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Small RNAs from Bemisia tabaci Are
Transferred to Solanum lycopersicum
Phloem during Feeding

Paula J. M. van Kleefff, Marc Galland T, Robert C. Schuurink and Petra M. Bleeker *

Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands

The phloem-feeding whitefly Bemisia tabaci is a serious pest to a broad range of host
plants, including many economically important crops such as tomato. These insects
serve as a vector for various devastating plant viruses. It is known that whiteflies
are capable of manipulating host-defense responses, potentially mediated by effector
molecules in the whitefly saliva. We hypothesized that, beside putative effector proteins,
small RNAs (sRNA) are delivered by B. tabaci into the phloem, where they may play a role
in manipulating host plant defenses. There is already evidence to suggest that sSRNAs
can mediate the host-pathogen dialogue. It has been shown that Botrytis cinerea, the
causal agent of gray mold disease, takes advantage of the plant sSRNA machinery to
selectively silence host genes involved in defense signaling. Here we identified sRNAs
originating from B. tabaci in the phloem of tomato plants on which they are feeding.
sRNAs were isolated and sequenced from tomato phloem of whitefly-infested and control
plants as well as from the nymphs themselves, control leaflets, and from the infested
leaflets. Using stem-loop RT-PCR, three whitefly sSRNAs have been verified to be present
in whitefly-infested leaflets that were also present in the whitefly-infested phloem sample.
Our results show that whitefly SRNAs are indeed present in tomato tissues upon feeding,
and they appear to be mobile in the phloem. Their role in the host-insect interaction can
now be investigated.

Keywords: small-RNA, whitefly, RNAseq, phloem, tomato

INTRODUCTION

Bemisia tabaci (Hemiptera), commonly known as whitefly, is a polyphagous insect that is a threat
for many crops across the globe. These insects can reduce crop yield in a number of ways; (1)
through transmission of yield-limiting plant viruses (Navas-Castillo et al., 2011); (2) via honeydew
excrement, which results in growth of sooty molds leading to a reduction of photosynthesis
(Walling, 2008) or the release of the glycoside of salicylic acid (VanDoorn et al., 2015) or; (3)
ingestion of phloem sap thereby depleting plants of photosynthetic compounds (Buntin et al.,
1993).

Plants can defend themselves against herbivores and pathogens in various ways e.g., via
physical barriers, volatile or non-volatile compounds, and through induction of defense responses
controlled by various phytohormones (Walling, 2008; Kant et al., 2015). Trichomes can act both as
physical barriers and as metabolite production facilities. Trichomes on the leaves will hinder small
herbivores in their movement and finding suitable feeding places (Simmons and Gurr, 2005). In
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addition, trichomes can produce specialized metabolites such
as repellent volatiles or exudates that can be toxic or that trap
herbivores (Simmons and Gurr, 2005; Walling, 2008; Bleeker
et al., 2009). The phytohormones involved in herbivore-defense
responses are predominantly jasmonic acid (JA) and salicylic acid
(SA). SA can antagonize the JA-mediated signaling responses
(Koornneef and Pieterse, 2008). Adult whiteflies feeding on
tomato induce the SA-response thereby suppressing the JA-
response (Shi et al., 2014). During the feeding of whitefly nymphs
on Arabidopsis, transcript levels of SA-induced genes became
higher while JA-related transcript levels decreased (Kempema
et al., 2007; Zarate et al., 2007).

After hatching from the egg, whitefly nymphs are mobile and
will select the site where they will feed and develop into an
adult while being immobile. Feeding is initiated by insertion of
a specialized mouthpiece (stylet) through the leaf surface toward
the phloem sieve elements in a mostly intercellular fashion
(Pollard, 1955; Jiang et al., 1999; Jiang and Walker, 2003). This
insertion is facilitated by the excretion of gel-like saliva, in a
similar way as an aphid, and other stylet- and phloem-feeding
insects (Jiang et al., 1999; Moreno et al., 2011). After the stylet
enters the sieve element, watery saliva is excreted and ingestion
of phloem sap starts (Jiang et al., 1999; Jiang and Walker, 2003).
Plants try to close the opening made by the stylet by depositing
callose and proteins (Kempema et al., 2007) and phloem-feeding
insects try to counteract this (Will et al., 2007).

There is evidence that herbivore saliva contains factors that
can manipulate plant defenses (Will et al., 2013; Sharma et al,,
2014; Su et al.,, 2015; Peng et al., 2016; Villarroel et al., 2016).
For hemipterans most knowledge stems from work with aphids:
several salivary proteins (effectors) have been identified that affect
aphid reproductive rate (Bos et al., 2010; Pitino and Hogenhout,
2013). The aphid salivary proteins C002, Mp1, and Mp2 increase
fecundity, while Mp10 and Mp42 reduce aphid fecundity (Bos
et al., 2010; Pitino and Hogenhout, 2013). The production of
effector proteins by aphids seems to be analogous to that of plant
pathogens to establish disease. Such plant pathogens can interfere
with the defense response of their host by secreting effectors that
interact with host proteins and modulate these to their benefit.

