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The orchid genus Oberonia Lindl., is a taxonomically complex genus characterized by

recent species radiations and many closely related species. All Oberonia species are

under conservation as listed in the CITES and the IUCN Red List Categories and Criteria.

Given its difficulties in taxonomy and conservation status, Oberonia is an excellent model

for developing DNA barcodes. Three analytical methods and five DNA barcoding regions

(rbcL, matK, trnH-psbA, ITS, and ITS2) were evaluated on 127 individuals representing

40 species and 1 variety of Oberonia from China. All the three plastid candidates

tested (rbcL, matK, and trnH-psbA) have a lower discriminatory power than the nuclear

regions (ITS and ITS2), and ITS had the highest resolution rate (82.14%). Two to four

combinations of these gene sets were not better than the ITS alone, but when considering

modes of inheritance, rbcL+ITS and matK+ITS were the best barcodes for identifying

Oberonia species. Furthermore, the present barcoding system has many new insights

in the current Oberonia taxonomy, such as correcting species identification, resolving

taxonomic uncertainties, and the underlying presence of new or cryptic species in a

genus with a complex speciation history.

Keywords: DNA barcoding, Oberonia, taxonomy, radiation, species identification, ITS

INTRODUCTION

Oberonia Lindl. is a monophyletic genus (Tang G. D. et al., 2015) with its infrageneric classification
still unclear with involving many closely related and recently radiated species. It comprises about
150–200 species centered in tropical Asia and extending to tropical Africa, NE Australia and
the Pacific islands. There are 44 species and 2 varieties distributed in China (Su, 2000; Chen
et al., 2009; Lin and Lin, 2009; Ormerod, 2010; Xu et al., 2010; Tian et al., 2013), including
some taxonomically complex groups lacking clear species delimitations, such as O. acaulis
Griff., O. acaulis var. luchunensis S. C. Chen and O. gongshanensis Ormerod; O. arisanensis
Hayata, O. delicata Z. H. Tsi and S. C. Chen, O. japonica (Maxim.) Makino and O. menghaiensis
S. C. Chen; O. austro-yunnanensis S. C. Chen and Z. H. Tsi and O. jenkinsiana Griff. ex
Lindl.; O. insularis Hayata and O. sinica (S. C. Chen and K. Y. Lang) Ormerod, etc. All
of these taxonomically complex groups show slightly differences in the morphology of their
leaves or flowers, while in some cases, characters are overlaps between species. For example,
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O. japonica and O. delicata are morphologically similar in most
aspects except for some differences in flower character. The
former is characterized by sepals broader than petals (sepals 0.9
mm, petals 0.7 mm), while the latter has equal sepals and petals in
width. However, flowers with sepals broader than petals (sepals
0.8 mm, petals 0.6 mm) were also found in the population of
O. delicata from type location in Yunnan Province (LYL037). The
overlapping characters among species make the discrimination
and delineation of this genus more challenging. In addition,
Oberonia species are vegetative consensus and have diminutive
flowers that are not easily discernable by the naked eye, making
their identification and taxonomy exceedingly difficult even for
professional taxonomists. Thus, a tool such as DNA barcoding, to
aid rapid and accurate identification of these species is critically
needed.

Oberonia species in China are mostly distributed in Yunnan,
Guangxi, Guangdong, and Hainan provinces which belong to
the Indo-Burma hot spots. All of them are endangered and listed
in CITES (Conventions on International Trade of Endangered
Species of Fauna and Flora, http://www.cites.org/eng/disc/
species.shtml) and the IUCN Red List categories and criteria
(http://www.zhb.gov.cn/gkml/hbb/bgg/201309/t20130912_2600
61.htm.) Habitat loss and illegal collection in this region poses
a great threat to species survival, particularly in the case of
narrow endemic Oberonia species that confined to one location
in Yunnan Province (Cardinale et al., 2012). Rapidly and
correctly identifying Oberonia species in China could promote
the monitoring of endangered taxa.

