sequences of Brassicaceae were downloaded
from multiple databases, including the BRAD database (http://
brassicadb.org/brad/ftpTrans.php; Cheng et al., 2011), the

FIGURE 1 | Phenogram showing Jaccard’s genetic similarity

coefficients for 6 inbred lines revealed by UPGMA clustering based on

genetic fingerprints calculated from 2300 SNP markers. The phenotypic

characteristics of 6 inbred lines were represented by seeds.

Phytozome database (http://phytozome.jgi.doe.gov/pz/portal.
html#!search; Goodstein et al., 2012), PGDD (PLANT GENOME
DUPLICATION DATABASE; http://chibba.agtec.uga.edu/
duplication/index/files; Lee et al., 2013), the Raphanus sativus
Genome DataBase (http://radish.kazusa.or.jp/; Kitashiba et al.,
2014), and the B. napus database (http://www.genoscope.cns.
fr/brassicanapus/; Chalhoub et al., 2014). From amongst the
species with full genome sequences, the following 17 species
were selected: Aethionema arabicum (Aa), Arabidopsis halleri
(Ah), Arabidopsis lyrata (Al), A. thaliana (At), Brassica napus
L. (Bn), B. oleracea (Bo), B. rapa (Br), Boechera stricta (Bs),
Capsella grandiflora (Cg), Capsella rubella (Cr), Camelina sativa
(Cs), Leavenworthia alabamica (La), Raphanus sativus L. (Rs),
Sisymbrium irio (Si), Schrenkiella parvula (Sp), Thellungiella
halophile (Th), and Thellungiella salsuginea (Ts). All coding
sequences (CDSs) and amino acid sequences were stored
in a local Brassicaceae database using Geneious Pro 4.8.5
software (http://www.geneious.com/; Biomatters, Auckland,
New Zealand). To identify the flavonoid biosynthesis pathway
genes and their homologous genes, all amino acid sequences of
flavonoid biosynthesis pathway genes in A. thaliana retrieved
from TAIR 10 (http://www.arabidopsis.org/; Lamesch et al.,
2012) were used as queries to search against the Brassicaceae
protein models with HMMER3 (version 3.1b2 with Pfam HMM
library Pfam 28.0; Finn et al., 2011). To identify the flavonoid
biosynthesis genes, unique protein sequences of these genes
from the A. thaliana genome were used as query using BLASTP
program (Altschul et al., 1997) in the local Brassicaceae database
developed in this research. All taxa were named using two-letter
acronyms and gene type was used as the species gene name.
Briefly, the first uppercase letter represents the genus, the second
the species, and the following the gene name. A number at
the end indicates the copy number. For example, A. thaliana
phenylalanine ammonia lyase 1, which has only one copy in A.
thaliana, is indicated by AtPAL1.

Mapping of Flavonoid Biosynthesis
Pathway Genes among Brassicaceae
Species
To assign the location of flavonoid biosynthesis pathway genes
in the Brassicaceae species genomes, the GFF genome files
were downloaded from the aforementioned databases. Then,
MapChart 2.0 was used to draw graphic representations of
their corresponding physical position on pseudo-molecular
chromosomes of Brassica crops.

TABLE 1 | List of B. napus genotypes used in this study.

No. Genetic background Yellow seed degree Location

B1 ZY821 22.23 Chongqing, China

Y1 GH06 126.43 Chongqing, China

B2 ZS9 63.00 Chongqing, China

Y2 05E258-1 121.46 Chongqing, China

B3 ZS9/06E241(BC2F6) 54.21 Chongqing, China

Y3 ZS9/06E241(BC2F6) 131.68 Chongqing, China
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TABLE 2 | Characterization of genes involved in the phenylpropane-flavonoid biosynthesis pathway of Brassicaceae species.

Gene name Length (aa) No. of Brassicaceae Species A. thaliana B. rapa B. oleracea B. napus Total No.

