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Southwest of China is one of the major soybean (Glycine max L.) production regions in

China with low availability of soil phosphorus (P). Whereas little information is available

on P-efficient soybean genotypes in this region, even though using P-efficient soybean

genotypes is a sustainable P management strategy for enhancing yield and P use

efficiency. To assess the genetic variation on P use efficiency, 274 soybean genotypes

were employed to compare the yields and P acquisition potentials in the field. Additionally,

10 representational genotypes (5 P-efficient genotypes and 5 P-inefficient genotypes)

were grown in hydroponic media containing low P treatment (0.05mM L−1) and high

P treatment (0.25mM L−1) to further investigate P assimilation characteristics and the

related mechanisms of P-efficient soybean genotypes. In the field trial, the models

described the relationships between yield and seed P concentration (R2 = 0.85), shoot P

accumulation (R2 = 0.84), HI (R2 = 0.82) well. The yield, seed P concentration and shoot

P accumulation ranged from 5.5 to 36.0 g plant−1, from 0.045 to 0.93% and from 0.065

to 0.278mg plant−1, respectively. In the hydroponic trial, P-efficient genotypes under low

P treatment showed significantly better plant growth, P accumulation and root: shoot

ratio than P-inefficient genotypes. Simultaneously, total root length, specific root length,

root surface area and root volume of P-efficient were significantly greater than P-inefficient

under low P treatment. Higher rate of organic acid exudation and acid phosphatase

activities was observed in the P-efficient soybean genotypes under low P condition when

compared to the P-inefficient soybean genotypes. It indicated that significant genetic

variation for P use efficiency existed in this region, and the P-efficient soybean genotypes,

especially E311 and E141, demonstrated great tolerance to P deficiency, which could be

potential materials using in improving production and P use efficiency in low availability

of soil P region.
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INTRODUCTION

Low phosphorus (P) availability existed in many soils as inherent
P deficiency and/ or P strongly bound to soil particles. Crop
production generally relies on regular application of P fertilizer,
as P is one of the essential nutrients for crop growth. During the
period of 1960–2008, the total grain output of China increased
4.4-fold from 110 to 483 million tons (FAO, 2011), which paid
a price of 91-fold P increase (Zhang et al., 2012). Generally,
only 15–20% of P can be taken up by crops in the season
of application (Zhang et al., 2008). The remaining P is only
partially available to crops, while most of them are bound to
Al/Fe oxides in acidic soils or to Ca carbonate in alkaline
soil and accumulate in soil (Li et al., 2011). Thus, although
soil total P concentration ranges from 0.2 g P kg−1 to 3.0 g P
kg−1, less than 1% of the total P is available for crop growth
(Otani and Ae, 1996). In fact, P fertilizer is derived from mind
phosphate rock, which is a finite resource and is slowly depleting
(Cordell et al., 2009). Based on this, Chinese government recently
encourages the farmers to decrease chemical fertilizer input
in soil, conversely excavating soil P biological availability for
improving P use efficiency. More and more attentions were
paid on the efficient utilization of P resources (Cordell et al.,
2009).

Southwest of China located at the upstream of the Yangtze
River and almost the arable field on the hilly landscape with the
slow economic development. Besides less P input, tremendous
soil erosion by intensive cultivation and rainfall result in soil P
deficiency in this region (Zhang et al., 2004; Lin et al., 2009). In
1980, the national average for soil Olsen-P was 7.4mg kg−1. In
2006, the increase of soil Olsen P occurred in all agroecological
regions of China. The soil Olsen P in the middle-lower Yangtze
plain, in the North China Plain and in the South China was 17.5,
20.7, and 25.4mg kg−1, respectively (Li et al., 2011). However, in
2012, the average of soil Olsen P in Sichuan province was only
16.0mg kg−1. Therefore, excavating soil P biological availability
for improving productivity and P use efficiency is vital in the
Southwest of China as high risk of P leaching and low P input
existed in this area.

Utilization of P-efficient crops has been proved as an effective
way to improve P use efficiency. Nutrient-efficient plants are
defined as plants which could produce higher yields per nutrient
applied or absorbed more compared with other plants grown
in similar agroecological conditions (Fageria et al., 2008). Plant
root plays the dominant role in increasing in soil P bioavailability
and plant P acquisition, and the physiological traits of root can
adapt in response to P deficiency. A fine root system includes
high length, volume, biomass, specific root length, which is
benefit for exploring greater P availability by occupying huge soil
volume (Wang et al., 2010). Root exudates, like organic acids and
phosphatase enzymes, may also enhance P acquisition by plants.
Exudation of organic acids into the rhizosphere successfully
increased P availability by mobilizing conservative mineral P and
organic P (Po) source, and thus improved plant P acquisition
(Dinkelaker et al., 1989). Another typical response of P-efficient
genotypes to P deficiency is increasing phosphatase or phytase
exudation to mineralize Po (Hayes et al., 2000). Following

the development of technology, genetic engineering was used
in changing plant physiological and biochemical parameters
to improve P use efficiency. Over-expression of organic acids
and phytase or acid phosphatase genes lead to significantly
increasing in exudation from roots, and therefore enhance plant
P acquisition (Koyama et al., 2000; Delhaize et al., 2009; Wasaki
et al., 2009). However, most of these results lacked the application
in practical production, and improving P use efficiency through
genetic improvement is difficult in short time. So the screening
of P-efficient plants in the natural conditions is trustworthy and
efficacious pathway for pursuing high grain yield and alleviating
the conflicts between the depleting P resource and food
demand.