DNA barcoding is a relatively new tool for species
identification (Hebert et al., 2003, 2004) and has been applied
in many areas, such as taxonomy (Meier et al., 2006; Huang
et al., 2013; Mutanen et al., 2015), the discovery of new or cryptic
species (e.g., Burns et al., 2008; Karanovic, 2015; Saitoh et al.,
2015), biodiversity assessment and conservation (e.g., Taberlet
et al., 2012; Ji et al., 2013; Liu et al., 2014), and monitoring the
illegal wildlife trades (e.g., Baker, 2008; Gathier et al., 2013).
After more than 10 years development, many plastid regions
and nuclear regions have been suggested as universal barcodes
for land plants, such as rbcL+matK, trnH-psbA, ITS, ITS2, etc.
(CBOL Plant Working Group, 2009; Chen et al., 2010; Ren
et al., 2010; Li et al., 2011). Although, significant progress has
been made in the DNA barcoding, the discrimination of closely
related species in recently evolved genera such as Oberonia
Lindl., Willows (Salix L.) and Curcuma L. (Twyford, 2014; Chen
et al., 2015), still poses a great challenge. Hence, testing DNA
barcodes in such taxonomically difficult Oberonia genus could
help to further understand the potential of these barcodes. The
establishment of an available barcoding system for Oberonia
could also facilitate the taxonomy and conservation of these taxa.

Five DNA barcode regions were assessed (rbcL, matK, psbA-
trnH, ITS, and ITS2) in 40 species and 1 variety of Oberonia
obtained from China. The objectives of this study are to: test the
effectiveness of suggested core DNA barcodes (rbcL+matK) in
Oberonia; evaluate the resolution of these five barcodes and in
2- to 4-region combinations to correctly identify individuals and
discriminate among closely related species; and explore some of
the taxonomic implications in Oberonia.

MATERIALS AND METHODS

Taxon Sampling, DNA Extraction,
Amplification, Sequencing, and Sequence
Downloads
In this study, 127 sequences from 40 species and 1 variety
were collected for DNA sequencing, in which 123 sequences
representing 39 species and 1 variety were from 6 provinces
(Guangdong, Guangxi, Fujian, Hainan, Yunnan, and Tibet) in
China. Four sequences from 1 species in Genbank were also
included. In order to cover the morphological variability and
geographical ranges, more individuals (>7) of widespread species
such as O. caulescens Lindl. and O. ensiformis (Sm.) Lindl. were
sampled. To test the potential of DNA barcodes, individuals of
the taxonomically complex groups (e.g.,O. acaulis,O. acaulis var.
luchunensis, and O. gongshanensis; O. jenkinsiana and O. austro-
yunnanensis; O. arisanensis, O. delicata, O. japonica, and O.
menghaiensis; O. insularis and O. sinica) were sampled as much
as possible. Detailed information about the samples is included in
Table S1. The voucher specimens are deposited in the herbarium
of the South China Botanical Garden, Chinese Academy of
Sciences, Guangzhou (IBSC).

Total DNA was isolated from fresh or silica-dried leaves using
a modified CTAB method (Doyle and Doyle, 1987). Primers are
listed in Table S2. The ITS2 sequence was derived from the ITS
(ITS, including ITS1, 5.8 s and ITS2) data directly. Two primer
pairs of trnH-psbA were used for amplification and sequencing.
Polymerase chain reaction (PCR) was conducted in a reaction
mix (30 µl) each containing 10–20 ng (1–2 µl) of template DNA,
15 µl of 2 × PCR mix (0.005 units/µl Taq DNA polymerase, 4
mMMgCl2, and 0.4 mMdNTPs, TIANGEN), 1µl of each primer
(10 µM) and 11–12 µl of ddH2O. The PCR program started with
a 2 min pre-melt stage at 98◦C, followed by 36 cycles of 10 s at
98◦C, annealing at 51–54◦C (51◦C for rbcL and ITS, 52◦C for
matK, 54◦C for both two primer pairs of trnH-psbA) for 30 s,
followed by 50 s at 68◦C, and a final 8 min extension at 68◦C. The
PCR products were run on 1% agarose gels to check the quality of
the amplified DNA. Then, PCR products with high quality were
sent to Invitrogen (Shanghai) for purification and sequencing
from both directions to reduce sequencing error.