PAL1 263–728 18 1 2 2 4 28

PAL2 377–725 16 1 3 4 5 31

PAL3 107–698 6 1 2 2 2 10

PAL4 344–709 16 1 1 1 2 22

C4H 468–1197 17 1 5 5 10 43

TT1 287–323 17 1 1 1 2 20

TT2 156–265 17 1 1 1 2 20

TT3 244–387 18 1 1 1 3 24

TT4 393–734 15 1 5 3 9 39

TT5 197–254 18 1 3 3 4 30

TT6 274–548 16 1 4 3 6 34

TT7 364–687 17 1 1 1 2 21

TT8 497–613 17 1 1 1 2 23

TT10 489–1676 17 1 2 1 3 22

TT12 507–560 17 1 1 1 2 22

TT15 473–864 17 1 1 1 2 24

TT16 183–318 17 1 3 3 6 33

TT18 351–416 18 1 2 2 4 28

TT19 213–439 17 1 2 2 5 27

TTG1 120–521 17 1 2 1 3 24

TTG2 114–431 17 1 2 3 4 31

AHA10 918–985 16 1 1 1 2 20

BAN 216–1041 17 1 2 2 4 27

UGT2a 422–566 12 1 1 2 2 14

UGT2b 84–562 17 1 4 3 5 35

Phylogenetic Analysis
Based on previously described methods, all sequence alignments
for each flavonoid biosynthesis pathway gene superfamily were
performed using ClustalW2 software (Larkin et al., 2007),
and phylogenetic analysis was carried out using Molecular
Evolutionary Genetics Analysis (MEGA) 6.0 (Tamura et al.,
2013) with a maximum likelihood (ML). In the ML method,
phylogenetic trees were constructed using the JTT+I+G
substitution model in PhyML version 3.0.1. To ensure the
accuracy of the phylogenetic tree, each tree was subjected to
bootstrap analysis with 1000 replicates (Guindon et al., 2010).
Finally, all the phylogenetic trees were visualized using FigTree
v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Expression Pattern Analysis of TT-Type
Genes in B. napus
To characterize differences in expression of the 18 genes
associated with the flavonoid biosynthesis pathway between
the yellow- and black-seeded varieties, we designed the
primers in consensus region based on alignment the gene
sequence (Table 3). Then the total RNA was extracted from
various tissues using the RNAprep Pure Plant Kit (TIANGEN
BIOTECH, Beijing, China) according to manufacturer’s
instructions. Then, 1 µg RNA sample was reverse transcribed
with the Oligo dT-Adaptor Primer using the RNA PCR

Kit (AMV) Ver. 3.0 (TaKaRa, http://www.takara.com.cn).
To monitor sample uniformity of initial RNA input and
RT efficiency, Brassica napus 26S rRNA was used as the
internal control according to the previously described method
(Qu et al., 2013).

Real-time PCRwas performed using SYBR R© Premix Ex TaqTM

II (Perfect Real Time) (TaKaRa, China) in a 20 µl volume
that included 10 µl of SYBR R© Premix Ex TaqTM II, 2 µl (100
ng) of template cDNA, and 0.4 µM of each PCR primer. All
primer sequences used for the qRT-PCR are listed in Table 3,
designed according to the methods described in our previous
research (Qu et al., 2013). Then the specific primers used in
this study and cycling conditions were 95◦C for 2 min, followed
by 40 cycles at 95◦C for 10 s (denaturation) and 60◦C for 20 s
(annealing and extension). The melting curves of each PCR
application were obtained using the following cycling conditions:
95◦C for 10 s followed by a constant increase in temperature
between 65 and 95◦C at an increment of 0.5◦C/cycle, and
samples were run on the Bio-Rad CFX96 Real Time System
(USA). The relative expression of the target genes was analyzed
using the 2−11Ct method with BnACTIN7 (EV116054) and
BnUBC21 (EV086936) as internal controls (Wu et al., 2010).
Three biological replicates for each sample were used for real-
time PCR analysis and three technical replicates were analyzed
for each biological replicate. Then the values represent the
average ± SD of three biological replicates with three technical
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TABLE 3 | Primers of the flavonoid biosynthesis pathway genes and housekeeping gene used for qRT-PCR.

Target gene Forward sequence (5′–3′) Reverse sequence (5′–3′) GenBank AGI number

BnTT4 GACTACTACTTCCGCATCACCAACAG GCCTAGCTTAGGGACTTCAACAACC AF076335 AT5G13930

BnTT5 CTTCCTCGGTGGCGCAGGTG ACACAGTTCTCCGTTACTTTCTCTGA EU402417 AT3G55120

BnTT6 TGGGTGAAAGTGACGGAGGAGT TGGTTCCAGGGTCAGTGTGACG DQ513329 AT3G51240

BnTT7 GCCATAGCCCGTGACCCGGA GCTTCTCCGGCGTAACTCCTCC DQ324379 AT5G07990

BnTT3 AGACCGTGTGCGTAACCGGC AGGATCGCGAACAGTGGCACG DQ767950 AT5G42800

BnTT18 GGCTTAGAGCCTGACCGTCTAGAGAA TGAGCTTCCACGCCAAGTGCT GQ120562 AT4G22880

BnBAN GGACTTGTGATGACCGAAGAAAACTG ATGTAGCGACCAGAAGCTGTTTCTTT FJ938339 AT1G61720

BnTT12 GCTCCACAGAGACATACGAGCCG ACGGTGACGAAGCTGAGCATGTA EU818785 AT3G59030

BnTT19 ACATCTTCTTCGTCAGCCATTTGGTCA GGTCCACGATGGCTCGGTGC AB117793 AT5G17220

BnTT10 GCGACTGTGCCAAGAAACGGT CCCCACGTGAGATGTCTATCAAAGTG HM805059 AT5G48100

BnAHA10 ACCCATTGCCATGCCCACTGT GCTCGGCCTGCAAGCAACAA NM_101587 AT1G17260

BnTT2 AGCTGGTCTCAAGAGGTGTGGCA AGCCTCCCAGCTATCAACGACC DQ778647 AT5G35550

BnTT8 GGCTGAAGAGGCTGCGTCGG GTGCTGTGCAAGCCCTCGCT EU192027 AT4G09820

BnTTG1 TCCTCCGGCGACTTCCTCCG GCTGCGTCTCCACCACGGAC EF175930 AT5G24520

BnTT16 TGCTCACATCGGTCTCATCGTCT GCTCGTGTGGAGGAATGGAGGC EU192028 AT5G23260

BnTTG2 AAACCTAAAGCAAAGCTTGTCTCCCA ACTTCCTTTGACTTGCTTCTGTCCGT FJ012168 AT2G37260

BnTT1 TCGCTACAACAATCTTCAGATGCACA TCCTGCACCCTTCAACGCAGC AF190298 AT1G34790

BnTT15 ACAAAATGACGGGACAGTGGAAGTT GGCTGCACATCGCCTCGAGTT BT005834 AT1G43620

BnACTIN7 TGGGTTTGCTGGTGACGAT TGCCTAGGACGACCAACAATACT EV116054 AT5g09810

BnUBC21 CCTCTGCAGCCTCCTCAAGT CATATCTCCCCTGTCTTGAAATGC EV086936 AT5g25760

Primers for amplifying partial sequences of flavonoid biosynthesis genes were designed from conserved nucleotide regions identified by multiple alignments of sequences.