Soybean (Glycine max L.) not only is an essential source
of protein, oil and micronutrients in human and animal diets,
but also possesses a pivotal ecological function in cropping
system. For instance, improving soil P availability (Xia et al.,
2013), nitrogen fixation (Salvagiotti et al., 2008), soil carbon
sequestration (Cong et al., 2015) and decreasing soil disease
(Gao et al., 2014) for themselves and neighboring. Soybean is
widely cultivated all over the world and its cultivation history
in China at least 3000 years (Hymowitz, 1970). P-efficient
soybean genotypes had been found in South and Northeast of
China, and produced a high yield in low P condition (Zhao
et al., 2004; Pan et al., 2008). However, soybean is a narrow-
adaption crop. Little information was found about P-efficient
soybean genotypes in southwest of China, even though where
is one of the four major soybean production region in China.
Maize/soybean relay strip intercropping system is a dominant
cropping system in southwest of China, which makes a weighty
contribution in improving crop productions and resources
utilization efficiency (Liu et al., 2015). However, soybean in
this system undergoes serious shading stress by maize during
the common growth stage, which results decreases in yield
compared to sole soybean (Yang et al., 2014). P-efficient crops
showed more tolerant to low light and P deficiency condition
(Wissuwa et al., 2005). Therefore, P-efficient soybean genotypes
would be potential materials in improving production and P
use efficiency in low light and/ or low P availability agricultural
region.

Modern varieties were selected under high input conditions
on breeding stations, which may not have the capable of high
nutrient use efficiency, because genes controlling traits of benefit
under lower soil fertility were lost as they conveyed no advantage
under very high soil fertility (Wissuwa et al., 2009). Traditional
genotypes showed higher P use efficiency compared with modern
varieties when grown in an unfertilized and highly P-fixing soil
(Wissuwa and Ae, 2001). In present study, 274 soybean genotypes
were collected from Southwest of China with low availability of
soil P (Li et al., 2011), and most of these soybean genotypes are
traditionally. The objectives of this study were to screening P-
efficient soybean genotypes and ascertaining the factors leading
to the differences between P-efficient and P-inefficient soybean
genotypes. Thus, yield, characteristics of P accumulation, root
morphology, activities of Apase and organic acid exudation
rate of the P-efficient and P-inefficient soybean genotypes were
investigated.
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MATERIALS AND METHODS

Plant Material
Two hundred and seventy-four soybean genotypes (Glycine
max L.) (Table S1) were collected from Sichuan Province, Yunnan
Province, Guizhou Province, Hubei Province, Chongqin City,
and Guangxi Zhuang Autonomous Region in the southwest of
China (Figure 1).Most of these soybeans are traditional genotype
and the gene pool was not domesticated by artificial direct or
indirect purpose.

Field Experiment
The field experiment was conducted in 2015 at the experimental
station of Sichuan Agricultural University in Ya’an, Sichuan
Province, China (29◦58′N, 102◦58′E) with an altitude of
600m above sea level. Annual mean temperature is 15.4◦C
with a maximum and minimum temperature of 25.4◦ and
6.1◦C, respectively. The frost-free period is 294 days, annual
precipitation is 1500 mm and potential evaporation is 838 mm.
Annual sunshine is 1019 h and total solar radiation averages is
3750 MJ m−2 year−1. The experimental soil is classified as Purple
soil (Luvic Xerosols).

The 274 soybean genotypes were planted in a randomized
block design with 3 replicates. Each block consisted of 274 plots
with the dimension of 1.5× 4.0 m2. Every plot consisted of three
plant rows, and the rows spacing is 50 cm. Density of soybean
was about 11 plants m−2. Soybean was sown on early June and
harvested on late October in 2015. In the last season, maize had
been sown in this field, and the soil properties at the start of
this study were pH (water) 6.4, organic matter concentration
30.1 g kg−1, total N 1.80 g kg−1, available N 110mg kg−1, Olsen-P
17.4mg kg−1, exchangeable K 91mg kg−1, and Cation Exchange
Capacity 22.0 cmol kg−1 of dry soil in the top 20 cm soil layer.
During the growth period, all the plots were well irrigated and
weeded manually with no fertilizer input.

Shoot dry matter (DM) of soybean was measured at maturity.
10 plants of soybean were sampled from the middle row of
each plot. All samples were dried in an oven at 70◦C and
then ground for further chemical measurements. The samples
were wet-digested with concentrated H2SO4 and H2O2 (30%)
for P determination following the vanadomolybdate method
(Page, 1982). Shoot P uptake was calculated as P concentration
multiplying with shoot biomass. The harvest index (HI) was
calculated as dividing the yield by the shoot biomass. Grain yield
of soybean came from harvesting the remaining parts of the plot
after shoot sampling.