Data Analyses
Sequences for each marker were edited and assembled using
SEQUENCHER 4.14 (GenCodes, Corp. Ann Arbor) and then
manually adjusted using Bioedit v7.1.3.0 (Hall, 1999). To
assess the barcoding resolution for all barcodes (rbcL, matK,
ITS, ITS2, trnH-psbA, rbcL+matK, rbcL+ITS, rbcL+ITS2,
rbcL+trnH-psbA, matK+ITS, matK+ITS2, matK+trnH-psbA,
rbcL+matK+ITS, rbcL+matK+ITS2, rbcL+matK+trnH-psbA,
rbcL+matK+ITS+trnH-psbA), three analytical methods were
employed, i.e., the pair-wise genetic distance method (PWG-
distance), the sequence similarity method (TAXONDNA) and
a phylogenetic-based method (Neighbor-Joining trees and
Bayesian inference trees).

For the pair-wise genetic-based method, six parameters
[average inter-specific distance, average theta (2) prime and
smallest inter-specific distance; average intra-specific distance,
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average theta (2) and largest intra-specific distance] were
calculated in Mega7 using the Kimura two-parameter distance
model (K2P), to explore the intra- and inter-species variation
(Chen et al., 2010; Pang et al., 2013; Kumar et al., 2016) We
considered discrimination to be successful if the minimum
inter-species distance involving a species, represented by more
than one individual was larger than its maximum intra-species
distance.

The sequence similarity method used the proportion of
correct identifications identified with TAXONDNA/ Species
Identifier 1.8 program, to assess the potential of all markers for
accurate species identification. The “Best Match” (BM) and “Best
Close Match” (BCM) tests in TAXONDNA were run for species
that were represented by more than one individual (Meier et al.,
2006).

For the phylogenetic-based method, Neighbor Joining (NJ)
trees of all markers were conducted in Mega7 with K2P
model and Bayesian inference (BI) trees were conducted in
MrBayes v. 3.1 (Huelsenbeck and Ronquist, 2001; Ronquist and
Huelsenbeck, 2003). If all the individuals of one species were
clustered into a monophyletic group with the support nodes
above 70% (NJ) or 95% (BI), then the species was considered
as successfully identified. Species with a single specimen were
included, but lacked depth to calculate significance. Dendrobium
strongylanthum Rchb. f. (KF177656, KF143723, KF177553, and
GU339107) was the outgroup for the tree-based analysis (Tang
G. D. et al., 2015; Xu et al., 2015).

RESULTS

PCR Amplification, Sequencing, and
Genetic Divergence
The characteristics of five DNA barcoding regions and their
combinations are shown in Table 1. When evaluated separately,
rbcL, matK, and ITS had very high success rates (100%) for
PCR amplification and sequencing using a single primer pair.
Although, trnH-psbA also exhibited relatively high amplification
success of 95.12% with two primer pairs, only 7 samples
(5.69%) were successfully amplified and sequenced using the
commonly used primer pair trnH2/psbAF (Sang et al., 1997;

Tate and Simpson, 2003). The remaining samples were, however,
generated for trnH-psbA using another primer trnH(GUG)/psbA
(Hamilton, 1999). Overall, the aligned length of the five markers
ranged from 269 bp (ITS2) to 1187 bp (rbcL). A total of 486
new sequences were submitted to NCBI, which included 123
sequences of each rbcL, matK, and ITS, separately, and 117
sequences of trnH-psbA, were submitted to NCBI (Table S1). In
addition, we downloaded 12 sequences ofO. mucronata (D. Don)
Ormerod and Seidenf. from NCBI, including 4 sequences each
of rbcL, matK, and ITS, respectively (JN005593, JN005592,
JN005591, JN005590; JN004531, JN004530, JN004529,
JN004528; JN114637, JN114636, JN114635, and JN114634).
In total, 127 accessions of rbcL, matK, and ITS representing
40 species and 1 variety and 117 accessions of trnH-psbA
representing 39 species were obtained for further analysis.