replicates of each tissue and organ. Relative gene expression
levels were normalized according to the expression values in
black-seeded at 10 DAP.

RESULTS

Characterization of Flavonoid Biosynthesis
Pathway Gene Members in Brassicaceae
Species
To identify members of the Brassicaceae gene subfamily
that are involved in the flavonoid biosynthesis pathway, the
whole genome sequences of 17 species were downloaded from
multiple public databases (Materials and Methods). In total, 649
nucleotide sequences of 21 genes and their associated amino
acid sequences were respectively were identified using the HMM
profile (Finn et al., 2011). In addition, we used the nucleotide
and encoded amino acid sequences of four genes from B.
juncea, Bj_PAL1 (ACX31148.1), Bj_TT3 (ADB45307.1), Bj_TT5
(ADB45305.1), and Bj_TT18 (ACH58397.1), that we identified
and aligned previously (Qu et al., 2013). The copy numbers
of each gene varied from 20 to 91, and the genes were widely
distributed in the 17 Brassicaceae species examined. The encoded
amino acid sequences ranged from 84 aa (Bn_UGT2d) to 1676
aa (Sp_TT10; Supplementary Table S2). In addition, the number
of gene families also varied by species; for example, only 10
copies of PAL3 were found in 6 species, but 43 C4H gene copies
occurred in 17 species with as many as 10 orthologs (BnC4H)
in B. napus (Supplementary Table S2). However, TT4, TT6,
and AHA10 were not identified in all Brassicaceae species. For

example, TT4 was not found in A. halleri and C. rubella, TT6 was
absent from A. halleri, and AHA10 was not present in A. lyrata
(Supplementary Table S2). We used the sequences of flavonoid
biosynthesis genes from A. thaliana as query to search genome
databases, and identified highly conserved sequences, including
LESS ADHESIVE POLLEN5/6 (LAP5/6) and TT4 in A. halleri
and C. rubella, DMR6-LIKE OXYGENASE1/2 (DLO1/2) and TT6
in A. halleri, and members of the Autoinhibited H(+)-ATPase
(AHA) superfamily, which might be homologs of TT4, TT6,
and AHA10 and function in flavonoid biosynthesis in A. lyrata.
Here, 36 copies of 21 genes of the flavonoid biosynthesis pathway
were identified in A. thaliana, but 53 were identified in B. rapa,
50 in B. oleracea, and 95 in B. napus, in accordance with the
fact that sequences present as a single copy in the A. thaliana
were present in 2–8 copies in B. napus (Cavell et al., 1998),
and with the observation that excessive gene loss is typical after
polyploidization in eukaryotes (Sankoff et al., 2010; Wang et al.,
2011).

Genomic Distribution on Chromosomes of
Brassicaceae Species
All of the flavonoid biosynthesis pathway genes in 17 Brassicaceae
species were mapped onto pseudo-molecules or chromosomes
using GFF files of their nucleotide sequences (Supplementary
Table S3). Brassica crops are the ideal model for studying genome
evolution (Wang et al., 2011). To intuitively assign the physical
position to the chromosomes of B. rapa, B. oleracea, and B.
napus, all gene members of flavonoid biosynthesis pathway
were mapped to their chromosomes [52 (98.1%) gene copies
in B. rapa, 39 (78.0%) gene copies in B. oleracea, and 84
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(88.4%) gene copies in B. napus] and 22 (1 in B. rapa, 11
in B. oleracea, and 11 in B. napus) were distributed on the
unanchored scaffolds (Figure 2, Supplementary Table S3), which
showed strong collinearity between the A subgenomes from B.
rapa and B. napus and the C subgenomes from B. oleracea and
B. napus (Figure 2). This result indicates that the gene copies
are distributed in orthologous blocks in each genome, and that
substantial genome reshuffling had occurred. For example, copies
of TT10 and TT16 were not identified on B. napus chromosome
A02, and the differential gene copies located in orthologous
blocks on chromosome C06 differed greatly between B. oleracea
and B. napus (Figure 2). These findings are consistent with the
fact that Brassicaceae genomes underwent Brassicaceae-lineage-
specific whole genome triplication, followed by diploidization
after divergence from their common ancestor (Lysak et al., 2005;
Town et al., 2006;Mun et al., 2009;Wang et al., 2011; Cheng et al.,
2013).