The linear- plateau model was used to analyze the relationship
between yield and HI. The linear-plateau model is defined by
Equations (1) and (2) as:

y = a+ bx if (x) < c (1)

y = Yp if (x) ≥ c (2)

where y is HI; a is the intercept parameter; b is the slope
parameter; x is the yield (g/plant); c is the critical yield, which
is the interception point of the two linear segments; and Yp is the
plateau value which is often 90% of the maximum HI. Equation

(1) can be interpreted as the region during which the HI responds
to yield increasing and Equation (2) to the plateau region where
increase of yield does not come from the increase of HI.

Hydroponic P Efficient Assays
Based on yield and P accumulation of soybean genotypes in
the field trial (Table S2), E14, E64, E141, E295, E311 and
D55, E108, E150, E277-1, E283 representing the P-efficient,
P-inefficient genotypes were used to evaluate tolerance of P
deficiency in hydroponic experiment, respectively. Seeds were
surface-sterilized as described byVincent (1970), placed on sterile
Whatman filter paper, and germinated in sterile water in pot filled
with quartz sand until taproots were 3-4 cm long. The seedlings
were transferred to a 24 liter container (0.58 × 0.28 × 0.15 m3)
filled with half-strength modified Hoagland solution (0.75mM
K2SO4, 2mM Ca (NO3)2, 0.65mM MgSO4, 0.1mM KCl,
0.2mM KH2PO4, 0.1mM Fe(III)NaEDTA, 10 uM H3BO3, 1 uM
MnSO4, 0.1 uM CuSO4, 1 uM ZnSO4, 0.09 uM (NH4)6Mo7O24),
each container with 25 soybean plants. The experiment was
designed as a complete randomized with two P treatment levels
(0.05 and 0.25 mM P L−1) and six replicates. Plants were
grown in a greenhouse from 14th February to 16th March
in 2016 with an average temperature of 25/20◦C (day/night),
relative humidity 75%, average daytime photosynthetically active
radiation between 800 and 1000mmol m−2 s−1 and photoperiod
of 14 h day/10 h night. The solution was well aerated and renewed
every 5 days and pH maintained at 5.4–5.5 with daily regulation.
The plants were harvested at stem elongation stage (30 days after
sowing) for testing the physiological and root morphology index
below. Plants show higher root secretion rate at stem elongation
stage than later in growth period, when the amount of fixed C
allocated to roots and rhizosphere (Gregory and Atwell, 1991).

Organic Acids in Root Exudates
For root exudation collection, three replicates of each genotype
were washed absolutely with running tap water followed by
distilled water and then placed separately in 100 ml glass test
tube filled with deionized water and covered with black plastic
to prevent light degradation of exudations. The exudate was
collected for 6 h, and the details before high performance liquid
chromatography (HPLC) analysis refers the method of Dong
et al. (2004). Organic acids were analyzed by HPLC (Agilent
1100, Agilent, USA) after Libert and Franceschi (1987) with
modifications (Yu et al., 2002). A Hypsil (Hypsil, Dalian, China)
C18 column (5 uM, 4.6 × 250mm) was used as the static
phase and the mobile phase was a solution containing 0.5%
KH2PO4 and 0.5mM tetrabutylammonium hydrogen sulfate
(TBA) buffered at pH 2.0 with orthophosphoric acid. The flow
rate was 1ml min−1 and detection wavelength was 220 nm.

Determination of Biomass and Root
Morphology
After exudate collection, soybean plants immediately divided
into shoots and roots. Shoots were dried in an oven at 70◦C
until constant weight. Roots were placed in clear plastic bags
filled with 50% ethanol and stored in a refrigerator. Washed
roots were gently arranged withminimum overlap using tweezers
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FIGURE 1 | Map of the Southwest of China (include the province of Sichuan, Yunnan, Guizhou, Chongqing, Hubei, Guangxi) showing the sampling

sites. The numbers in the parentheses represents numbers of soybean genotypes collected from the same city. Circularity, P-efficient soybean genotypes sampling

sites, triangle, P-inefficient soybean genotypes sampling sites in the hydroponic experiment respectively. �, Beijing, the capital of China. The position of Southwest of

China is shown in the inset. The two maps were created using DIVA-GIS 10.0 software, and the Circularity, Triangle sites were added according to GPS records.

in a plexiglass tray full with water, and scanned using an
Epson perfection V700 photo, Japan. Images were analyzed using
WinRhizo (Version 2007d, Regent Instrument Inc., Canada) to
estimate total root length, root surface area, and root volume.
Several images of one root were analyzed in more detail to
determine the root morphology. Roots were dried in an oven
at 70◦C until constant weight after imaging. Specific root (cm
g−1 DW) length was referring to the method of Pang et al.
(2010).

Analysis of Root APase Activity
After harvest, fresh roots of three replicates were washed
absolutely with running tap water and distilled water, and froze
immediately in liquid nitrogen, then stored at −80◦C. 0.3 g root
tissues were ground with a mortar and pestled with 5mL of
15mM 2-morpholinoethanesulfonic acid, monohydrate (MES)
buffer (pH 5.5, 0.5mM CaCl2 H2O, 1mM EDTA). The extracts
were centrifuged at 4◦C for 20 min at 10,000 rpm to obtain the
supernatants which were used for the determination of enzyme
activity.

