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Petal color is one of the key characteristics determining the attractiveness and

therefore the commercial value of an ornamental crop. Here, we present the first

genome-wide association study for the important ornamental crop rose, focusing on

the anthocyanin and carotenoid contents in petals of 96 diverse tetraploid garden

rose genotypes. Cultivated roses display a vast phenotypic and genetic diversity

and are therefore ideal targets for association genetics. For marker analysis, we

used a recently designed Axiom SNP chip comprising 68,000 SNPs with additionally

281 SSRs, 400 AFLPs and 246 markers from candidate genes. An analysis of

the structure of the rose population revealed three subpopulations with most of

the genetic variation between individual genotypes rather than between clusters

and with a high average proportion of heterozygous loci. The mapping of markers

significantly associated with anthocyanin and carotenoid content to the related

Fragaria and Prunus genomes revealed clusters of associated markers indicating

five genomic regions associated with the total anthocyanin content and two large

clusters associated with the carotenoid content. Among the marker clusters associated

with the phenotypes, we found several candidate genes with known functions in

either the anthocyanin or the carotenoid biosynthesis pathways. Among others, we

identified a glutathione-S-transferase, 4CL, an auxin response factor and F3’H as

candidate genes affecting anthocyanin concentration, and CCD4 and Zeaxanthine

epoxidase as candidates affecting the concentration of carotenoids. These markers

are starting points for future validation experiments in independent populations as well

as for functional genomic studies to identify the causal factors for the observed color

phenotypes. Furthermore, validated markers may be interesting tools for marker-assisted

selection in commercial breeding programmes in that they provide the tools to identify

superior parental combinations that combine several associated markers in higher

dosages.
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INTRODUCTION

Rose is one of the most economically important ornamental
crops and is sold as cut flowers, pot roses and garden roses.
The genus Rosa comprises a vast amount of genetic resources
represented by more than 100 wild species as well as more
than 30,000 mostly tetraploid varieties bred for ornamental
purposes (Gudin, 2000; Wissemann, 2003). Cultivated tetraploid
rose genomes are complex mixtures of at least 10 species
that have been used in ornamental rose breeding for more
than two centuries (Gudin, 2000; Zhang et al., 2013). As
a result, rose is highly diverse in many morphological and
physiological characteristics. Despite its commercial importance
as an ornamental plant, genomic resources for rose research
and breeding remain scarce, and to date, no genome sequence
is available. At the diploid level, genetic maps have been
constructed, and a number of monogenic and quantitative traits
have been localized on these maps (Debener and Linde, 2009;
Spiller et al., 2011). However, as most diploid populations have
derived from a few diploid genotypes, genetic variability is low
for most horticultural traits. Therefore, these traits can only be
analyzed at the tetraploid level. In tetraploid varieties, several
monogenic traits have been analyzed, but only few QTL have
been described, mostly by analyses of biparental populations
(Debener and Linde, 2009; Spiller et al., 2011).

The esthetic features of the rose flower are of central
importance for the ornamental quality of rose cultivars;
therefore, commercial breeding pays special attention to floral
characteristics. Flower traits, e.g., the number and color of petals,
were among the first traits investigated in genetic studies (De
Vries and Dubois, 1978; Debener, 1999, 2003).

The anthocyanin concentration in cells of rose petals is a
major determinant of red and pink color variants, although the
final hues are influenced by several other factors as e.g., pH,
copigments, metal ions, types of glycosylation, etc. (Jay et al.,
2003; Grotewold, 2006; Tanaka et al., 2008). Although single loci
influencing color variation have been identified, other researchers
have described a quantitative inheritance of the anthocyanin
content (Cardoso et al., 2012; Cericola et al., 2014; Henz et al.,
2015).

The levels of carotenoids, which produce yellow colors,
are influenced by biotic and abiotic factors, including the
developmental stage, the environment and stress (Eugster and
Märki-Fischer, 1991; Deli et al., 1998; Kishimoto et al., 2004).
In fully opened flowers of Ipomoea, the chromoplast-type
carotenoids are ß-cryptoxanthin, zeaxanthin, and ß-carotene,
whereas lutein, violaxanthin and ß-carotene are predominant in
the early stage of petal development, and the same compounds
were found in the leaves (Yamamizo et al., 2010).