Phylogenetic Analysis and the Triplication
of the Flavonoid Biosynthesis Pathway
Gene Superfamily
Despite different flavonoid biosynthesis pathway genes having
similar functions in Brassicaceae species, the phylogenetic
relationships of members of each superfamily have not been
comprehensively studied. To gain insight into the functional
roles of flavonoid biosynthesis pathway genes that may have
arisen during evolution, we performed a phylogenetic analysis
using the putative amino acid sequence based on each member of
the flavonoid biosynthesis pathway superfamily in Brassicaceae
species.

Initially, we conducted a BLASTP analysis against the local
database, which included 17 Brassicaceae species, followed by
HMM searching (Finn et al., 2011). We identified 649 sequences
of 21 flavonoid biosynthesis pathway gene family members,
and found that the number of gene copies varied from 1
to 10 in each family (Supplementary Table S2), which were
mapped onto pseudo-molecules or chromosomes using GFF
files of their nucleotide sequences (Supplementary Table S3). To
intuitively assign the physical position to the chromosomes of B.
rapa, B. oleracea, and B. napus, all gene members of flavonoid
biosynthesis pathway were mapped to their chromosomes [52
(98.1%) gene copies in B. rapa, 39 (78.0%) gene copies in B.
oleracea, and 84 (88.4%) gene copies in B. napus] and 22 (1 in B.
rapa, 11 in B. oleracea, and 11 in B. napus) were distributed on the
unanchored scaffolds (Figure 2, Supplementary Table S3), which
showed strong collinearity between the A subgenomes from B.
rapa and B. napus and the C subgenomes from B. oleracea and
B. napus (Figure 2). This result indicates that the gene copies
are distributed in orthologous blocks in each genome, and that
substantial genome reshuffling had occurred. For example, copies
of TT10 and TT16 were not identified on B. napus chromosome
A02, and the differential gene copies located in orthologous
blocks on chromosome C06 differed greatly between B. oleracea
and B. napus (Figure 2). These findings are consistent with the
fact that Brassicaceae genomes underwent Brassicaceae-lineage-
specific whole genome triplication, followed by diploidization
after divergence from their common ancestor (Lysak et al., 2005;
Town et al., 2006;Mun et al., 2009;Wang et al., 2011; Cheng et al.,
2013).

In addition, we performed a phylogenetic analysis to identify
each flavonoid biosynthesis pathway gene type, and constructed

FIGURE 2 | Genomic distribution of the flavonoid biosynthesis pathway genes on B. rapa, B. oleracea, and B. napus chromosomes. The dissociation

fraction of chromosomes indicates the normal single-copy locus mapped to the random chromosome; Ann and Cnn are the indeterminate Chromosome A and C.

Numbers in parentheses are the physical distance of the scaffold for each gene. The collinearity of homologous genes were indicated by the ligatures among Brassica

species. The homologous genes of flavonoid biosynthesis pathway were indicated by the same colors of the exact same fonts among different chromosomes of

Brassica species.
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their corresponding phylogenetic trees using MEGA 6.0 with
the ML method and modified the tree using FigTree v1.4.2.
According to the phylogeny generated using the ML method,
all representative sequences for each gene member from the
Brassicaceae species formed a well-supported clade, which was
classified into the Arabidopsis or Brassicaceae subgroups, but
each gene was assigned to monophyletic clades using other
substitution models (Figures 3–5, and Supplementary Figures
S1–S10). For example, we identified 4 members of PAL, which
encodes key enzymes of the phenylpropanoid pathway, that
were clearly grouped into four subclades (Figure 3). The gene
members, Bn_PAL1b and Si_PAL3 belonged to the same PAL2
subcategories, and Aa_PAL4 and Cs_PAL4c clustered alone or
in the vicinity of the PAL3 and PAL4 group (Figure 3; PAL1,
Gray; PAL2, Light blue; PAL3, Pink; PAL4, Green). We could
thus predict the functions of specific flavonoid biosynthesis
pathway genes in Brassicaceae species, because genes with
similar functions tend to be retained with orthologous genes
(Koonin, 2005). In addition, Brassica species are an ideal model
for systematically studying polyploidy genome evolution. We
identified one clade of genes of the flavonoid biosynthesis
pathway, and the copies in B. rapa, B. oleracea, and B. napus
(e.g., C4H, TT4, TT6, TT18, TT19, and UGT2) were divided into
different subclades or monophyletic subclades by phylogenetic
analysis (Figures 4A–F). However, multiple gene copies of TT12,
TTG2, and BAN were present in the subclades in B. rapa, B.
oleracea, and B. napus, which have high levels of divergence from
their common ancestor with A. thaliana (Figures 5A–C).

Based on the collinearity of orthologs, we identified syntenic
orthologous genes of the flavonoid biosynthesis pathway among
the genomes of the Brassicaceae species (Supplementary Table
S4). In the genomes of B. rapa, B. oleracea, and B. napus,
the copies of C4H were distributed in the LF, MF1, and MF2
subgenomes. Besides, the copies of C4H were also identified
outside the genome triplication segments in the genomes of
Brassica crops. However, 10 of 25 gene members had a single
copy in the B. rapa and B. oleracea genomes, but multiple copies
in B. napus. Moreover, we identified 10 pseudo-copies of five
genes in seven species, i.e., 3 of which in C. rubella (C4H, TT10,
and UGT2), 2 copies of TT1 in L. alabamica and S. irio, and
5 copies of TT6 in A. arabicum, B. rapa, B. oleracea, and B.
napus (Supplementary Table S4). These findings can be used to
systematically study gene retention in the triplicated genomes of
Brassicaceae species, as well as to understand the evolutionary
history of these orthologous genes among Brassicaceae species.