Besides effector-protein interactions, small non-coding RNAs
(sRNAs) between 21 and 24 nucleotides long (nts) have been
shown to mediate interactions between hosts and pathogens
(Knip et al., 2014; Baulcombe, 2015). Regarding plants, one of
the best-studied examples is the Botrytis cinerea infection of
Arabidopsis and tomato (Weiberg et al., 2013). After fungal
infection, 73 sRNAs from Botrytis were found in infected leaves
(Weiberg et al.,, 2013). These Botrytis sSRNAs take advantage
of the plant’s own silencing machinery to mediate their action
(i.e., targeting ARGONAUTE 1). Another example comes from
the green peach aphid (Myzus persicae) that displays reduced
fecundity on Arabidopsis mutants affected in their miRNA
biogenesis pathway (i.e., Dicer-likel dclI and Argonautel agol;
Kettles et al., 2013). These results indicate that sSRNA pathways
are not only involved in plant resistance against a phloem-
feeding insect, but also suggest that aphids produce sRNAs
that can influence plant-defense responses (Kettles et al,
2013).

Here we show that whiteflies transfer SRNAs to the host plant
they are feeding from. To detect whitefly-specific sSRNAs within
the phloem of tomato plants small RNA sequencing was utilized.
These sSRNAs are detected in isolated phloem sap indicating they
are mobile. The presence of three whitefly SRNAs in tomato was
confirmed by means of stem-loop RT-PCR. Our findings are, to
our knowledge, the first confirmation of the transfer of insect
sRNA to phloem.

METHODS AND MATERIALS
Whitefly Rearing and Tomato Infestation

Whiteflies (B. tabaci biotype B) were reared in a climatised
chamber (Snijders, Tilburg; 28°C, 16h light 150 u.E m~2 s~ 1,
RH 75%) as previously described (Bleeker et al,, 2011), on a
diet of cucumber plants (Cucumis sativus, Ventura, RijkZwaan).
Two weeks after sowing, 5 tomato plants (Solanum lycopersicum,
cultivar Moneymaker) were placed in a netted insect dome (60 x
60 x 90 cm) and infested with =200 adult whiteflies (greenhouse
22-25°C, 16/8 h photoperiod at 500 LE m~2 s~!). Aiming for
a consistent treatment with the different instar stages present,
whiteflies (£100) were added 3 times per week until week 4
after sowing. In week 6 after sowing the samples for small RNA
sequencing were collected.

Phloem, Nymph, and Leaf Collection for
sRNA-seq

For phloem collection plants were kept in the greenhouse under
standard greenhouse conditions (22-25°C, 16/8 h photoperiod
at 500 u.E m~2 s71). Phloem sap was collected from control
and whitefly-infested leaflets using the “EDTA” method (King
and Zeevaart, 1974) during the light-period (see also Figure S1
and Tetyuk et al., 2013). Adult whiteflies were removed from
treated leaflets by aspiration. Leaflets with a high density of
nymphs were excised and the petioles were carefully submerged
in phloem collection buffer (5mM EDTA, 5mM phosphate
buffer pH 6.8). The petioles of 3-6 leaflets were then cut
once more while submerged in buffer and placed in a 2-ml
Eppendorf vial containing phloem-collection buffer to bleed
for 30 min under high humidity. After this the leaflets were
transferred to collection tubes with fresh phloem-collection
buffer supplemented with protease inhibitor (1 Complete
Protease Inhibitor Tablet (Roche) 100 ml~! water) and phloem
samples were collected for 6 h under high humidity before being
snap frozen in liquid nitrogen. Nymphs (1st, 2nd, and 3rd instar)
were collected from a total of 4 infested leaflet using an insect pin,
pooled, and transferred to 100% acetone. For the infested sample
(LW) in addition to nymphs, eggs were removed as accurate as
possible as well, after which the leaflet samples were separately
snap frozen in liquid nitrogen (n = 4). Untreated control leaflets
(LC) were harvested in exactly the same way and at the same time
point (n = 4). For an additional control, leaflets with the eggs
remaining were included (LE, n = 4). For this adult whiteflies
were placed on leaflets for 24 h after which the adults were
removed.
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Total and Small RNA Isolation

Total RNA from phloem samples was isolated using concentrated
TRIzol reagent (Life Technologies). The leaf samples (for each
treatment four replicates pooled) and one nymph sample were
ground in liquid nitrogen. Total RNA was isolated using the
E.ZN.A.® MicroElute RNA Clean Up Kit (Omega Bio-Tek).
Briefly, TRIzol Reagent (Life Technologies) and chloroform
was added according to the manufacturer’s instructions. After
centrifugation, the RNA-containing aqueous phase was collected,
mixed with 1.5 volume of 100% ethanol and applied to a
MicroElute spin column (Omega Bio-Tek). The column was
washed according to the manufacturers’s instructions: once with
RWT buffer (Qiagen), once with RPE washing buffer (Qiagen)
and finally with 80% ethanol. The RNA concentration was
measured on a NanoDrop ND-2000 (Thermo Scientific) and
RNA integrity was examined using the 2200 TapeStation System
with Agilent RNA ScreenTapes (Agilent Technologies).

Total RNA was spiked with ERCCs spike-in mix 1 (Life
Technologies) as well as a synthetic spike-in set for Size Range
Quality Control (SRQC) together with an External Reference
for Data Normalization (ERDN; Locati et al, 2015). Both
phloem samples from the control and whitefly-infested plants
were not spiked. The total RNA was divided in a large and
a small fraction. The large RNA fraction was bound to a
mirVana™ spin column (mirVana™ miRNA Isolation Kit,
Life Technologies) according to the manufacturer’s instructions.
Small RNAs (<200 nts) were purified from the flow-through
by adding ethanol to a final concentration of 65% (v/v)
and bound to an E.ZN.A® MicroElute spin column. The
column was washed once with RWT buffer, once with RPE
buffer and once with 80% ethanol (Qiagen). The concentration
and integrity of small RNA was examined as described
above.