QTL Mapping and GWAS
All of the QTLs studied to date in rose have been mapped
in biparental populations (Crespel et al., 2002; Linde et al.,
2006; Spiller et al., 2011; Moghaddam et al., 2012; Roman
et al., 2015) using AFLP and microsatellite markers. Tetraploid
populations derived from crosses between ornamental varieties
display complex patterns of inheritance that complicate not only

genetic analysis but also map construction and require many
more markers (Bourke et al., 2015).

Association studies offer two main advantages over QTL
studies based on biparental populations: a larger number
of alleles per locus and a higher resolution of trait-marker
associations due to a higher rate of recombination. In association
genetics, genotyping can be restricted to candidate genes likely
involved in the expression of the traits under study or markers
covering the whole genome in genome-wide association studies
(GWAS). Few studies cover polyploids, and very few GWAS
have been performed on highly heterozygous polyploids, such
as potato (D’hoop et al., 2010; Lindqvist-Kreuze et al., 2014),
switchgrass (Lu et al., 2013) and cotton (Abdurakhmonov et al.,
2009). Rose is an interesting ornamental crop for association
studies because its cultivars are extremely polymorphic, and
many traits can be studied simultaneously in populations of
moderate size.

Recently, an analysis of a large collection of rose ESTs
and the development of an Axiom SNP array was described
(Koning-Boucoiran et al., 2015). These resources are a significant
extension of the genomic resources available for roses because
they now permit the highly reproducible genotyping of
rose genomes with approximately 68,000 SNP markers each
represented by two probes. Hence, sufficient numbers of markers
are now available for GWAS in tetraploid rose.

Aims of the Present Study
The aim of the present study was to exploit the enormous
biodiversity of cultivated roses in flower-related traits for an
analysis of the underlying genetic factors, focusing on the
contents of anthocyanins and carotenoids, which are the main
components of the rose petal color. This was accomplished using
a combination of association genetics methods and markers on
the SNP array and additional markers derived from candidate
genes, SSRs and AFLPs. In addition, we tried to gain information
about the variability of the genetic diversity and heterozygosity
within our association panel.

MATERIALS AND METHODS

Plant Material
An association panel of 96 rose cultivars with code numbers
from 1 to 141 (87 tetraploid, 8 triploid, and 1 diploid)
was used for the present study. Most of the cultivars were
commercially available or provided by German rose-breeding
companies (Table S1). Based on known pedigrees, we attempted
to minimize genotypic relatedness, which can result in spurious
associations, while capturing the vast diversity of phenotypic
traits, including different flower colors, plant architectures, etc.
Clones of each cultivar, grafted on R. corymbifera “Laxa,” were
planted in three randomized blocks in a field at Hannover-
Herrenhausen (Germany) in the spring of 2012. A second
collection of cultivars was maintained under semi-controlled
conditions as potted plants in three randomized blocks in a
greenhouse (Federal Plant Variety Office, Hannover). The plants
were initially cultivated in 3-l pots and then transferred to 7-l pots
with the fertilized substrate Einheitserde T (Einheitserdewerke
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Gebr. Patzer, Sinntal-Altengronau, D) under natural light with
a day and night temperature of 22◦ ± 5◦C.

Anthocyanin Content of Petals
Flowers were always sampled from 8 to 12 a.m. Opened buds at
flower development stage 3 (Picone et al., 2004) were selected
from each genotype and kept on ice until sample preparation on
the same day. The anthocyanin content of petals was estimated
according to Henz et al. (2015) with minor modifications. Three
replicates (each 50mg in fresh weight) from petals of each
clone (3 biological replicates) were placed in 2 ml test tubes
and extracted in 1 ml of methanol/HCl (99:1 v/v) (Figure S7).
Following an overnight incubation (16 h) in the dark at 18◦C, the
total anthocyanin content in the solvent was determined based
on the absorbance at 525 nm using a UV-Vis-Photometer UV
mcSAFAS (Deelux Labortechnik GmbH, Germany). If necessary
(E525nm > 1.0), the anthocyanin extracts were diluted with the
extraction solvent. Each clone was measured three times, and the
overall mean was calculated for each cultivar. The anthocyanin
content was recorded and evaluated in two environments: (i) in
the field at Herrenhausen and (ii) in the greenhouse at the Federal
Plant Variety Office, Hannover. The absorbance values were not
used to calculate the levels of compounds, as this measurement
involves variable mixtures of anthocyanidins.