Development- and Tissue-Specific
Expression of TT-Type Genes in B. napus
In this study, we analyzed the expression patterns of 18 TT-
type genes involved in flavonoid biosynthesis by qRT-PCR in
various tissues of black- and yellow-seeded lines of B. napus
with different genetic backgrounds. Except for BnTT4, BnTT5,
BnTT6, and BnTT7, the expression level of 11 structural genes
was much higher in developing seeds than in other tissues in
B. napus (Figure 6). The expression level of BnBAN, BnTT12,
BnTT19, and BnAHA10 peaked during the early stages of seed

development, which were the EBGs (Figures 6G–I,K, Table 4).
BnTT3, and BnTT18 were expressed in a similar pattern as
BnBAN, BnTT12, BnTT19, and BnAHA10, but peaked later in
development, which were the LBGs (Figures 6E,F,J, Table 4).
Thus, these genes may be regulated by the same upstream gene or
they may have a synergistic effect on the flavonoid biosynthetic
pathway during seed development. In addition, the expression
levels of BnTT5 and BnTT7 did not differ significantly (Student’s
t-test, P > 0.05) among the rapeseed tissues, whereas BnTT4,
BnTT5, BnTT6, and BnTT7 expression was higher in the buds
and flowers of B. napus (Figures 6A–D, Table 4). Furthermore,
the expression level of five regulatory genes, BnTT2, BnTT8,
BnTT16, BnTTG2, and BnTT1, was much higher in developing
B. napus seeds, and peaked during the early and middle stages of
seed development, whichmay be the EBGs (Figures 6L,M,O,P,Q,
Table 4). However, BnTT15 was expressed at higher levels in
flowers than in other organs, indicating that this gene may play
an important role in flower formation (Figure 6R).

Differential Expression Patterns of TT-Type
Genes in B. napus
In this study, most of the key genes involved in flavonoid
biosynthesis were found to exhibit similar expression patterns,
and the expression levels of genes varied greatly between the
yellow- and black-seeded lines of B. napus (Figure 7). The
structural genes involved in flavonoid biosynthesis, i.e., BnTT3,
BnTT18, BnBAN, BnTT12, BnTT19, and BnAHA10, had similar
expression patterns in the developing seeds of different genetic
backgrounds, but had significant differences (Student’s t-test, P
< 0.01) in expression level between the black- and yellow-seeded
lines (Figures 7C,E–I,K, Table 4). BnTT4, BnBAN, BnTT12,
BnTT19, and BnAHA10 expression peaked at 20 DAP, which
were EBGs (Figures 7A,G–I,K, Table 4), and BnTT6, BnTT3,
and BnTT18 expression peaked at 40 DAP, were belong the
LBGs (Figures 7E,F, Table 4). These genes were expressed at
higher levels in the black-seeded than in the yellow-seeded
lines, especially at 20 DAP (Figures 7A,H,K, Table 4), 30 DAP
(Figures 7G,I), and 40 DAP (Figures 7B,E,F, Table 4), but the
expression patterns of these genes were hardly affected by
genetic background. Additionally, BnTT7, BnTT5, and BnTT10
expression peaked at different development stages both in the
black- and yellow-seeded lines (Figures 7B,D,J, Table 4, and
Supplementary Table S5), indicating that the expression of
these genes was affected by the genetic background. As for the
expression patterns of structural genes, regulatory genes, such
as BnTT2, BnTT8, BnTT16, BnTTG2, BnTT1, and BnTT15, had
similar expression patterns in the black- and yellow-seeded B.
napus, with the genetic background having a minimal effect, and
the expression of these genes peaked during the early and middle
developmental stages (20 and 30 DAP, EBGs; Figures 7L,M,O–R,
Table 4). In addition, the expression patterns and levels of
BnTTG1 showed obvious variations during seed development of
different lines of B. napus, suggesting that they were significantly
affected by genetic background (Figure 7N).

Although the expression patterns of most of the genes
involved in flavonoid biosynthesis did not significantly differ
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FIGURE 3 | Phylogenetic relationships of PAL gene family of Brassicaceae species. PAL1, PAL2, PAL3, and PAL4 were indicated by gray, light blue, purple

and green color. The Bn_PAL1b and Si_PAL3 were denoted by red font that maybe the synonymous of PAL2. The Red color diamond, triangle, circle, and rectangle

were denoted the gene copies in A. thaliana, B. rapa, B. oleracea, and B. napus, respectively. Scale bar (the numbers) indicates the estimated number of amino acid

substitutions per site.