Next-Generation Sequencing

Bar-coded small RNA libraries of the 6 different samples were
generated according to the manufacturer’s protocols using the
Ton Total RNA-Seq Kit v2 and the Ion Xpress™ RNA-Seq bar-
coding kit (Life Technologies). The size distribution and yield of
the bar-coded libraries were assessed using the 2200 TapeStation
System with Agilent D1K ScreenTapes (Agilent Technologies).
Sequencing templates were prepared on the Ion Chef™ System
using the Ion PI Hi-Q Chef Kit (Life Technologies). Sequencing
was performed on an Ion Proton™ System using Ion PI
v3 chips (Life Technologies) according to the manufacturer’s
instructions.

Bioinformatic Analyses

Bioinformatic analyses were done using the Snakemake workflow
management tool (Koster and Rahmann, 2012) to generate
bioinformatic pipelines. Software used was Bowtie2 v2.1.0
(Langmead and Salzberg, 2012), Samtools v1.2 (Li et al,
2009), Python v3.3.3, Python package Pandas 0.14.1, and
Biopython 1.64 (Cock et al.,, 2009), STAR v2.4.0 (Dobin et al.,
2013), R v3.2.1 (R Core Team, 2016). All sequences <18
and >40 nts were removed. Contaminating sequences were
removed by alignment to plant virus databases (Adams and

Antoniw, 2006), other types of RNA (rRNA, tRNA, snoRNA,
degraded messenger RNA, mitochondrial RNA) using the RFAM
12.0 database for tomatoes (excluding microRNA; Nawrocki
et al, 2015) and the publically available tomato transcriptome
[ITAG2.3, solgenomics.net Tomato Genome Consortium, 2012].
sRNAs were normalized for comparisons and expressed as
RPKM (Reads Per Kilobase per Million mapped reads;
Table S1).

The online psRNATarget tool (Dai and Zhao, 2011) was used
to retrieve mRNA targets of selected miRNAs (using the Solanum
lycopersicum ITAG2.4 cDNA reference) with default parameters:
a seed region length of 20 nts to score complementarity between
target and miRNA and a target accessibility (maximum energy
required to open the mRNA secondary structure around the
target site) of 25.

Stem-Loop RT-PCR of Small RNAs

Stem-loop RT-PCR of small RNAs was conducted to confirm
findings of the sRNA-seq. For this analyses total RNA was
isolated from four biological replicates of leaflet samples using
the method described above and primers for the specific small
RNAs were designed (Varkonyi-Gasic et al, 2007; Kramer,
2011; Table S2). A total of 100ng RNA per sample was
used for a reverse transcriptase reaction (RevertAid H Minus
reverse Transcriptase, Thermo fisher) in a total volume of
20 L with small RNA specific RT-primers (Table S2). A
pulse reverse-transcriptase reaction (RT) was used (Varkonyi-
Gasic et al, 2007). For the stem-loop RT-PCRs, 2pL of
RT reaction was used as template in a total volume of
50 L for 35 cycles with an annealing temperature of 58°C.
PCR products were cloned with Clone]JET PCR cloning
kit (Thermo scientific) and sequenced to validate amplicon
specificity.

RESULTS

Small RNA Sequencing: Detection of Small

RNAs in Phloem and Leaves

Phloem samples were collected from uninfested tomato leaflets
(Phloem control, PC) and compared to phloem samples
from tomato leaflets infested with whitefly nymphs and eggs
(Phloem whitefly, PW, Figure1). Whitefly nymphs (WN)
were separately collected from leaflets of the same plants
used to obtain phloem sap exudates (Figure1). After sRNA
sequencing we obtained 31,231,948 sRNAs in the WN sample
and 5,370,176 and 7,321,768 sRNAs in the PC and PW
samples respectively (see also Table S1). To determine which
sRNAs originated from whiteflies and were present in phloem,
a bioinformatic pipeline was designed (Figure1). For this
analysis, sequences shorter than 18 nucleotides (nts) and longer
than 40 nts were removed. Next, we removed sequences that
aligned to plant viruses (Adams and Antoniw, 2006), other
types of RNA (rRNA, tRNA, snoRNA, degraded messenger
RNA, mitochondrial RNA) using the RFAM 12.0 database
for tomatoes (excluding microRNA; Nawrocki et al, 2015)
and the publically available tomato transcriptome (ITAG2.3,
Tomato Genome Consortium, 2012). To eliminate sequences
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PC PW Control leaflet Infested leaflet Leaflet with eggs
Control phloem Infested phloem

Trim reads (18 to 40 nucleotides)
'y Phloem ' Align reads to spike ins

exudate Eliminate viral RNA, other non-coding tomato RNA (rRNA, tRNA, etc.)
Eliminate degraded tomato mRNAs

H_J

LW - LC Substract "control" reads

- _/
Trim reads (18 to 40 nucleotides) ' LW-LO)-LE
Eliminate viral RNA, other non-coding tomato RNA (rRNA, tRNA, etc.) Substract reads found
Eliminate degraded tomato mRNAs in leafeggs