Among the five markers, ITS2 had the highest proportion
of variable sites (52.42%) and parsimony-informative sites
(41.26%), and rbcL had the lowest. RbcL showed the lowest intra-
specific and inter-specific divergence as well, whilst trnH-psbA
showed the highest intra-specific divergence (0.82%), followed by
ITS2 (0.57%). However, the greatest inter-specific distance was
found in ITS2 (9.92%), followed by ITS (6.74%).

The average intra- and inter-specific divergence in the 11
combinations varied from 0.14 to 0.45% and 1.00 to 4.21%,
respectively (Table 1). The combinations of matK+trnH-psbA
and matK+ITS showed the highest intra- and inter-specific
genetic divergence, respectively. The core barcode rbcL+matK
and the combination of rbcL+trnH-psbA had the lowest intra-
specific genetic divergence, respectively (Table 1).

DNA Barcoding Gap Assessment
The relative distribution of K2P distances based on single
barcodes and their combinations indicated that ITS and ITS2 had
relatively clear barcoding gaps, while the remaining three tested
candidate barcodes and their combinations had overlaps between
their inter- and intraspecific distances (Figure S1).

Species Resolution of Candidate Barcodes
For the PWG-distance method, we used the local barcoding gap
to reveal the species resolution power of candidate barcodes.

TABLE 1 | Evaluation of five DNA markers and combinations of the markers.

R M I I2 T R+M R+I M+I R+M+I R+M+I2 R+M+T R+M+I+T

Universality of primers Yes Yes Yes Yes No − − − − − − −

Rate of PCR success (%) 100 100 100 100 100 − − − − − − −

Rate of sequencing success (%) 100 100 100 100 95.12 − − − − − − −

Aligned length (bp) 1187 815 827 269 1001 2002 2014 1642 2829 2271 3003 3830

Average intra-distance (%) 0.07 0.25 0.45 0.57 0.82 0.14 0.22 0.35 0.23 0.19 0.27 0.31

Average inter-distance (%) 0.57 1.90 6.74 9.92 2.25 1.14 3.08 4.21 2.70 2.08 1.33 2.63

Average theta (2) (%) 0.06 0.18 0.24 0.31 0.70 0.11 0.13 0.21 0.14 0.13 0.21 0.22

Coalescent Depth (%) 0.09 0.30 0.38 0.50 0.91 0.17 0.21 0.33 0.23 0.21 0.30 0.32

Proportion of variable sites (%) 5.48 19.63 37.12 52.42 10.49 11.24 18.42 28.44 18.77 16.12 10.76 16.42

Proportion of parsimony sites (%) 3.96 15.34 30.35 41.26 7.29 8.34 14.50 22.90 14.56 12.07 7.69 12.30

R, rbcL; M, matK; I, ITS; I2, ITS2; T, trnH-psbA.
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That is, when a minimum inter-specific distance larger than the
maximum intra-specific distance of a species, we considered it
successfully identified. The proportion of the local barcoding
gap varied among the markers tested (Figure S1 and Figure 1).
Among single regions, the ITS exhibited the best species
resolution (82.14%), followed by ITS2 (71.43%). In contrast,
rbcL had the lowest species resolution (25.81%). Of the 11
combinations, rbcL+ITS showed the highest species resolution
(82.14%), while rbcL+trnH-psbA showed the lowest species
resolution (71.86%).

The TAXONDNA analysis based on BM and BCM methods
exhibited similar discrimination success (Table 2). The ITS had
the highest success rate for the correct identification of species
(BM and BCM: 73.22%) among the five single barcodes, followed
by the ITS2 (BM and BCM: 64.56%), whilst rbcL had the
lowest resolution rate (BM and BCM: 33.85%). Among the 11
combinations, rbcL+ITS and matK+ITS performed the best
(BM and BCM: 74.59%), followed by rbcL+matK+ITS (BM
and BCM: 74.80%). However, the core barcode rbcL+matK
demonstrated the lowest species resolution rate (BM and BCM:
55.11%).