P-nitrophenyl phosphate disodium salt hexahydrate (pNPP)
was used as substrate to determinate APase activity. At first,
0.5ml enzyme extract with a total volume of 4ml containing
15mM MES buffer and 10mM pNPP was incubated at
37◦C for 30 min. Subsequently, an equal volume of 0.25 M
NaOH was added to terminate reaction immediately. APase
activity was measured from the release of p-nitrophenol (pNP)
and expressed as pNP µg g−1 fresh weight (FW) min−1,
and pNP was determined spectrophotometrically using a UV
spectrophotometer (model UN-2600A, UNICO) at 412 nm
relatively to standard solutions (Sharma and Sahi, 2005).

Analysis of Tissue P Concentration
P concentration of root and shoot was analyzed following
the vanadomolybdate method (Page, 1982). Shoot and root P
accumulation was calculated bymultiplying P concentration with
the DW, respectively.

The ratio of root P accumulation: shoot P accumulation is a
typical index for plant response to P deficiency. Generally, plant
response to P deficiency is the increase in root: shoot ratio, which
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might be due to preferential assimilate P distribution to the roots
(Vance et al., 2003).

Statistical Analysis
Data from 3 replicates were sorted out by Excel (Microsoft)
software packages. Regression equations were developed for the
relationships between yield and seeds P concentration, shoot P
uptake, HI. The liner-plateau model was analyzed by the SAS
9.1.3 software (SAS Institute Inc., USA). The liner model was
analyzed by the SPSS 19.0 software. Significant difference of
shoot, root dry matter and P accumulation, root length, root
surface area, root volume, specific root length, activities of APase
and organic acid exudation rate between soybean genotypes and
P treatments were analyzed by analysis of variance (ANOVA) and
mean values were compared by least significant difference (LSD)
multiple comparison using the SPSS19.0 software (SPSS Institute
Inc., USA).

RESULTS

Field Study
Grain Yield, Dry Matter Accumulation and P

Acquisition Variable in Soybean Genotypes
Significant variation existed in grain yield among the 274 soybean
genotypes in field experiment (Table S2). Average yield of 274
soybean genotypes ranging from 5.6 to 36.0 g plant−1 was 16.5 g
plant−1. Seed P concentration and shoot P accumulation showed
significant response to yield. Moreover, the linear-plateau model
described the relationship between yield and HI well (R2 = 0.82)
(Figure 2).

To further compare the partitions of seed P concentration,
shoot P accumulation, HI among different soybean varieties,
pooled grain yields were divided into two yield categories: <20 g
plant−1 (low yield, LY) (the number of soybean genotypes, n
= 206, mean yield: 13.6 g plant−1), ≥20 g plant−1 (high yield,
HY) (the number of soybean genotypes, n = 68, mean yield:
25.3 g plant−1). 20 g plant−1 is the yield of Nandou 12, which is
Sichuanses summer soybean cultivar with the largest acreage, and
the line is also the standard for choose HY soybean genotypes.
Pooled seed P concentration, shoot P uptake and HI were divided
into two groups below or above the mean line (Figure 2). We
delimit the P-efficient soybean genotypes with high yield, shoot
P accumulation, HI and seed P concentration simultaneously.
On the contrary, the P-inefficient genotypes may be with low
yield, shoot P accumulation, HI and seed P concentration. There
are 27, 66, and 39 soybean genotypes with high (above the
mean line) seed P concentration, shoot P accumulation and
HI in HY category, respectively (Figure 2). However, only 16
genotypes possessed high yield, seed P concentration, shoot P
accumulation and HI simultaneously. Otherwise, 99, 161, and
171 soybean genotypes possessed low (below the mean line) seed
P concentration, shoot P accumulation and HI in LY category,
respectively. Considering some genotypes from same site may
be with same genetic background, so represent (P-efficient, P-
inefficient) soybean genotypes with a large distance scale between
each other were chosen. E14, E64, E141, E295, and E311 were
chosen to represent the P-efficient soybean genotypes and D55,

E108, E150, E277-1 and E283 were chosen to represent the
P-inefficient soybean genotypes.

Hydroponic Study
Effect of P Supply on Dry Matter Accumulation
The biomass of soybean genotypes reduced by 6.1∼35.1% in
low P treatment compared to in high P treatment (Figure 3).
Low P level reduced plant biomass by 19.8% averaged the 10
soybean genotypes, but affected the two groups of phenotypes
differently. The average shoot biomass, root biomass of P-
efficient soybean genotypes was 49.4 and 54.1% higher than that
of the P-inefficient genotypes in low P treatment, respectively
(Figures 3C,D). Significant difference for shoot and/ or root
was also observed among the genotypes in P-efficient and P-
inefficient group. The root and shoot biomass of E141, E295, and
E311 significantly higher than E14 and E64 in low P condition
(Figure 3C). The root biomass of E150 is the highest in P-
inefficient group in low P level (Figure 3D).

P Accumulation and Distribution
Low P level reduced P accumulation of soybean genotypes
by 32.3∼55.8% compared to in high P condition. Averaged P
accumulation of 10 soybean genotypes reduced by 46.5% in low
P level compare to in high P level (Figure 4). The average shoot
P accumulation and root P accumulation of 5 P-efficient soybean
genotypes was 17.3 and 22.2% higher than that of P-inefficient
genotypes in low P condition, respectively (Figures 4C,D). P
accumulation of E311 were 7.5 and 16.9mg plant−1 in low and
high P level respectively, and were 1.4, 1.7 and 1.6, 1.9-folds
greater than that of the E64 and E14 grown in media supplied
with low and high P concentration, respectively (Figures 4A,C).
Shoot P accumulation of E150 was highest among D55, E108,
E277-1 and E283, but root P accumulation of the 5 soybean
genotypes have no obviously difference (Figures 4B,D).