H—/ Align to tomato genome

PW-PC
Substract "control" reads Extract
unmapped reads
whitefly nymphs (WN) :
Intersect with SRNA sequences from WF instars Intersect with SRNA sequences from WF instars
144,646 non redundant sequences 32,970 non redundant sequences
PWwW LW

FIGURE 1 | Bioinformatic pipeline. Small RNAs (sRNAs) were isolated from tomato-phloem exudates from either control leaflets (PC) or leaflets infested with
whitefly nymphs (PW), and from control tomato leaflets (LC), whitefly nymphs (WN), leaflets first infested with whiteflies but with adults and nymphs subsequently
removed (LW) and tomato leaflets with only eggs (LE). A bioinformatic workflow (see main text for details) was implemented yielding 10,505 non-redundant small
RNAs present in feeding whitefly nymphs plus identified in both infested tomato phloem and leaflets.
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present in PW but unrelated to whitefly infestation, PC sRNAs
were excluded from the PW sRNAs (PW-PC, Figurel). Of
these PW-PC sRNAs a final 144,646 non-redundant sequences
overlapped with WN sequence (Figure 1, Table S1) and were
regarded as putatively transferred from the insect into the
phloem.

In order to further validate whitefly-specific sSRNAs present in
tomato, we additionally sequenced sRNAs isolated from whole
tomato leaflets (Figure 1, Table S1). We obtained 36,793,380
sRNAs from uninfested tomato leaflets (Leaf Control, LC),
33,780,469 sRNAs from infested leaflets after removal of nymphs
(Leaf whitefly, LW) and 32,730,583 sRNAs from leaflets with only
eggs (Leaf Eggs, LE). LC sRNAs were subtracted from the LW
sRNAs (LW-LC, Figure 1). Next, to correct for any whitefly-
specific egg SRNA that could have been left on the leaf surface of
LW, the LE sequences were removed (Figure 1). The remaining
whitefly nymph sRNAs were subsequently aligned against the
tomato genome and the unmapped sequences were aligned with
the tomato-fed WN sequences to find nymph-specific SRNAs. By
doing so, we ended up with 32,970 non-redundant sequences
(Figure 1). Finally, we searched (qualitatively) for sRNAs that
would be both present amongst the 144,464 sSRNAs coming from
PW sample and the 32,970 sRNAs coming from infested LW
sample, and found in WN nymph sample. This resulted in 10,505
non-redundant (Figure 1, Table S1) putative whitefly sRNAs
found in both phloem exudate and leaflets containing phloem of
whitefly-infested plants.

Length Distribution

The sRNA-length distributions from the different libraries
ranging from 18 to 40 nts are shown in Figure 2. The sRNA
length distributions of the three leaf samples (LC, LW, and
LE) were very comparable with an expected major peak at 24
nts (35-40% of all sequences) and a minor peak at 21 nts
(Figure 2). Compared to tomato leaf samples, both phloem
samples exhibited a slightly different length distribution with a
peak at 23-24 nts (~18-25% of all sequences). However, the
sRNA length distribution of the whitefly nymphs (WN) was
distinctly different from the other samples with two major peaks;
one at 22 nts (~12% of all sequences) and one at 29-30 nts
(~15-20% of all sequences; Figure 2). The 29-30 nt sequences,
apparent in the nymph sample, appeared to be a well-defined
peak in the phloem sample from the nymph-infested leaflet (PW),
compared to the control phloem (PC).

Next, the sSRNAs from whitefly-infested samples LW, WN,
and PW were compared to 185 whitefly miRNA sequences found
in two different biotypes of B. tabaci (Guo et al., 2013). All
previously described whitefly miRNAs had a length comprised
between 20 and 24 nts (Guo et al., 2013). Accordingly, 150
sRNAs of our WN sample could be exactly matched to the
whitefly miRNAs published earlier (Table S3) and had a length
predominantly centered around 22 nts, a feature characteristic of
insect miRNAs (Figure 2, insets). The most abundant miRNAs
found in the WN sample were miR-276a, miR-317 and miR-14
that appear to be conserved as well in other insects e.g., Bombyx
mori, Apis mellifera, Drosophila melanogaster (Yin et al., 2016;
Table S3).

Confirmation of Small RNAs in Leaf

Samples

A sensitive stem-loop RT-PCR (Varkonyi-Gasic et al., 2007) was
used to confirm the presence or absence of whitefly SRNAs in four
biological replicates of whitefly-infested tomato leaflets (LW),
non-infested leaflets (LC), leaflets with eggs (LE), and the B.
tabaci nymph sample (WN). To verify there was no sRNA from
whitefly nymph contaminating the LW sRNAs other than those
transferred by the whitefly, a 29-nt sSRNA (# 29691) was amplified
as this sSRNA proved particularly abundant in the WN sample.
Figure 3A shows that sSRNA #29691 was indeed specific to the
nymph sample and was absent in the LW, LC, or LE samples,
indicating that there is no whitefly nymph contamination in
the LW sample after the infestation and that nymphs had been
successfully removed. Sample quality was further checked using
a known B. tabaci specific sSRNA (Bta_miR2A; Guo et al., 2013)
and a known tomato miR172 that is conserved among land plants
(Taylor et al., 2014). Accordingly, the plant-specific miR172
was detected in all leaf samples (Figure 3B) while the whitefly
Bta_miR2A was detected in the nymph samples of B. tabaci
reared on tomato and in the leaf samples containing eggs (LW
and LE; Figure 3C).