Carotenoid Content of Petals
The content of carotenoids was evaluated from all cultivars
cultivated in the greenhouse at the Federal Plant Variety
Office Hannover and from 20 of the cultivars in the field at
Herrenhausen. The accumulation of total carotenoids in rose
petals was estimated according to de Vries et al. (1974) with
modification. Petals (50mg each) were extracted with 1 ml of
a mixture of petroleum ether:acetone (3:2 v/v) for 4 h at 18◦C
in the dark, and the carotenoids in the samples were measured
spectrophotometrically at a wavelength of 442 nm. The extracts
showed three characteristic absorption maxima for carotenoids
at 419, 442, and 471 nm (Figure S1). These maxima suggest
Violaxanthin (420, 443, and 471 nm) or Neoxanthin (420 442,
and 473 nm) as components of the extract in addition to other
possible compounds, respectively (Wellburn, 1994; Tinoi et al.,
2006). The overlap in absorption at 442 nm is the reason that we
did not determine the levels of a particular compound.

DNA Extraction
DNA was extracted from young rose leaves as described by
Klie et al. (2013). The quality of DNA was checked on agarose
gels, and quantification was performed using a Nanodrop 2000c
spectrophotometer (PeQLab Biotechnologie GmbH, Erlangen,
Germany).

Microsatellites (SSRs)
PCR was performed in 15 µl of Williams buffer (Williams
et al., 1990) containing 0.2 mM dNTP, 0.5 µM forward
and reverse primers, and 1 U of DCS Taq DNA polymerase
(Enzymatics, Beverly, USA). PCR conditions were as follows:
initial denaturation for 5min. at 94◦C, 28 cycles of 45 s at 94◦C,
45 s at 50, 55 or 60◦C (Table S2), 60 s at 72◦C. SSR marker bands

were visually inspected and dominantly scored, and the data were
transferred to a 0/1 matrix.

AFLP
AFLP markers were generated according to the protocol of
Klie et al. (2013) with 250 ng of genomic DNA. We tested 21
HindIII and MseI primer pair combinations in the end reaction.
Bands were scored dominantly and recorded in a 0/1 matrix for
absence/presence of marker fragments.

SNPs
SNPs were analyzed using the Axiom WagRhSNP array,
which contains 89,893 SNPs derived from cut roses and from
garden roses (Koning-Boucoiran et al., 2015). The hybridisation
intensities were interpreted as tetraploid SNP dosage scores
(AAAA, AAAB, AABB, ABBB, and BBBB) using fitTetra
(Voorrips et al., 2011) and were used to calculate the statistics
required for the association study. SNP markers that were
polymorphic and scorable were used for GWAS after filtering for
minor allele frequency (MAF > 0.1) and missing data (<10%).
Heterozygosity was calculated as the percentage of heterozygous
loci (ABBB, AABB, and ABBB) compared to the total number
of loci.

Population Structure
The population structure was modeled in STRUCTURE 2.3.4
(Pritchard et al., 2000; Falush et al., 2007) with a burn-in of
10,000 cycles and varied in the number of following Markov
Chain Monte Carlo (MCMC) iterations (50,000 and 100,000)
and the number of AFLP (400) and microsatellite and candidate
gene markers (175 and 527). The SNP markers were not used for
determining the population structure. We used the implemented
admixture model with correlated allele frequencies and an initial
alpha of 1 and accomplished three independent runs based on
10 repeats of the simulations for each K, from K = 1 to 10.
Then, the most likely number of subpopulations was estimated
based on the method of Evanno et al. (2005) using the InP (D)
value (estimated likelihood) with the software StructureHarvester
(http://taylor0.biology.ucla.edu/structureHarvester/) (Earl and
von Holdt, 2012).