(Student’s t-test, P > 0.05) between the developing seeds of
the black- and yellow-seeded B. napus, the expression levels of
these genes did differ and peaked at different developmental
stages (Figure 7), indicating that these genes can also be classified
as Early Biosynthetic Genes and Late Biosynthetic Genes, as
in Arabidopsis (Lepiniec et al., 2006). The expression of genes
that function upstream in the flavonoid biosynthesis pathway
peaked before those that functioned later, suggesting that the

downstream genes were influenced by the upstream genes. For
example, the expression of BnTT4, which encodes a protein
that catalyzes the first committed step of flavonoid biosynthesis
(Albert et al., 1997; Tang et al., 1997), peaked at 20 DAP,
which was before the expression of the downstream genes
BnTT5, BnTT6, and BnTT7 peaked (Figure 7). All flavonoids
and isoflavonoids are derived from the nargingenin chalcone
generated by this first enzyme. Moreover, the expression
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FIGURE 4 | Phylogenetic relationships of C4H, TT4, TT6, TT18, TT19, and UGT2gene family of Brassicaceae species. The Red color diamond, triangle,

circle, and rectangle were denoted the gene copies in A. thaliana, B. rapa, B. oleracea, and B. napus, respectively. Scale bar (the numbers) indicates the estimated

number of amino acid substitutions per site. (A–F) were indicated C4H, TT4, TT6, TT18, TT19, and UGT2 gene family, respectively.
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FIGURE 5 | Phylogenetic relationships of TT12, TTG2, and BAN gene

family of Brassicaceae species. The Red color diamond, triangle, circle,

and rectangle were denoted the gene copies in A. thaliana, B. rapa, B.

oleracea, and B. napus, respectively. Scale bar (the numbers) indicates the

estimated number of amino acid substitutions per site. (A–C) were indicated

TT12, TTG2, and BAN gene family, respectively.

of most of the regulatory genes also peaked at 20 DAP
(Figure 7), suggesting that they may be essential for regulating
the expression of genes involved in flavonoid biosynthesis
during the early stages of seed development. Although, the
expression of BnTTG2 peaked later than did that of BnTT2
and BnTT8, the expression of BnTT2 was greater in yellow-
than in black-seeded B. napus, and BnTTG1 expression was also
largely affected by the genetic background (Figures 7L–N,P),
indicating that the mechanism of BnTTG2 is different from
that of its orthologs in A. thaliana (Lepiniec et al., 2006). In
addition, the expression of BnTT6, BnTT18, and BnTT2 peaked
sooner in the yellow-seeded than in the black-seeded lines
(Figures 7C,F,L).

DISCUSSION

Flavonoids are secondary metabolites that are extensively
distributed in the plant kingdom. They not only play an
important role in color formation in fruits and flowers, but are
also well-known for their positive effect on health, due to their
antioxidant and antitumor properties (Winkel-Shirley, 2001,
2002; Lepiniec et al., 2006; Routaboul et al., 2006). Genome-wide
analyses of gene superfamilies have been widely performed after
the completion of numerous plant genome projects. For instance,
numerous genome-wide studies of gene superfamilies have been
performed in the diploid species, B. rapa and B. oleracea (Song
et al., 2013; Duan et al., 2014; Li et al., 2014; Diehn et al.,
2015; Lu et al., 2015). Several gene superfamilies have also been
reported in the allotetraploid species B. napus (Sun et al., 2014;
Raboanatahiry et al., 2015) However, a comprehensive analysis
of the superfamily of genes underlying the flavonoid biosynthesis
pathway in Brassica has not been reported to date. Here, we
identified 649 nucleotide sequences of 21 flavonoid biosynthesis
pathway genes and their corresponding amino acid sequences
in 17 Brassicaceae species (Table 2, Supplementary Table S2).
The gene copy numbers differed between species; for example,
10 copies of PAL3 were found in 6 species, whereas 43 copies
of C4H were identified in 17 species (Table 2, Supplementary
Table S2). Although we did not detect orthologs for some genes
involved in flavonoid biosynthesis (e.g., TT4, TT6, and AHA10),
in accordance with the fact that the excessive gene loss is typical
after polyploidy formation in eukaryotes (Sankoff et al., 2010;
Wang et al., 2011), we identified orthologs of many of these genes
by querying the Brassica genome databases with the sequences of
A. thaliana genes involved in flavonoid biosynthesis. In addition,
it has been widely suggested that the genome structures are
highly conserved among Brassica species (Krishnamurthy et al.,
2014; Thamilarasan et al., 2014; Dong et al., 2016). Each of
the gene copies was found to be distributed in orthologous
blocks by collinearity analysis between the A and C subgenomes
(Figure 2). Not all gene members could be accurately annotated
on chromosomes and the number of gene copies varied greatly
in the orthologous blocks (Figure 2, Supplementary Table S3),
indicating that may be associated with Brassicaceae-lineage-
specific whole genome triplication, followed by diploidization
after divergence from the common ancestor (Lysak et al., 2005;
Town et al., 2006; Mun et al., 2009; Wang et al., 2011; Cheng
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FIGURE 6 | Comparison expression analysis of genes involved in flavonoid biosynthesis in different tissues and organs between the yellow- and

black-seeded B. napus. Three biological replicates for each sample were used for real-time PCR analysis and three technical replicates were analyzed for each

biological replicate. Values represent the average ± SD of three biological replicates with three technical replicates of each tissue and organ. 10–50, Different stages of

seed development; Fl, Flowers; SP, Silique pericarps; St, Stems; Bu, Buds; Le, Leaves. Red indicates high expression and blue indicates low expression. (A–R) were

indicated the genes of BnTT4, BnTT5, BnTT6, BnTT7, BnTT3, BnTT18, BnBAN, BnTT12, BnTT19, BnTT10, BnAHA10, BnTT2, BnTT8, BnTTG1, BnTT16, BnTTG2,