Whitefly Small RNAs Transferred to Tomato
sRNA sequencing of the phloem samples identified the presence
of mobile whitefly-originating sSRNAs. We selected three whitefly
candidate sRNAs from the final list (Table 1) for validation
using stem-loop PCR on leaflets. The criteria for selecting
these specific candidates from the sRNAseq data were (1) a
length between 23 and 24 nt (Figure 2), (2) present among
highest counts in nymphs, (3) presence in whitefly-infested
leaflets (LW), in phloem from leaflets infested with whiteflies
(PW) and in the B. tabaci nymph (WN) sample, while absent
in the control leaflet (LC), absent in leaflets with only eggs
(LE), and absent in the phloem control sample, and finally (4)
preferably matching an insect-like or an unknown small RNA
in the miRBase. From the three selected sRNAs, sRNA #13120,
and #18833 were annotated as insect miR305 and miR1175-3p,
respectively, using the miRBase (Kozomara and Griffiths-Jones,
2014). sRNAs #13120 (Figure 4A) and #18833 (Figure 4B) were
present in nymph and were found back in three out of four LW
samples while being absent in all LC and LE samples. sSRNA
#3182 did not provide a match in the miRBase but could be
amplified in nymph and all infested leaf samples, however it
was found in one out of four control samples. Overall, whitefly
sRNAs could be detected within the leaflet samples (Figure 4C)
on which nymph feeding took place. Since two out of three
candidate small RNAs were found exclusively in the infested
samples PW and LW, we conclude that whiteflies transfer
small RNAs to the phloem, which then have the potential to
move.

Prediction of Whitefly sRNAs Targets in

Tomato
To get insight into putative roles of these three whitefly
sRNAs, the online psRNAtarget tool was used (Dai and Zhao,
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FIGURE 2 | Size distribution of sRNAs. Size distributions and percentages of small RNAs (sRNAs) between 18 and 40 nucleotides are indicated for each sample.
LC, control leaflets (not infested with whitefly nymphs); LW, leaflets first infested with whiteflies but with adults and nymphs subsequently removed; LE, leaflets with
whitefly eggs; WN, whitefly nymphs; PC, phloem control (not infested); PW, phloem infested with whitefly nymphs. Insets for LW, WN, and PW represent the size
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2011) to predict putative tomato mRNA targets. By doing
so, putative targets for the sRNAs #13120 and #18833 were
found. sRNA #13120 is predicted to target four different
exocyst complex proteins of which two are expressed in
tomato leaves (Table2). Another interesting putative targets

of SRNA #18833 are three closely related xylanase inhibitors
(Table 2). They are moderately similar (between 56 and 58%
identity at the amino acid level) to a previously described
tomato xyloglucan-specific endoglucanase inhibitor (Qin et al,,
2003).
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FIGURE 3 | Quality check of leaflet samples by stem-loop RT-PCRs. (A)
Expression of nymph-specific SRNA #29691 in: leaflet first infested with
whiteflies but with adults and nymphs subsequently removed (LW), whitefly
nymphs (WN), control leaflet (LC), or leaflet with eggs (LE), showing a specific
band in WN only. (B) Validation of the expression of tomato specific SRNA
Sly_miR172 in the different samples. Expression is detected in LW, LC, and
LE, but not in the WN sample. (C) Expression of the known whitefly-specific
miRNA Bta_miR2A is also detected in LE. Similar results were obtained in four
biological replicates. Molecular Mass (MM), GeneRuler Ultra Low Range DNA
ladder (Thermo Scientific).

DISCUSSION

Cross-Kingdom Interactions Mediated by
sRNAs

Besides ingesting plant sap, phloem-feeding insects such as
aphids manipulate plant defenses by secreting protein effectors
that can improve host colonization and reproductive fitness
(Louis and Shah, 2013). However, the precise molecular mode
of action of aphid effectors remains elusive. Along with an
array of notorious plant-viruses (Rosen et al., 2015), whiteflies
theoretically could also transfer effector proteins into the phloem
while feeding. Here we show that B. fabaci also appears to
transfer sRNAs into the tomato phloem. Transfer of sRNAs
from whiteflies could putatively be involved in transcriptional or
post-transcriptional gene silencing inside the host and form an
additional way for the insect to manipulate host defenses. There is
increasing experimental evidence that sSRNAs can mediate cross-
kingdom interactions between plant and microorganisms (Knip
et al., 2014), with perhaps the most convincing examples being
those of Botrytis-Arabidopsis and Botrytis-tomato (Weiberg
et al, 2013). One of the major difficulties in the field is to
establish with certainty that a specific SRNA has been transferred
by the “invader organism” into the host rather than being
produced by the attacked host. Genome availability of B. cinerea,
tomato and Arabidopsis thaliana was a major advantage that led
to the discovery that sSRNA can promote fungal pathogenicity
(Weiberg et al., 2013). We did not have a draft or complete B.
tabaci genome sequence to our disposal and this work therefore
relied on a bioinformatic pipeline to search for whitefly sSRNAs
present in the phloem of whitefly-infested tomato (Figure 1).
To further verify the sequences found in the tomato phloem,
the sRNAs present only in the PW phloem were compared to
the sSRNAs of the whitefly nymph (WN) sample. Additionally,