Furthermore, a PCoA (Principal Coordinate Analysis) was
performed using DARwin 5.0.158 (Perrier and Jacquemoud-
Collet, 2006) with the same subset of 927 AFLP, SSR and
candidate gene markers.

Genetic Diversity Analysis
The genetic distance among the collection of rose genotypes
was calculated with DARwin using a subset of 16,040 SNPs at
the tetraploid dosage state from the filtered SNP set (MAF >

0.1 and missing data < 10%). An unweighted neighbor-joining
(Saitou and Nei, 1987) dendrogram was constructed based on a
distance dissimilarity matrix using a bootstrap analysis with 100
repetitions.

Kinship Matrix Calculation
A kinship matrix was used to establish and describe the
relationship between the genotypes. Pairwise kinship coefficients
were estimated using the programme SPAGeDi (Hardy and
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Vekemans, 2002) based on the method of Hardy (2003) using
10,000 random SNP markers at the tetraploid dosage state from
the 16,040 SNPs above. The diagonal of thematrix from SPAGeDi
was set to two, and negative values were set to zero (Yu et al.,
2006).

Trait-Marker Associations
Trait-marker association analysis was performed using the mixed
linear model (MLM, K + Q) in TASSEL 3.0 (Bradbury et al.,
2007). SNP markers with a minor allele frequency of less than
0.1 and with more than 10% missing data were excluded from
further analysis. In TASSEL 3.0, marker allele configurations
can only be used in a diploid configuration (e.g., AA, AB, or
BB). Therefore, bi-allelic SNPs of the tetraploid rose cultivars
were coded as diploids. For this, all possible heterozygous
genotypes (AAAB, AABB, and ABBB) were coded as AB, similar
to how Li et al. (2014) analyzed diploid and tetraploid Alfalfa
genotypes and how Lindqvist-Kreuze et al. (2014) analyzed
potato genotypes. Associations were estimated including the
Q-matrix for population effects based on the output from
STRUCTURE 2.3.4 (based on AFLP, microsatellite and candidate
gene data) and the kinship matrix (K) calculated with SPAGeDi
(based on SNP data). Bonferroni adjustments of the p-values
were made to correct for the number of independent tests and
to establish a threshold (Johnson et al., 2010). For this, a total
of 19,074 independent tests (number of contigs) were assumed
because a precise estimation of the real number of independent
tests could not be made due to unknown linkages between most
of the markers. An SNP marker was considered associated if its
−log10 p-value was greater than 5.58.

Statistical Analysis
The nonparametric Kruskal–Wallis rank-sum test was used to
identify significant differences in the mean SNP effect in groups
of cultivars. Spearman rank correlation was used to test the
association between the anthocyanin content in petals from
greenhouse and field-grown roses. Significant differences in
the means of heterozygosity in different growth types of roses
were calculated using the Wilcoxon signed rank test. The data
were tested for normal distribution using the Shapiro-Wilk test
(α = 0.05). The data that were not normally distributed were
transformed using log- and Box-Cox transformation (Wessa,
2016). The statistical calculations were performed in Excel 2007,
MYSTAT 12 (Systat Software, Inc.) and QtiPlot 0.9.9 (Vasilief,
2015).

RESULTS

Population Structure
The population structure was analyzed based on three
independent runs of STRUCTURE that varied in the number of
MCMC iterations (50,000 and 100,000) and the number of AFLP,
microsatellite and candidate gene markers (575 and 927) for
K = 1 to K = 10. The optimum number of K can be identified
according to the maximum value of LnP(D) (Pritchard et al.,
2000). In our data, the likelihood distribution increased slightly,
leveled off and then decreased with a clear plateau from K = 3 to

K = 5 (Figure S2A). Using the method of Evanno et al. (2005) in
two independent runs with a total of 575 AFLP and SSR markers
(burn-in 10,000; MCMC 50,000, and 100,000) and one run with
627 markers (burn-in 10,000; MCMC 50,000), the maximum
for 1K was estimated at K = 3 (Figure S2B). The result was
confirmed by additional independent runs (data not shown).