As shown in Table 1, the ratio of root P accumulation: shoot P
accumulation of P-efficient soybean genotypes in low P condition
was much high than in high P condition. However, the ratio of
the P-inefficient genotypes in low and high P conditions showed
narrow difference. For instance, the ratios of E141 and E311 in
low P condition were 30.8%, 32.9% and 30.0%, 50.8% higher
than in high P level, respectively. But the ratio of E150 in low P
condition was 30.0%, and higher than in high P level 9.7%. Low P
condition increased the root: shoot ratios of soybean genotypes,
but P-efficient soybean genotypes preferentially assimilate P
distributed in root.

Root Morphology
Low P reduced root length, root surface area and root volume
of soybean genotypes compared with in high P level (Table 2).
However, P-efficient soybean genotypes had greater root length,
surface area and root volume than P-inefficient genotypes in low
and high P condition (Table 2). E141 possessed the highest root
length, surface area and root volume in high P level, but those
root morphology index decreased by 47.8, 51.2, and 56.4% in
the low P level, respectively. On the contrary, root length, root
surface area and root volume of E311 in low P level just decreased
by 17.4, 16.4, and 2.3% comparedwith in high P level, respectively
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FIGURE 2 | Relationship between soybean yield and seeds P concentration (A), shoot P uptake (B), HI (C). Date are mean of three replicates. The horizontal

dotted line in figures (A–C) means soybean seeds P content, shoot P uptake and HI among the genotypes, respectively. The vertical dotted lines in figures (A–C) were

representing the soybean yield of Nandou 12 in Sichuan province (20 g plant−1).

(Table 2). Low P level reduced specific root length of P-inefficient
soybean genotypes compared with in high P level, except for
E283. But, E64, E141, and E311 reached a higher specific root
length (9837, 9381, and 10063m g−1 DW, respectively) in low
P level than in high P level (Table 2).

Activities of APase
APase activity of root significantly increased in low P level
compared to in high P condition (Figure 5). The root APase
activities of P-efficient soybean genotypes ranged from 27.8 to
54.21 pNP ug (g FW)−1 min−1, and the average was 42.1 pNP ug
(g FW)−1 min−1 in low P level (Figure 5A). The corresponding
data of P-inefficient soybean genotypes ranging from 20.29 to
33.09 pNP ug (g FW)−1 min−1 was averaged by 24.1 pNP ug (g
FW)−1 min−1 in low P level (Figure 5B). The maximum APase
activities of E311 and E141 reached 52.15 and 54.21 pNP ug (g
FW)−1 min−1 in low P level, respectively, and were 1.2∼2.3-fold
higher than others (Figure 5A). D55 and E277-1 showed higher
APase activities in low P condition than the E108, E150, and E283
in high P level (Figure 5B).

Organic Acid Exudation
Root exudation of malate was greatly motivated in both P-
efficient and P-inefficient soybean genotypes by P deficiency
(Table 3). The maximum malate exudation rate of 114.6 and
134.8mg plant−1 h−1 were found in E311 and E141 in low P
level, respectively. Citrate and oxalate exudation of P-efficient
and P-inefficient soybean genotypes increased in low P condition.
P-efficient soybean genotypes sustained a higher rate of citrate
and oxalate efflux than P-inefficient genotypes in low P level.
The tartrate efflux was activated by P deficiency and hereditary
character. E141 and E311 maintained a high rate of malate,
citrate, tartrate, and oxalate excretion, especially in P deficiency
condition. Indicating that organic acid exudation by soybean
roots was in response to P starvation and genotypes. E150
maintained a high rate of malate, citrate and oxalate excretion
than the other four soybean P-efficient genotypes in low P
condition. On the contrary, E277-1 and E283 maintained a high
rate of tartaric excretion than D55, E108 and E150 in low P level
(Table 3).