The Neighbor Joining (NJ) and Bayesian inference
(BI) tree-building method showed similar discriminatory
results (Figure 1). Among the five single barcodes, the ITS
demonstrated the best discrimination power (NJ tree and
BI tree: 75%), followed by ITS2, while rbcL and trnH-psbA
had the lowest discrimination power. In the 11 combination
barcodes, matK+ITS reached the highest resolution power
(NJ tree: 78.57%; BI tree: 75%), followed by rbcL+ITS,
rbcL+matK+ITS, and rbcL+matK+ITS+trnH-psbA. The
core barcode rbcL+matK recommended by COBL had poor

resolution (NJ tree and BI tree: 64.29%), and only slightly
better than all combinations with trnH-psbA (rbcL+trnH-psbA,
matK+ trnH-psbA, and rbcL+matK+trnH-psbA).

DISCUSSION

Universality of DNA Barcodes
Primer universality is an important criterion for an ideal DNA
barcode (Kress and Erickson, 2007). In this regard, the rbcL,
matK, and ITS had the best performance in PCR amplification
and sequencing among the four regions (successfully amplifying
and sequencing 100% samples), consistent with many previous
studies (Xu et al., 2015; Yan et al., 2015). However, compared
to the above three barcodes, trnH-psbA had a relatively
low sequencing success rate of 95.12% when two primer
pairs were used. This was due largely to poly (T) tracts
at about 100 bp in the forward direction when sequencing.
In addition, a 230 bp indel in three sequences of two
species, i.e., O. intermedia King and Pantl and O. delicata
resulted in alignment difficulties. As for the insertion events,
small inversions associated with palindromes, and sequencing
problems related to mononucleotide repeats within this non-
coding chloroplast region will complicate its use as a barcode
(Whitlock et al., 2010). Thus, sequence alignment of this region
must be careful to avoid overestimates of the substitution
events.

The Resolution of Tested Candidate
Barcodes in Oberonia
When evaluated alone, the three plastid regions studied (rbcL,
matK, trnH-psbA) had a resolution ranging from 21.43 to 57.14%

FIGURE 1 | Species discrimination rates of multiple candidate barcodes in Oberonia. R, rbcL; M, matK; I, ITS; I2, ITS2; T, trnH-psbA.
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TABLE 2 | Identification success based on the “best match” and “best close match” analysis methods.

Region Best match Best close match

Correct (%) Ambiguous (%) Incorrect (%) Correct (%) Ambiguous (%) Incorrect (%)

R 33.85 59.84 6.29 33.85 59.05 6.29

M 54.33 37.79 7.87 54.33 35.43 7.87

I 73.22 16.53 10.23 73.22 16.53 4.72

I2 64.56 26.77 8.66 64.56 26.77 4.72

T 58.97 20.51 20.51 58.97 20.51 20.51

R+M 55.11 30.7 14.17 55.11 29.92 12.59

R+I 75.59 12.59 11.81 75.59 12.59 7.87

R+I2 66.14 23.62 10.23 66.14 22.83 7.08

R+T 56.69 21.25 22.04 56.69 21.25 22.04

M+I 75.59 12.59 11.81 75.59 12.59 7.87

M+I2 66.14 23.62 10.23 66.14 22.04 8.66

M+T 62.2 14.17 23.62 62.2 14.17 23.62

R+M+I 74.8 12.59 12.59 74.8 12.59 8.66

R+M+I2 64.56 25.19 10.23 64.56 25.19 7.08

R+M+T 61.41 14.17 24.4 61.41 14.17 24.4

R+M+I+T 62.99 10.23 26.77 62.99 10.23 25.98

R, rbcL; M, matK; I, ITS; I2, ITS2; T, trnH-psbA.