The structure of the population at K = 3 is visualized in
Figure 1A. Below it are depicted the concordant results from
the cluster analysis of the SNP data (Figure 1B). When using
a threshold of 0.7 to assign individuals to a subpopulation or
to classify them as a mix or as hybrid individuals (as (D’hoop
et al., 2010) used in highly heterozygous tetraploid potato),
subpopulation I, the largest group, consisted of 44 cultivars,
which clustered according to their type or habit, particularly
hybrid tea and floribunda roses. Subpopulation II contained
17 recently bred (1985–2011) cultivars, except for New Dawn
(1930), which all have a groundcover habit. Subpopulation III,
the smallest group, comprised only five cultivars belonging to
the old garden type of roses: Damask (‘Rose de Resht’, before
1900), Alba (‘Small Maidens Blush’, 1797), Bourbon (‘Louise
Odier’, 1851), Hybrid Perpetual (‘Mrs. John Laing’, 1885) and
Portland (‘Mme Knorr’, 1855 und ‘Mme Boll’, 1858) roses. The
positioning of the cultivars was supported by high bootstrap
values, except for some in the first subpopulation. However, 30
cultivars could not be assigned to any of the three subpopulations
using the threshold of 0.7 for the classification. The results of a
principal coordinate analysis (PCoA; Figure S3) based on genetic
distances agreed with this division in three subpopulations. The
hybrid cultivars that shared part of subpopulations I and II
can be observed as an intersection (black dots) between these
subpopulations.

Genetic Diversity Analysis
The kinship estimates based on SNPs (Figure S4) indicated
no familial relationship between most of the rose genotypes.
Approximately 59% of the pairwise kinship coefficients had
values near zero (<0.005). Higher kinship estimates (0.10–0.20)
were found between climber and ground cover roses. The highest
values (0.26–0.39) were found within the group of old garden
roses (population III).

The heterozygosity was determined based on the SNP data
without considering the dosage of the markers (i.e., AAAB,
AABB, and ABBB are all classified as heterozygote). When
defined this way, the percentage of heterozygous loci is identical
to the percentage polymorphic loci. On average, varieties
displayed 55.2% of heterozygous loci ranging from 27% for
variety No. 105 and 66.9% for variety No. 2. No correlation
between heterozygosity and the age of the variety was observed
(Figure S5).

On the other hand, there were significant differences
between ground cover, climber, bedding roses, Hybrid teas and
shrub roses, both in the average level of heterozygosity and
in the variation in heterozygosity within groups (Figure 2).
Groundcover roses had the lowest heterozygosity (44.4%
heterozygous loci). Hybrid teas were significantly higher in
heterozygosity (60.1%) compared to climbers and ground
cover roses.
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FIGURE 1 | Population structure of the 96 cultivars (A) Bar plots of the proportion of membership of each cultivar to a subpopulation assigned for K = 3 using

STRUCTURE 2.3.4. The numbering of each cultivar is displayed on the x-axis. Each subpopulation is indicated by a specific color. (B) Neighbor-joining tree of the

association panel generated with DARwin 5.0.158 using 16,038 SNP markers. Members of subpopulation I are highlighted in red, subpopulation II in green and

subpopulation III in yellow. Hybrid individuals (less than 0.7 of membership to any subpopulation) are represented in black. Each of the 96 cultivars is symbolized by its

code number from 1 to 141 (Table S1). Bootstrap values (%) are given when greater than 70.

Phenotypic Characterization of
morphological Traits
Total Anthocyanins
In many cultivars, the anthocyanin content in the petals was low
or not detectable, which was not unexpected because 23 cultivars
had a white and yellow flower color. The measured anthocyanins
were in the range from E525 nm = 0.35 to E525 nm = 33.22 in
the greenhouse and from E525 nm = 0.33 to E525 nm = 38.39
in the field. The distribution was skewed to the left (Figure S6
and Table 1) and very similar for both environments (r = 0.942,
Figure 3).