they were cross-referenced to sRNAs from whitefly-infested
leaflets (LW) after elimination of non-infected leaves (LC) and
leaflet with eggs (LE), in case not all eggs were removed from
the LW leaflet surface. sSRNAs were subsequently aligned to
the tomato genome to remove tomato sRNAs especially from
repetitive regions (Figure 1), leaving us with potentially 10,505
whitefly-specific sSRNAs present in plant tissue. The final LW
sample (nymph sRNAs in LW-LC-LE) contains less phloem than
phloem exudate itself (nymph sRNAs in PW-PC) as the starting
material contains many other tomato cell types that have been
consequently filtered out. The remaining 22,465 sequences that
do not match the phloem sequences can contain e.g., whitefly
sRNAs from phloem companion cells. The phloem exudate
samples are more concentrated and thus contain more (134,141)
putative whitefly sSRNAs than the leaflet samples.

A great diversity of sSRNAs has been found in the phloem
sap of several species including pumpkin, cucumber, lupin, and
Arabidopsis, in the absence of major pathogen infection or pest
infestation (Yoo et al., 2004). These phloem sRNAs typically had
a length between 18 and 25 nts with a major peak at 23 nts
(Yoo et al., 2004), which is consistent with the sRNA length
distribution found in our non-infested control samples (LC and
PC, Figure 2). In leaves, a major peak at 24 nts is very common
(see, Itaya et al., 2008 for an example in tomato), which has long
been associated with transcriptional gene silencing especially of
repetitive sequences e.g., transposons (Borges and Martienssen,
2015). In both phloem and leaflet samples, we found conserved
miRNAs such as miR156 and miR172 known to act in concert
to regulate flowering time (Spanudakis and Jackson, 2014) and
miR159 previously identified in cucurbit phloem (Yoo et al,
2004). Finding such miRNAs among the most abundant phloem
sRNAs is consistent with previous studies (Yoo et al., 2004;
Rodriguez-Medina et al., 2011; Bhogale et al., 2014). We also
observed Solanaceae-specific miR482 and miR6022 among the
most abundant miRNAs in the non-infested phloem PC and LC
sRNAs (Table S4). The collection of phloem was performed after
an initial “bleed” period of 30 min to limit sample contamination
by other types of cellular content. Nymphs were feeding on the
leaflet at 2-3 cm distance from the petiole phloem collection site
indicating mobile whitefly sSRNAs in the plant phloem. It was
estimated that contamination of phloem exudates by companion
cell breakage composed around 2% of the exudate (Atkins et al.,
2011). Thus, it is likely that the identified sSRNAs in the phloem
originate from the sieve elements although some contamination
from neighboring cells cannot be completely ruled out.

The presence of whitefly nymphs on tomato leaflets caused
29-30 nts sRNAs to appear in the phloem of infested plants
(Figure 2). These longer sSRNAs were indeed also observed in the
whitefly nymphs (Figure 2). A similar sSRNA length distribution
has previously been found in adult whiteflies (Guo et al., 2013;
Wang et al., 2016) and similar sized sRNAs (between 26 and
30 nts) have been reported for other insects e.g., cotton-melon
aphid (Aphis gossypii) or the brown planthopper (Nilaparvata
lugens; Chen et al, 2012; Sattar et al., 2012). These longer
sRNAs are assumed to be Piwi-interacting RNAs (piRNAs)
and are known to be a large class of non-coding RNAs in
animals, specifically linked to genome stability in germ-line
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TABLE 1 | List of selected putative whitefly SRNA candidates with normalized counts (RPKM).

Id sRNA sequence (5'-3') Counts Length Best miRBase21 homolog

- ACCGGCGGCGCGGUGAGGCACC 44 22 Unknown

- CACCGGCGGCGCGGUGAGGCACC 47 23 Unknown

- CACCGGAAGGAUUGACAGAUU 66 21 Acyrthosiphon pisum miR-263b

- UGAGAUUCAACUCCUCCAUCUUAU 1574 24 Bombyx mori miR-1175

- AGCAGAGUGGCGCAGUGGAAGC 386 22 Monodelphis domestica miR-885
3182 UAGUAGCUAACGACGAUUCCUUU 957 23 NA

- UAAGGCACGCGGUGAAUGCCAUU 1105 23 Panagrellus redivivus miR-124

- UGGUAACUCCACACCACCGUUGGC 1713 24 Acyrthosiphon pisum miR-2765

- GCGGGUGUCGGCGGCCGUG 52 19 Pongo pygmaeus miR-118

- UGAGAUCAUCGUGAAAGCUGAUA 543 23 Apis mellifera bantam stem-loop

- CAAGCUCGUUGAAGUAUACCCAU 531 23 Petromyzon marinus miR-133a

- UAAGUACUCCGUGCCGCAGGA 899 21 Daphnia pulex miR-252a

- UCAGGCGGGCAAUCGCCGGG 157 20 Ectocarpus siliculosus miR3453

- UCGCGGGUGUCGGCGGCCGUGAGC 31 24 Pongo pygmaeus miR-1181

- GGCGGCAAUCGCCGGGGCCCU 9 21 Mus musculus miR-3104

- UGGACGGAGAACUGAUAAGGGCU 553 23 Drosophila melanogaster miR-184
- AUACAGGGGAGUAAGGGUUUGU 316 22 Monodelphis domestica miR-7398]
18833 UGAGAUUCAACUCCUCCAUCUUA 1166 23 Bombyx mori miR-1175