(based on tree-building analysis), which is much lower than the
discriminatory rate of nuclear region (Figure 1). Thus, all the
single plastid regions are not recommended as DNA barcodes
for the genus Oberonia. The low resolution of chloroplast
regions has been previously reported in other plants including
Paphiopedilum (25.74%), Curcuma (21.66%), and Quercus (0%)
(Piredda et al., 2011; Chen et al., 2015; Guo et al., 2015).
This could be due to the lower substitution rates that are
found in plastid genomes, relative to their nuclear regions.
Consequently, this highlights a need to search for nuclear DNA
barcodes.

For the nuclear genome, the ITS and ITS2 generally provided
better identification rates than the chloroplast sequences (Chen
et al., 2010; Yao et al., 2010; Li et al., 2011). Likewise, the ITS and
ITS2 have more parsimony informative sites, larger inter-specific
distances and more discriminatory power than chloroplast
regions in this study. In comparison the ITS distinguished 75%
of monophyletic species, which was the best discrimination
performance among the five loci (Figure 1). Meanwhile, any
combinations with ITS produced better results than those
combinations without (Figure 1 andTable 1). According to some
previous results, it is difficult to amplify and directly sequence the
region in some taxa because of incomplete concerted evolution
of this multiple-copy region caused by hybridization or other
factors (Alvarez andWendel, 2003). However, it is not a problem
in Oberonia and it has been widely used to generate phylogenies
in many orchid taxa (Koehler et al., 2002; Zhai et al., 2014; Tang
Y. et al., 2015). The amplification and sequencing rates of the ITS
in this study were nearly 100%. Overall, for a single barcode, the
ITS is the best candidate for Oberonia. Meanwhile, our results
indicate that the ITS2 alone or in combinations with plastid
markers did not have a higher discriminatory power than the ITS

and/or its corresponding combinations (Figure 1 and Table 1).
However, considering the ease of amplification, we suggest that
the ITS2 may be an ideal supplementary barcode when ITS
amplification has failed.

Multi-locus barcodes have been suggested as DNA barcodes
for land plants and can often improve the resolution rate of
species identification (CBOL Plant Working Group, 2009; Li
et al., 2011). In this study, the two-locus barcode rbcL+matK,
recommended by the CBOL Plant Working Group (2009), had
a low discrimination rate of 64.29% based on the Tree-building
method (Figure 1), which was lower than the identification rate
of 72% proposed by the CBOL Plant Working Group (2009).
One of the most plausible explanations for this discrepancy is
that the CBOL Plant Working Group focused on assessing the
relative, rather than the absolute discriminatory power of the
tested barcodes. We sampled more closely related species within
the Oberonia genus and while rbcL and matK discriminates
among genera well, the resolution rates of these two markers,
alone and in combination, decreased at infrageneric levels,
especially within recently evolved genera. Of the 2- to 4-
combinations of the five loci tested, rbcL+ITS and matK+ITS
exhibited the best discriminatory performance, almost the same
as the single ITS barcode (Figure 2, Figures S2, S3). In plant
DNA barcoding studies, the use of markers from different
genomes with different modes of inheritance has been suggested,
because such combinations of DNA markers will further our
understanding of species delimitation and the evolutionary
processes of speciation (Li et al., 2011). Although the resolution
rates of rbcL+ITS andmatK+ITS were not better than the single
marker ITS itself, we suggest that the combination marker either
rbcL+ITS or matK+ITS, should be the first choice to barcode
Oberonia species.
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FIGURE 2 | Bayesian inference (BI) tree based on the combination of matK+ITS sequences in Oberonia. Numbers on branches represent BI and NJ

support values, respectively.
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Implications of DNA Barcoding for the
Current Taxonomy of Oberonia
The results obtained in this study shed some light on the
identification and taxonomy of the genus Oberonia. In previous
DNA barcoding studies on a single genus or between closely
related groups, species misidentification can be corrected with
DNA barcoding (Pryer et al., 2010; Zhang et al., 2012;
Yan et al., 2015). In the present study, the sample O.
kanburiensis 1 was initially identified as O. acaulis Griff.,
based on leaf morphology (lacked flowers). DNA barcoding
showed that the sequences of this sample were different
from the other samples of this species, and it continually
clustered with O. kanburiensis Seidenf. sequences. Confusion
often occurs between O. acaulis and O. kanburiensis, because
their morphology is similar prior to flowering. After blooming
we rechecked the specimen and confirmed that this accession
was misidentified and was in-fact O. kanburiensis. Such
misidentifications were also found in O. delacourii 1 and O.
delacourii 2 which were initially identified as O. ensiformis
(Smith) Lindl. based on leaf morphology (lacked flowers). This
finding indicates that DNA barcoding can differentiate species,
with small sample input, great speed, and higher reliability,
than previous methods. Thus, a more robust method has been
demonstrated for endangered species monitoring in Oberonia
genus.