Carotenoids
Carotenoids in the rose petal extracts were measured by their
characteristic absorbance at 442 nm (Figure S1) from all cultivars
cultivated in the greenhouse at the Federal Plant Variety
Office Hannover and from 20 of the cultivars in the field at

Herrenhausen. Because the Spearman rank correlation between
the measured values was very high (Spearman’s rho = 0.939) the
carotenoid contents of the additional 76 cultivars grown in the
field were not estimated to avoid redundant data (Figure S8). In
white flowers and in many red flowers, the yellowish to orange
pigments were not present or only found as minor pigments in
the petals. The maximum amount of carotenoids was detected in
the yellow flowering cultivar “China Girl” (E442 nm = 0.8854). In
roses classified as orange, a balanced occurrence of anthocyanins
and carotenoids was always measured. However, there was no
overall correlation between the anthocyanin and carotenoid
content in the rose petals (r =−0.1803, p= 0.0836).

Marker Trait Associations
Anthocyanins
Marker-trait associations were calculated in Tassel 3.0 with
39,831 SNPs based on their diploid allelic state (A:A, A:B,
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and B:B). The tetraploid dosage of the SNP was not used for
calculation because TASSEL 3.0 can only handle haploid and
diploid genotypic data (user manual for Tassel 3.0, Buckler Lab,
Cornell University, 2011).

The anthocyanin content in greenhouse-grown roses was
significantly associated with 17 SNP markers, five of which
were also associated with the anthocyanin content from field-
grown roses (Table 2). These SNPs were Rh12GR_283_1910Q
(in the Auxin response factor 8 gene), RhK5_1258_2078P
(3 ß-OH-steroid-dehydrogenase/decarboxylase isoform
2), RhK5_7371_202Q (Glutathione S-transferase),
Rh12GR_20064_1031P and RhMCRND_20203_163Q (both are
in the Medium-chain-fatty-acid-CoA ligase). We estimated
the effects of the SNPs on the anthocyanin content in
greenhouse-grown roses from 3.985 to 7.589 (Table 2). Under
both conditions, the largest effect was found for the marker
RhK5_1258_2078P. In Figure 4, two boxplots of anthocyanin
content showed the direct effects of the markers. For the SNP in
the auxin response factor 8 gene, the mean for the heterozygous
genotypes A:B was 8.63 (E525nm) and was significantly higher
(p = 5.03E-8) than 1.93 (E525nm) for the homozygous B:B
genotypes. For the 3-ß-OH-steroid-dehydrogenase SNP, the
difference between the mean of the two groups (A:A = 10.26;
A:B= 1.91) was also significant (p= 8.56E-7).

FIGURE 2 | Average heterozygosity of SNPs in different rose growth

types (BR, bedding roses; CL, climber; GC, ground cover; HT, Hybrid

tea; and SH, shrub roses). Small white square = mean; continuous line =

median; asterisk = minimum, maximum; box = 1st and 3rd quartiles; and

whisker = standard deviation.

Because the genome sequence of Rosa sp. is not complete,
the contigs of 133 SNPs with hits just below the Bonferroni
threshold plus the 17 significant SNPs were blasted against the
closely related genomes of Fragaria vesca and Prunus persica
and mapped on these genomes (Figures 6A,B, Table S6). The
assumption is that both genomes display sufficient microsynteny
to the rose genome. This assumption is supported by the fact
that these rose SNPs clustered in distinct regions of the Fragaria
genome, particularly in linkage groups Fvb1, Fvb2, Fvb4, Fvb5,
and Fvb6, and in the partly homologous linkage groups Pp01,
Pp03, Pp05, Pp06, and Pp08 of Prunus persica (https://www.
rosaceae.org/gb/gbrowse_syn/peach_apple_strawberry/). A blast
of the contigs located three of the SNP markers in the
coding region of anthocyanin biosynthesis genes, 4-coumarate-
ligase (4_CL), flavonoid 3′-hydroxylase (F3′H) and glutathione-
S-transferase (GST). The positions of these genes of the
anthocyanin biosynthesis pathway and of further transcription
factors are shown in the genome plots as green dots
(Figures 6A,B). The putative transcription factors that are
associated with anthocyanin accumulation include a ubiquitin-
like protein SMT3 (SUMO1), WRKY transcription factor 17 and
UTP4/Cirhin, a WD40 repeat protein (Freed et al., 2012).