DISCUSSION

Genetic Variations Existed for Grain Yield
and P Accumulation in the Southwest of
China
To screen P-efficient soybean genotypes for achieving high
yield and improving P use efficiency, 274 soybean genotypes
were collected from Southwest of China (Figure 1). Besides low
availability of soil P, low P use efficiency partly resulted from
the behavior of fertilizer P application by farmers, who often
input more P than crops need (Vitousek et al., 2009). The
remaining P accumulation in the soil is easily eroded with soil
by rainfall (Zhang et al., 2012). To sustainably improve crop
production and fertilizer P used efficiency through exploiting
the biological P potential in the soil, employing the P-efficient
genotypes is an efficacious strategy (Li et al., 2011). In this study,
grain yield, shoot P accumulation, seed P concentration and
harvest index (HI) of 274 soybean genotypes were analyzed in
Purple soil with a suitable soil P concentration (initial Olsen-P
concentration was 17.4mg kg−1). The results showed that seed
P concentration was diluted and shoot P accumulation improved
following increasing yield (Figure 2). The 274 soybean genotypes
were originated from a large span area with low availability
of soil P (Figure 1), which differed substantially in grain yield
and P accumulation potentials (Figure 2). The yield of 274
soybean genotypes ranged from 5.5 to 36.0 g plant−1. The seed
P concentration and shoot P accumulation ranged from 0.045
to 0.93% and 0.065mg plant−1 to 0.278mg plant−1, respectably
(Figure 2). It suggested that genetic variations existing in the
274 soybean genotypes, and which provide a potential for
assessment P-efficient soybean genotypes (Pan et al., 2008).
Such substantial genotypic variation in response to different
P use efficiency was also detected for a considerable number
of soybean genotypes in South and Northeast of China (Zhao
et al., 2004; Pan et al., 2008). In the field study, based on the
stand enumerated before 5 P-efficient and 5 P-inefficient soybean
genotypes were chosen (Figure 2). Obviously, the evidence
mentioned above to proving the soybean genotypes with different
P use efficiency is not enough, much more work should be
provided to support the results as root physiological, chemical
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FIGURE 3 | Root and shoot dry weight of soybean genotypes, grown in high and low P conditions in greenhouse. Data are mean of three replicates ± SE.

(A) Biomass of P-efficient soybean genotypes in high P condition. (B) Biomass of P-inefficient soybean genotypes in high P condition. (C) Biomass of P-efficient

soybean genotypes in low P condition. (D) Biomass of P-efficient soybean genotypes in low P condition. Different letters on each column of shoot or root are

significantly difference at the 5% level by LSD among soybean genotypes.

characteristics. Hydroponic study is a fine pathway to check plant
root characteristics as it is pellucid and efficient by short plant
growth period.

Biomass and P Accumulation of Soybean
Genotypes
Crop P efficiency was defined as the ability to produce biomass
or yield under certain available P supply conditions (Wissuwa
et al., 2009), and further explained the capability of P uptake
from the media and tolerance in P insufficient conditions
(Wissuwa and Ae, 2001; Wissuwa et al., 2005; Wang et al., 2010).

In the hydroponic experiment, P-efficient genotypes exhibited
better adaptability and tolerance than the P-inefficient genotypes
grown in low P solution (Figure 3C). Especially E141 and
E311, showed significantly greater biomass than that of P-
inefficient genotypes in low P level (Figure 3). These results
corresponded well with previous studies which showed that
the P-efficient plant genotypes demonstrated greater biomass
compared to the P-inefficient when grown in low P condition.
Some scholars had reported that P-efficient plants of soybean
(Zhao et al., 2004), rice (Oryza sativa L.) (Wissuwa and Ae,
2001; Mori et al., 2016), maize (Zea mays L.) (Zhang, 2012), and
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FIGURE 4 | Root and shoot P accumulation of soybean genotypes, grown in high and low P conditions in greenhouse. Data are mean of three replicates

± SE. (A) P accumulation of P-efficient soybean genotypes in high P condition. (B) P accumulation of P-inefficient soybean genotypes in high P condition. (C) P

accumulation of P-efficient soybean genotypes in low P condition. (D) P accumulation of P-efficient soybean genotypes in low P condition. Different letters on each

column of shoot or root are significantly difference at the 5% level by LSD among soybean genotypes.

Brassica napus (Zhang et al., 2009) showed significantly biomass
ascendancy compared with P-inefficient plants in P shortage
conditions.

Early studies suggested that P-efficient plants preferential
distribution P to roots for improving the tolerance to P deficiency
and stimulate root growth and P uptake (Wissuwa et al., 2005). In
present study, much more P distribution to roots of P-efficient
soybean genotypes in low P condition may be an adaptation

involved in increasing the tolerance to P deficiency (Table 1).
Tolerant plants have been more efficient in P uptake per root size
and the additional P then drove further root growth, assuming
that low P availability affected root biomass accumulation directly
(Wissuwa et al., 2005). In this study, P accumulation of E141
and E311 was higher than the other genotypes in low P solution
(Figure 4C). Some scholars reported that P-efficient soybean
genotypes are able to obtain sufficient P from acid red soil and
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alkaline soil under P lack conditions (Zhao et al., 2004; Pan et al.,
2008), and other P-efficient plant species also showed positively
P accumulation grown in P lack conditions, like maize (Liu
et al., 2004), wheat (Triticum aestivum L.) (Fageria and Baligar,
1999) and rice (Mori et al., 2016). It indicated that the P-efficient
soybean genotypes (especially E141 and E311) demonstrate great
capability on P absorption and accumulation potentials.

Root Physiological Adaptation Concerned
in Stimulate P Assimilation
Root physiological adaptations play important roles in enhancing
soil P bioavailability and crop P use efficiency (Shen et al.,
2011). These adaptation mechanisms mainly include altering
root morphology to enhance P absorption (Wissuwa, 2003),

TABLE 1 | P distribution between root and shoot of soybean genotypes

grown in low and high P conditions in greenhouse.