- GAAGGCCCUACAACGCGGACCCC 1557 23 Equus caballus miR-1905a

- UAUCACAGCCAUUUUGACGUGCCU 1037 24 Drosophila melanogaster miR-13b-1
13120 AUUGUACUUCAUCAGGUGCUCUGU 1275 24 Drosophila melanogaster miR-305
- UUAAAAAGUGAUUUCACCACGG 750 22 Ornithorhynchus anatinus miR-1334

The sRNAs indicated in bold were detected with stem-loop RT-PCR.

bp LE
100

75

A
(#13120)

50

100 B

o (418833)
50

100

75
50

(#3182)

FIGURE 4 | Detection of candidate transferred whitefly sSRNAs in the
nymph and leaflet samples by stem-loop RT-PCRs. Expression of SRNAs
in: leaflet first infested with whiteflies but with adults and nymphs subsequently
removed (LW), whitefly nymphs (WN), control leaflet (LC) or leaflet with eggs
(LE). (A) sRNA #13120, a specific band is detected in LW and WN but not in
LC and LE. (B) #18833, a specific band is detected in LW and WN but not in
LC and LE. Similar results for #13120 and #18833 were obtained in four
biological replicates. (C) #3182, a specific band is detected in LW and WN but
not in LC and LE in three out of four replicates. One biological replicate
showed also a band in LC and LE. Molecular Mass (MM), GeneRuler Ultra Low
Range DNA ladder (Thermo Scientific).

cells and silence transposons (Vagin et al., 2006). In Drosophila
(D. melanogaster), for example, piRNAs are produced in a Dicer-
independent manner from transposon-rich genomic clusters
and specifically silence transposon expression in the germline

(Twasaki et al., 2015). Sattar et al. (2012) found that sRNAs
with a length between 26 and 27 were overrepresented in the
cotton-melon aphid, A. gossyppii, when infesting melon plants
containing the Vat aphid resistance gene. Similar to B. tabaci,
there is no annotated genome for A. gossypii but in this case the
authors could make use of an A. pisum transposon database to
show that around 50% of these 26-27 sRNAs actually derived
from transposons. Another ~5% matched from the primary
endosymbionts in aphids, Buchnera aphodicola (Sattar et al.,
2012). In this study, we cannot completely rule out that the 29-
30 nts sSRNA originate from tomato. Nevertheless, when trying to
align the five most abundant 29 or 30 nts sRNA to the tomato
Heinz genome sequence (Figure 1), no full-length alignments
were found. Assuming these particular SRNAs are indeed piRNAs
involved in insect germline development, it remains elusive as
to if and how the enrichment in the phloem of whitefly-infested
leaves (Figure 2) is biologically relevant.

Insect Salivary Small RNAs Transferred

into Host

Our bioinformatic pipeline identified whitefly SRNAs in tomato
phloem of leaflets where nymphs were feeding. These sRNAs
most likely found their way into the phloem via the whitefly
saliva. During feeding whiteflies salivate into the phloem after
which they ingests phloem sap (Figure S1; Pollard, 1955; Jiang
et al., 1999; Jiang and Walker, 2003). Since whitefly nymphs
are immobile and feed for long periods of time, one can expect
to find components of whitefly saliva in the phloem. Salivary
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TABLE 2 | List of predicted mRNA targets from the selected whitefly small RNA found in tomato tissues.

id sRNA sequence (5'-3') Length mRNA target Annotation

13120 AUUGUACUUCAUCAGGUGCUCUGU 24 Solyc09g075400.2.1 Putative DNA-ligase

13120 AUUGUACUUCAUCAGGUGCUCUGU 24 Solyc10g019140.1.1 Exocyst complex component protein

13120 AUUGUACUUCAUCAGGUGCUCUGU 24 Solyc10g019110.1.1 Exocyst complex component protein

13120 AUUGUACUUCAUCAGGUGCUCUGU 24 Solyc119g050710.1.1 Exocyst complex component protein

13120 AUUGUACUUCAUCAGGUGCUCUGU 24 Solyc039g095410.2.1 Exocyst complex component protein

13120 AUUGUACUUCAUCAGGUGCUCUGU 24 Solyc029085940.2.1 Unknown protein

13120 AUUGUACUUCAUCAGGUGCUCUGU 24 Solyc089062170.1.1 Unknown protein

13120 AUUGUACUUCAUCAGGUGCUCUGU 24 Solyc01g009030.2.1 ATP synthase regulation protein

13120 AUUGUACUUCAUCAGGUGCUCUGU 24 Solyc01g111270.2.1 Armadillo protein

18833 UGAGAUUCAACUCCUCCAUCUUA 23 Solyc01g079980.2.1 Xylanase inhibitor

18833 UGAGAUUCAACUCCUCCAUCUUA 23 Solyc01g079960.2.1 Xylanase inhibitor

18833 UGAGAUUCAACUCCUCCAUCUUA 23 Solyc03g082470.2.1 Leucine-rich repeat receptor-like protein kinase
18833 UGAGAUUCAACUCCUCCAUCUUA 23 Solyc02g084980.2.1 Galactinol synthase