Carotenoids
Because as many as 351 SNPs were significantly associated with
the accumulation of carotenoids in rose petals and surpassed the

FIGURE 3 | Pearson’s correlation between the total amount of

anthocyanin that accumulated in rose cultivars grown in the field and

in the greenhouse (r = 0.942).

TABLE 1 | Descriptive statistics of the investigated traits.

Trait Mean Median Stdev Stderr Variance Max Min Skewness N

Anthocyanins (greenhouse) 4.78 1.19 7.639 0.784 58.35 33.22 0.035 2.261 95

Anthocyanins (field) 4.56 1.41 7.198 0.750 51.81 38.39 0.033 2.506 92

Carotenoids (greenhouse) 0.14 0.07 0.175 0.018 0.03 0.88 0.012 1.957 94

Stderr, standard error; Stdev, standard deviation; Max, maximum; min, minimum; N, number.
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TABLE 2 | Significant SNPs for anthocyanin content in rose petals from greenhouse- and field-grown roses.

Greenhouse p-value Effectb Function (identified gene)

Combineda (E525nm) Allele A:A Allele A:B Allele B:B

Rh12GR_283_1910Q 2.35E-09 −5.412 − 77 104 gene31631-v1.0-hybrid_Auxin_response_factor_8_ (putative)

RhMCRND_20203_163Q 7.20E-09 −4.091 − 81 102 gene31669-v1.0-hybrid_Medium-chain-fatty-acid-

CoA_ligase_(probable)

Rh12GR_20064_1031P 1.86E-07 −4.521 102 75 − gene31669-v1.0-hybrid_Medium-chain-fatty-acid-CoA_ligase_

(probable)

RhK5_7371_202Q 2.02E-07 −4.492 − 79 104 gene31672-v1.0-hybrid_Glutathione_S-transferase_ (similar_to)

RhK5_1258_2078P 3.75E-07 −6.674 66 117 − gene08692-v1.0-hybrid_3beta-hydroxysteroid-

dehydrogenase/decarboxylase_isoform_2_(At3BETAHSD/D2)_

(similar_to)

RhMCRND_7128_1021Q 4.51E-07 −1.935 − 83 92 gene31668-v1.0-hybrid_Medium-chain-fatty-acid–

CoA_ligase_(probable)

Rh12GR_64257_531Q 4.62E-07 −5.776 − 61 106 gene16750-v1.0-hybrid_hypothetical_protein

RhK5_2615_1401Q 5.58E-07 −5.549 − 76 105 gene09148-v1.0-hybrid_Cysteine_proteinase _RD21a_

(RD21),_Precursor_(putative)

RhK5_15799_993Q 6.00E-07 −7.015 − 59 106 gene26062-v1.0-hybrid_Formin-

like_protein_20_(AtFH20)_(similar_to)

RhMCRND_982_2342Q 1.06E-06 −5.538 − 60 117 gene26062-v1.0-hybrid_Formin-like_protein_20_

(AtFH20)_(similar_to)

RhK5_1553_678P 1.10E-06 −4.719 119 65 − gene26062-v1.0-hybrid_Formin-like_protein_20_

(AtFH20)_(similar_to)

RhK5_9221_621Q 1.11E-06 6.179 76 85 − gene16819-v1.0-hybrid_Thioredoxin_F-type_2,

_chloroplastic_(Trx-F2),_Precursor_(similar_to)

Rh12GR_77973_217Q 1.17E-06 −4.794 108 75 − −

RhK5_12663_103Q 1.32E-06 −3.628 − 69 114 gene24536-v1.0-hybrid_Possible_hemolysin_C_ (probable)

Rh12GR_17814_425Q 1.62E-06 −3.136 104 81 − gene31679-v1.0-hybrid_Ubiquitin-like_protein_SMT3 _(probable)