BnTT1, and BnTT15, respectively.

et al., 2013). Although, subgenome sequences present higher
levels of conservation in extensive collinear genome blocks
among Brassicaceae species, we found that all genes of the
flavonoid biosynthesis pathway were phylogenetically classified
into two major subcategories (Arabidopsis and Brassicaceae
species; Figures 3–5, Supplementary Figures S1–S11), consistent
with the functional divergence of orthologous gene groups
between Arabidopsis and Brassicaceae species during evolution.
These results revealed that diversification occurred among the
flavonoid biosynthesis pathway gene family members, likely
indicating that functional divergence of orthologous gene groups
occurred between Arabidopsis and Brassicaceae species during
evolution. These findings provide insight into the functional
divergence of these genes among Brassicaceae species. In
addition, the identification of conserved genomic blocks will
provide useful phylogenetic, polyploidization, and comparative
genomics information (Schranz et al., 2006; Cheng et al.,
2013). Subgenomes can be classified based on gene density into
the following three groups: least fractionated (LF), medium
fractionated (MF1), and most fractionated (MF2) (Wang et al.,
2011; Cheng et al., 2013). We then performed the triplication of

flavonoid genes in the whole gennomes of Brassicaceae species.
Furthermore, 10 pseudo-copies of five flavonoid biosynthesis
pathway genes were identified, such as C4H, TT10, UGT2, TT1,
and TT6 (Supplementary Table S4). These results will provide
detailed information for systematic studies of the functions and
roles of these genes in flavonoid biosynthesis pathway at the
molecular level.

Seed coat color was previously reported to involve a similar
mechanism in Brassica and Arabidopsis species (Marles and
Gruber, 2004). Hence, identifying candidate genes by cloning
Brassica TT genes involved in the flavonoid biosynthetic pathway
and conducting comparative studies of these genes is a reasonable
approach, and many homologs of these genes have also been
identified in B. napus (Wei et al., 2007; Xu et al., 2007; Ni
et al., 2008; Chai et al., 2009; Lu et al., 2009; Chen et al., 2013).
However, little is known about the mechanism underlying seed
color formation in B. napus. Using three groups of B. napus
plants in different genetic backgrounds, we showed that the
12 genes (BnTT3, BnTT18, BnBAN, BnTT12, BnTT19, BnTT10,
BnAHA10, BnTT2, BnTT8, BnTT16, BnTTG2, and BnTT1)
investigated in this study were highly expressed and showed
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TABLE 4 | The tissue specificity and expression stages of flavonoid biosynthesis pathway genes in B. napus and A. thaliana.

Name Tissue specificity Expressed during

B. napus A. thaliana B. napus A. thaliana

TT4 Except Silique pericarps Whole plant EBGs EBGs

TT5 Whole plant Whole plant NA EBGs

TT6 Whole plant Whole plant LBGs LBGs

TT7 Whole plant Whole plant NA LBGs

TT3 Development seeds Whole plant EBGs EBGs

TT18 Development seeds Development seeds LBGs LBGs

BAN Development seeds Development seeds EBGs EBGs

TT12 Development seeds Development seeds EBGs EBGs

TT19 whole plant Whole Plant EBGs EBGs

TT10 Development seeds Development seeds and flarol organs NA LBGs

AHA10 Development seeds and stem Development seeds and stem EBGs EBGs

TT2 Development seeds Development seeds EBGs EBGs

TT8 Development seeds Development seeds EBGs EBGs

TTG1 whole plant whole plant LBGs LBGs

TT16 Development seeds and flowers Development seeds and flowers EBGs EBGs

TTG2 Whole plant Whole plant LBGs LBGs

TT1 Development seeds and floral organs Development seeds EBGs EBGs

TT15 Whole plant Whole plant LBGs LBGs

EBGs and LBGs means the Early Biosynthetic Genes and the Late Biosynthetic Genes, respectively. NA indicates that the expression stage of genes were inconclusive during the

developmental seeds of B. napus.

clear divergence in organ specificity in the developing seed
(Figure 6), suggesting that these genes play an important role
in seed development and are involved in the accumulation of
seed pigmentation. Furthermore, BnTT15 was highly expressed
in flowers (Figure 6R). By contrast, BnTT5, BnTT7, and BnTTG1
expression did not differ significantly (Student’s t-test, P > 0.05)
among B. napus organs (Figures 6B,D,N). Similar expression
profiles were observed for orthologs of these genes in A. thaliana
(Schmid et al., 2005), suggesting evolutionary conservation of
the regulatory mechanism governing flavonoid accumulation.
Our study lays the foundation for future research aimed at
deciphering the expression profiles of different gene copies in B.
napus. These findings provide insight into the characteristics and
functions of flavonoid pathway genes in B. napus.