18833 UGAGAUUCAACUCCUCCAUCUUA 23 Solyc11g008350.1.1 Kinesin-like protein

18833 UGAGAUUCAACUCCUCCAUCUUA 23 Solyc01g079970.2.1 Xylanase inhibitor

18833 UGAGAUUCAACUCCUCCAUCUUA 23 Solyc02g037490.1.1 Acyl-activating enzyme

18833 UGAGAUUCAACUCCUCCAUCUUA 23 Solyc00g005160.1.1 Retrovirus-related Pol polyprotein from TNT transposon
3182 UAGUAGCUAACGACGAUUCCUUU 23 Solyc029085990.1.1 Unknown protein

glands of phloem feeding insects like aphids and whitefly have
been subjected to RNA sequencing and proteomics to obtain
insight in the transcriptome and proteome (Carolan et al., 2011;
Su et al, 2012; Rao et al, 2013). Also, aphid saliva has been
collected and used for proteomics studies (Rao et al., 2013;
Chaudhary et al, 2015). In the current study, phloem from
whitefly-infested tomato was used, as obtaining salivary glands
from adult whiteflies, though feasible (Ghanim et al., 2001; Su
et al., 2012), proved too challenging in nymphs. In addition,
the saliva composition of insects is not necessarily the same
as the composition of the salivary gland, which includes cell
membranes and ducts (Rao et al., 2013). Moreover, in order to
collect sufficient saliva, it requires the culturing of large amounts
of adult whiteflies for a prolonged period on an artificial diet
(Su et al.,, 2015; VanDoorn et al., 2015), which was technically
not feasible. Also, it has been reported that the composition of
insect saliva differs when feeding on artificial diet and on different
plant species (Habibi et al., 2001; Cooper et al., 2010). Finally, as
nymphs are immobile while feeding for long periods of time it
might increase the chances of actually identifying whitefly sSRNAs
in phloem.

To our knowledge, miRNAs have so far only been identified
in the saliva of mosquito (Aedes aegypti; Maharaj et al., 2015).
Interestingly, miRNAs closely related (one nucleotide difference)
to our #13120 (Bta_miR305-pGtoU) and #18833 (Bta_miR1175-
3p+A) were also found in the saliva of A. aegypti, particularly
after sucrose feeding (Maharaj et al, 2015). Whether saliva
secreted miRNAs are conserved among fluid-feeding insects
remains to be seen. Since sSRNAs of prokaryotes are generally
bigger than 100 nt (Gottesman and Storz, 2011) and our cut-
off for analysis was <40 nt, it is unlikely that the miRNAs
presented here originate from symbionts present in the whitefly.
Nevertheless, we aligned the 10,505 sRNAs to the genome of

Rickettsia sp. Strain MEAM1 (Genbank AJWD00000000.2), and
found no matches.

A possible source of contamination for the sSRNA sequencing
of leaflet samples could be part of nymphs still attached to
the leaflet. However, in Figure 3A it was shown that nymph
tissue was removed from leaflets or at least below the level of
detection. The bands visible in the LW samples (Figures 4A-C)
are therefore very unlikely to originate from nymph tissue still
present on the leaflets. The plant specific SRNA miR172 was
only found in leaf samples and not in the whitefly nymphs
(Figure 3B) though this could have been possible since sSRNAs
have been found previously ingested by aphids (Sattar et al,
2012). Similarly, Bta_miR2A was detected only in the nymph and
whitefly-infested samples (Figure 3C), showing that the miR2A
of the eggs on leaflet (LE) samples was even detectable by stem-
loop RT-PCR.

The three sSRNAs investigated here were very likely transferred
from whitefly into tomato. All three candidates were identified
in whitefly-infested material and in the nymphs themselves.
sRNA #13120 (Bta_miR305-pGtoU) (Figure4A) and #18833
(Bta_miR1175-3p+A) (Figure 4B) have been detected in LW
samples but not in the LC or LE sample. Family members of two
of these candidates have been previously identified in whitefly
(Guo et al,, 2013). For the third candidate (#3182), no similarity
was found with previously identified whitefly sSRNAs or with
other sequences in the miRBase. This SRNA has been detected
in all of the replicates of whitefly-infested leaf samples and is
very abundant in the nymph sample but could be detected once
out of 4 in control leaflets. Despite the fact that it cannot be
completely ruled out, it is highly unlikely that #3182 derives from
tomato. Sly-miR172, a very abundant tomato miRNAs present in
our phloem sample could not be detected in our nymph sample
while #3182 was found in the insect in a relative high level.
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Small RNA as Effectors?

Pathogens and insects are known to transfer proteins into host
plant cells in order to suppress host immunity (Dangl et al., 2013;
Will et al., 2013; Su et al.,, 2015). In fact, it has been postulated
that phloem-feeding insects employ a suit of proteins that are
passed from the saliva into the phloem during feeding which
could act as effector proteins that suppress plant defenses. Besides
proteins, non-protein salivary factors can act as an effector (Su
et al., 2015). Here we describe, for the first time, the transfer of
putative salivary non-coding sSRNAs from whitefly and postulate
that they might target tomato host proteins. Small RNAs could
facilitate the interaction between organisms by improving the
attackers chance of survival (Weiberg et al., 2013; Knip et al,
2014) or improve fecundity (Sattar et al., 2012). In plants, the
high base complementarity between the sSRNA and the target
mRNA has been successfully used to predict post-transcriptional
regulations by sRNAs (Ding et al, 2012). Further validation
and characterization of these mRNA targets is currently under
investigation.
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