Efficient Root P accumulation: shoot P Inefficient
genotypes accumulation ratio (%) genotypes

High P Low P High P Low P

E14 29.8 35.4 25.6 29.6 D55

E64 30.5 39.0 26.8 34.4 E108

E141 22.3 30.8 27.4 30.0 E150

E295 26.6 29.9 28.1 33.2 E277-1

E311 21.8 32.9 27.5 32.5 E283

Data are mean of three replicates. Ten genotypes were separated into two groups (P-

efficient group included E14, E64, E141, E295, E311, P-inefficient group included D55,

E108, E150, E277-1, E283). The ratio of root P accumulation: shoot P accumulation was

counted by root P accumulation divided by shoot P accumulation.

facilitating organic acids exudation into the rhizosphere to
increase P availability by mobilizing sparingly soluble mineral
P and organic P sources (Johnson et al., 1996), and promoting
phosphatase exudation to mineralize Po (Li et al., 2012). Root
morphological traits closely linked with P acquisition ability of
plants (Pang et al., 2010), and fine root morphology is propitious
to maximize P assimilation. P-efficient soybeans showed high
parameters of root length, root surface area and root volume
than the P-inefficient in present study (Table 2). The specific root
length of E311 increased by 48.6% compared with that in high
P level (Table 2). It indicated that penurious P availability has
negative effects on root morphology, however the less reduction
of those root morphology parameters of P-efficient genotypes
seems to be the results of excellent tolerance and adaptation. It
reported that P-efficient plant genotypes altered root morphology
to adapt low P conditions, and then assimilated more P than P-
inefficient genotypes (Fita et al., 2011). There was great possibility
for plants in improving soil P excavation and utilization by
increasing root length, root surface area, root volume and
specific root length(Vance et al., 2003), which result in a large
total amount of P and dry matter accumulation (Zhang et al.,
2013).

Besides root morphology, exudation of APase to improve
P bioavailability is another important root physiological
adaptation. As we know, exudation of APase by roots increased
under P deficiency condition, and plant roots with high APase
activities have great potential to utilize soil Po (Hayes et al., 2000;
Lung and Lim, 2006). In this study, the results corresponded
well with earlier researches that P shortage conditions stimulate
the APase activity of soybean genotypes, especially the P-
efficient soybean genotypes (Figure 5). Po comprises 30–80% of
the total P in most agricultural soils (Dalai, 1977), it can be

TABLE 2 | Root morphology of soybean genotypes grown in low and high P conditions in greenhouse.

Genotypes Root length (cm plant−1) Root surface area (cm2 plant−1) Root volume (cm3 plant−1) Specific root length (cmg−1 plant−1)

High Low High Low High Low High Low

P-EFFICIENT

E14 1926 c* 546 d 279 c* 112 c 3.26 c* 1.31 c 8579 a* 6794 c

E64 3020 b* 1523 c 379 b* 187 bc 3.81 bc* 1.81 c 9350 a 9837 b

E141 3985 a* 2078 b 514 a* 251 b 5.44 a* 2.37 b 8147 a 9381 b*

E295 2313 c* 1354 c 343 c* 246 b 4.01 b* 2.32 b 6853 b* 4248 d

E311 3117 b* 2575 a 469 ab* 392 a 4.21 b 4.12 a 6772 b 10063 a*

P-INEFFICIENT

D55 1196 d* 568 c 141 c* 75 c 1.36 c* 0.79 c 6057 bc* 2805 c

E108 1392 c* 925 b 196 b* 133 b 2.17 b* 1.49 b 5618 c 5041 b

E150 2451 a* 1584 a 316 a* 219 a 3.48 a* 2.20 a 6400 b* 5801 ab

E277-1 1342 c* 1147 b 221 b* 149 b 1.56 c 1.51 b 7725 a* 5058 b

E283 1660 b* 1386 a 219 b* 165 b 2.29 b* 1.55 b 5325 c 6556 a*

AVERAGE

Efficient 2872 A* 1615 A 397 A* 238 A 4.15 A* 2.39 A 7940 A 8065 A

Inefficient 1608 B* 1122 B 219 B* 148 B 2.17 B* 1.51 B 6225 B* 5052 B

Data are mean of three replicates. Values followed by the same small letters in each column are not significantly different among different soybean genotypes in one group at the 5%

level by LSD. Capital letters in each column are significantly different (p < 0.05) between the average of efficient and inefficient group.

*Indicated significantly different (p < 0.05) between the two P level.
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FIGURE 5 | Activities of APase in roots of soybean genotypes grown in high and low P conditions in greenhouse. Data are mean of three replicates ± SE.

(A) Root APase activities of P-efficient soybean genotypes. (B) Root APase activities of P-inefficient soybean genotypes. Different letters on each column are

significantly different among soybean genotypes at the 5% level by LSD. *Indicates significantly different (p < 0.05) between high and low P level.

TABLE 3 | Organic acids exudation rate of soybean genotypes grown in low and high P conditions in greenhouse (mg plant−1 h−1).