In addition to the effectiveness of correcting misidentified
specimen, DNA barcoding could also help in resolving
taxonomic uncertainties. For example, O. austro-yunnanensis S.
C. Chen et Z. H. Tsi and O. jenkinsiana Griff. ex Lindl. were
considered as two separate species, discriminated by a joint at
the base of the leaf (O. austro-yunnanensis with a basal joint
vs. O. jenkinsiana without a basal joint) and subtle differences
in the lip of flowers. After carefully checking the specimen
and the original literature, we found that neither O. austro-
yunnanensis nor O. jenkinsiana have joints at the base of the
leaf, and are morphologically similar in most respects. We
suspect that these are the same species. In the phylogenetic
tree (Figure 2) O. austro-yunnanensis continually clustered with
O. jenkinsiana. Besides, O. jenkinsiana is a widespread species
and the geographical distribution ranges of these two species
overlap. Therefore, our analysis implies that species with identical
morphology, distribution, and sequences should be treated as
one species. It is also probable that O. sinica and O. insularis
reflect a similar situation. In another situation, Oberonia acaulis
var. luchunensis are treated as a variety of O. acaulis, but in the
light of these DNA barcoding results and the large difference in
morphology, O. acaulis var. luchunensis could be raised to an
independent species rather than a variety of O. acaulis, although
further work is necessary (Figure 2).

Discovery of new or cryptic species is an important
application of DNA barcoding within taxonomy (DeSalle et al.,
2005). Many studies have employed the DNA barcoding to
discover new or cryptic species in a broad range of animals and
plants (Burns et al., 2008; Liu et al., 2011; Saitoh et al., 2015). In
our study, some taxa such as samples Oberonia sp. 1, 2, 3 are
similar to Oberonia caulescens Lindl. with subtle morphological
differences in flowers and leaves, not withholding geographical

divergences. However, they did not cluster with O. caulescens in
the phylogenetic trees, indicating the existence of a new or cryptic
species, yet additional study is necessary.

Morphological characterization associated with geographical,
ecological, reproductive, and molecular data will facilitate the
construction of a robust taxonomic system for any particular
taxa. However, taxonomy and species delimitation within a
single genus, especially genera with closely related species, is
more difficult. In our study, despite the excellent performance
of DNA barcoding in the Oberonia species from China, DNA
barcoding does have difficulties in discriminating closely related
species. For example, taxonomic complex group O. arisanensis,
O. delicata, O. japonica, and O. menghaiensis are morphological
similar with subtle differences in the diagnostic characteristic of
their flowers. DNA barcoding did not discriminate these four
species and they all clustered together in the rbcL+ITS tree
and matK+ITS tree (Figure 2, Figures S2, S3). Another case
for DNA barcoding failure occurred in O. anthropophora, which
displayed incongruent signals of nuclear and plastid gene regions
(Figures S2, S3). The slow rate of molecular evolution, paralogy,
incidence of hybridization, introgression, and incomplete sorting
of ancestral polymorphisms are the most likely sources of DNA
barcoding failure for closely related Oberonia species (Funk and
Omland, 2003; Hollingsworth et al., 2011; León-Romero et al.,
2012). The exploration of more molecular markers, such as SNP
and SSR, are needed to develop DNA barcodes to assist in species
identification (Liu et al., 2008; Yuan et al., 2012; Zeng et al., 2012).
This data will promote progress in DNA barcoding, while also
facilitate the identification of endangered species.
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