As in A. thaliana, the flavonoid biosynthesis pathway has
been characterized mainly using tt mutants that exhibited a
transparent and colorless testa (seed coat; Yu, 2013). Moreover,
much research has focused on identifying the seed pigments
involved in the formation of seed coat color in B. napus
(Theander et al., 1977; Marles and Gruber, 2004; Akhov et al.,
2009; Qu et al., 2013). Homologous genes in the B. napus
flavonoid biosynthesis pathway have also been cloned and
characterized (Wei et al., 2007; Xu et al., 2007; Ni et al.,
2008; Akhov et al., 2009; Auger et al., 2009; Chai et al., 2009;
Lu et al., 2009; Chen et al., 2013). However, a few of these
genes was comprehensively functionalized in B. napus. Using
qRT-PCR analysis, we now examined the temporal and spatial
expression patterns of 18 flavonoid biosynthesis genes in the
developing seeds of black- and yellow-seeded B. napus, sourced
from different backgrounds. We found that the majority of genes
had similar expression patterns in the developing seed, suggesting

that these genes not only participated in the flavonoid pathway,
but also might be regulated by an upstream regulatory gene
involved in seed coat color formation in B. napus. In addition, we
classified these genes based on the time at which their expression
peaked. The first group of genes with similar expression patterns
in black- and yellow-seeded lines (BnTT4, BnBAN, BnTT12,
BnTT19, BnAHA10, BnTT8, BnTT16, BnTTG2, and BnTT15)
was expressed at different levels in different tissues and showed
the highest expression levels at 20 DAP, and was considered
as the early biosynthetic genes (Figures 7, 8). By contrast,
BnTT4, BnTT12, and BnAHA10 have higher expression levels
in black-seeded than in yellow-seeded lines (Figures 7A,H,K).
The first dedicated step for flavonoid biosynthesis of plant
is catalyzed by TT4, which produces naringenin chalcone,
and thus TT4 critically influences many important flavonoid-
related characteristics, such as seed coat color, flower color, and
pigmentation of the stem and leaf surface (Hoffmann et al., 2006;
Kasai et al., 2007). Chai et al. (2009) proposed BnTT12 a potential
candidate gene for seed coat color formation in B. napus. Stein
et al. (2013) found that the transparent testa geneAHA10 strongly
affected both seed color and lignin content using a marker that
was closely linked to a major QTL for seed fiber and color in
B. napus. Moreover, TT12 and AHA10 in Arabidopsis were both
found to be related to the vacuolar transport of proanthocyanidin
in seed coats (Debeaujon et al., 2001; Baxter et al., 2005). Thus,
the difference in seed coat color between black- and yellow-
seeded rapes seems to be related to the reduction in precursor
accumulation following down-regulation of the encoding gene
(Figure 8).

Another group of genes (BnTT5, BnTT7, BnTT18, BnBAN,
BnTT19, BnTT2, and BnTTG2) exhibited drastic differences
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FIGURE 7 | Expression pattern analysis of genes involved in flavonoid biosynthesis in the developing seeds of different B. napus lines by qRT-PCR.

The yellow-seeded lines include Y1, Y2, and Y3, and the black-seeded lines include B1, B2, and B3 (A–R). Expression was monitored at five stages of seed

development (10, 20, 30, 40, and 50 DAP). Values represent the average ± SD of three biological replicates with three technical replicates of each developmental

stage. Error bars denote standard error of the mean (SEM) of three experiments. Relative gene expression levels were normalized according to the expression values

in black-seeded B. napus at 10 DAP.
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FIGURE 8 | The pathway of flavonoid biosynthesis, modification, and transport in B. napus. Bn, Brassca napus; BAN, BANYULS; AHA10, Autoinhibited

H+-ATPase isoform 10; TT (G), TRANSPARENT TESTA (GLABRA); UGT, UDP flavonoid glucosyl transferase. The the Early Biosynthetic Genes (EBGs) and the Late

Biosynthetic Genes (LBGs) red and blue colors, respectively. The bold means that genes might play an crucial roles in the formation of different seed coat colors in B.

napus.

during themiddle to late stages of seed coat development between
the black- and yellow-seeded B. napus (Figures 7B,D,F,G,I,L,P).
Additionally, TTG1, TT2, and TT8 were found to modulate the
activity of proteins encoding TT3 (DFR), TT18 (LDOX), BAN,
and TT12 in the proanthocyanidin subpathway, respectively.
Moreover, we previously found that PAs and polyphenol
compounds gradually increase during seed maturation and
result in significant differences (Student’s t-test, P < 0.05
or 0.01) in the colors of black- and yellow-seeded B. napus
seed coats (Qu et al., 2013). However, BnTT5 and BnTTG1
were found to possess different expression patterns among the
rapeseed seeds, suggesting that they were largely influenced
by the genetic background (Figures 7B,N). These data suggest
that numerous compounds accumulate in the seed coat during
later development stage and confer color to the mature seed.
Therefore, inhibiting the expression of genes involved in their
biosynthesis can lead to lighter color seeds during the middle and
late development stages in B. napus, and improve the nutritional
quality of rapeseed oil and meal. Moreover, this can also explain

why the expression of upstream genes peaked sooner than or
simultaneously with the downstream genes in the developing
seeds (Figures 7, 8), indicating that the upstream genes not only
control the downstream genes, but also that the upstream genes
cooperate in the flavonoid biosynthesis pathway. Together, the
flavonoid biosynthetic pathway of Brassica species is much more
complex than that inA. thaliana, with the former not only having
more synthesis-related genes, but also exhibiting interactions
with other genes involved in flavonoid biosynthesis at multiple
loci (Figure 8). These findings provide insight into the molecular
and biochemical mechanism of seed coat color development in B.
napus.
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