Genotypes Malic acid Citric acid Tartaric acid Oxalic acid

High Low High Low High Low High Low

P-EFFICIENT

E14 18.8 c 26.3 e* 2.6 c 6.7 bc* 2.3 c 9.4 cd* 0.3 c 2.6 b*

E64 20.8 c 81.2 c* 3.4 b 13.0 a* 11.2 b 12.2 c 0.5 bc 1.5 c*

E141 33.0 b 134.8 a* 4.2 a 13.8 a* 19.5 a 36.4 a* 0.8 b 7.1 a*

E295 24.8 c 37.5 d* 2.6 c 4.8 c 4.3 c 7.9 d* 0.8 b 1.9 c*

E311 77.3 a 114.6 b* 3.7 b 9.4 b* 3.2 c 23.4 b* 2.4 a 3.3 b*

P-INEFFICIENT

D55 7.3 b 7.2 b 2.7 b 2.0 c 3.4 b 3.4 b 1.5 a* 0.7 c

E108 3.8 c 10.4 b* 2.4 b 2.8 c 3.9 b 4.7 b 0.5 b 0.9 c

E150 18.6 a 52.0 a* 2.8 b 13.2 a* 7.2 a 5.5 b 0.5 b 2.3 a*

E277-1 12.5 b 51.6 a* 1.9 c 8.3 b* 6.3 a 9.5 a* 0.5 b 1.4 b*

E283 24.4 a 54.6 a* 3.5 a 7.6 b* 3.9 b 7.0 a* 1.2 a 1.4 b

AVERAGE

Efficient 34.9 A 78.9 A* 3.3 A 9.5 A* 8.1 A 17.9 A* 1.0 A 3.3 A*

Inefficient 13.3 B 35.2 B* 2.6 B 6.8 B* 4.9 B 6.0 B 0.8 B 1.3 B*

Data are mean of three replicates. Values followed by the same small letters in each column are not significantly different among different soybean genotypes in one group at the 5%

level by LSD. Capital letters in each column are significantly different (p < 0.05) between the average of efficient and inefficient group.

*Indicated significantly different (p < 0.05) between the two P level.

released through mineralization processes mediated by enzymes
activity. The P-efficient plant species generally had high enzymes
activity in root extracts when grown in P lack or high Po
media. For instance, maize, lupin and chickpea showed high
APase activities when grown in P deficiency conditions (Wasaki
et al., 2003; Li et al., 2004), Gulf, Marshall Ryegrass and P.
hydropiper had greater APase activities when grown in phytate-
sufficient media (Sharma and Sahi, 2011; Huang et al., 2012).
In our results, the APase activities of E311 and E141 were
significantly higher (1.2∼2.3-folds) than others in low P level
(Figure 5C), suggesting that they demonstrated great capabilities
of activation and utilization soil P. Besides, transgenic expression

of APase gene in P-efficient genotypes was another path for
great dry matter and P accumulation. It reported that over-
expressed AtPAP15 in soybean and GmPAP4 in Arabidopsis
significantly increased dry matter and P accumulation compared
to the wild type when grown in media with Po (Wang et al.,
2009; Kong et al., 2014). Above all, APase activity was a
symbol of efficient mineralization and utilization soil P by
plants.

Root exudation of organic acids into the rhizosphere had been
proposed to improve soil P availability and plant P accumulation
(Dinkelaker et al., 1989; Johnson et al., 1996). Exudation of
organic acids is also an important root physiological adaptation

Frontiers in Plant Science | www.frontiersin.org 10 November 2016 | Volume 7 | Article 1776

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Zhou et al. Phosphorus Efficient Soybean Genotypes Assessment

to P deficiency. A 2-fold increase in exudation of citrate was
observed under P starvation in alfalfa (Lipton et al., 1987). Dong
et al. (2004) also reported that oxalate and malate exudation
of soybean plants was found to markedly increase in response
to P deficiency. In present study, low P condition stimulates
exudation of malate, citrate, tartrate and oxalate acid, especially
in the P-efficient soybean genotypes (Table 3). The average
exudation rate of malate, citrate, tartrate and oxalate acid in
the P-efficient soybean genotypes increased by 2.24, 1.40, 2.98,
and 2.54 folds compared to the P-inefficient genotypes under
P starvation, respectively. Particularly, E141 and E311 exhibited
high organic acid exudation potentials (Table 3). These results
were in agreement with Dong et al. (2004), who reported that
a considerable amount of organic acid exudation in P-efficient
soybean genotypes contributed to P accumulation under P
starvation condition. Adequate evidences demonstrated that root
exudation of organic acids into the soil rhizosphere contributed
to higher P acquisition. Exudation of malate in P-efficient faba
bean enhanced P acquisition in the alkaline soil (Rose et al.,
2010). Barley (Hordeum vulgare L.) genotypes expressing the
TaALMT1 gene from wheat improved P uptake per unit root
length from an acid soil (Delhaize et al., 2009).

CONCLUSION

Field study provided evidence that P use efficiency difference
exist in 274 soybean genotypes. The hydroponic study suggested
that the P-efficient genotypes are more tolerant to P deficiency,
and exhibited fine root morphology and physiological
adaptations. In conclusion, our results demonstrated that
genotypic variation on P use efficiency existed in yield, P
accumulation potentials and root physiological characteristics in

the Southwest of China by field and hydroponic experiments. We
suggested that P-efficient soybean genotypes, like E311 and E141,
with fine root morphology, high level of root APase activities
and exudation of organic acids rate could be potential materials
in breeding and improving the production and P use efficiency
in intensive agricultural region with low soil P availability.
Interestingly, P-inefficient genotype E150 gained low yield in
the field but showed fine root morphology and physiological
adaptations in the hydroponic experiment, further studies are
needed to probe the reason of this phenomenon.
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