RhK5_15799_993P 1.80E-06 −5.472 − 60 119 gene26062-v1.0-hybrid_Formin-like_protein_20_

(AtFH20)_(similar_to)

RhMCRND_1369_1182Q 2.00E-06 5.215 62 121 gene26062-v1.0-hybrid_Formin-

like_protein_20_(AtFH20)_(similar_to)

Rh12GR_283_1910P 2.38E-06 3.516 − 81 94 gene31631-v1.0-hybrid_Auxin_response_factor_8_ (putative)

RhK5_19460_153P 2.45E-06 4.855 123 61 − gene04292-v1.0-hybrid_Cytokinin-O-

glucosyltransferase_2_(AtZOG2)_(probable)

Rh12GR_38264_410P 2.58E-06 −4.584 88 79 − −

Greenhouse p-value Effectb

(E525nm)

Allele A:A Allele A:B Allele B:B Function (identified gene)

Rh12GR_283_1910Q 9.73E-11 −5.740 − 40 52 gene31631-v1.0-hybrid_Auxin_response_factor_8_ (putative)

RhK5_1439_806P 8.10E-09 −4.927 68 19 − U3 small nucleolar RNA-associated protein 4/UTP4

RhMCRND_20203_163Q 1.17E-08 −5.135 − 42 51 gene31669-v1.0-hybrid_Medium-chain-fatty-acid–

CoA_ligase_(probable)

RhK5_1258_2078P 9.44E-08 −7.589 33 60 − gene08692-v1.0-hybrid_3beta-hydroxysteroid-

dehydrogenase/decarboxylase_isoform_2_(At3BETAHSD/D2)_

(similar_to)

Rh12GR_20064_1031P 1.21E-07 −5.112 51 39 − gene31669-v1.0-hybrid_Medium-chain-fatty-acid–

CoA_ligase_(probable)

RhK5_7371_202Q 1.23E-07 −5.426 − 41 52 gene31672-v1.0-hybrid_Glutathione_S-transferase_ (similar_to)

RhMCRND_319_1197P 7.49E-07 4.398 − 60 26 Urease_(similar_to)

RhK5_12076_566Q 7.74E-07 −5.193 − 42 52 Photosystem_I_reaction_center_subunit_XI,_

chloroplastic_(PSI-L),_Precursor_

RhMCRND_982_2342Q 8.43E-07 −6.928 − 30 60 gene26062-v1.0-hybrid_Formin-like_protein_20_

(AtFH20)_(similar_to)

Rh12GR_17814_425Q 8.45E-07 −4.391 52 42 − gene31679-v1.0-hybrid_Ubiquitin-like_protein_SMT3 _(probable)

(Continued)
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TABLE 2 | Continued

Greenhouse p-value Effectb Function (identified gene)

(E525nm) Allele A:A Allele A:B Allele B:B

Rh12GR_92431_4144Q 8.48E-07 −3.985 − 35 58 gene31646-v1.0-hybrid_Serine/threonine-protein_

kinase_PBS1_(probable)

RhK5_2615_1401Q 8.64E-07 −5.525 − 39 53 gene09148-v1.0-hybrid_Cysteine_proteinase_

RD21a_(RD21),_Precursor_(putative)

RhK5_15799_993P 1.00E-06 −6.814 - 30 61 gene26062-v1.0-hybrid_Formin-like_protein_20_

(AtFH20)_(similar_to)

RhK5_5774_854P 1.11E-06 4.321 − 62 26 Translation_initiation_factor_IF-2_

RhK5_12663_103Q 1.37E-06 4.258 − 33 57 gene24536-v1.0-hybrid_Possible_hemolysin_C _(probable)

RhK5_21626_409P 1.66E-06 4.064 − 61 25 gene07023-v1.0-hybrid_Anthranilate_

phosphoribosyltransferase_(probable)

Rh12GR_3292_1365P 2.20E-06 4.122 18 68 − gene10566-v1.0-hybrid_Putative_indole-3-acetic_acid-

amido_synthetase_GH3.9_(AtGH3-9)

Field p-value Effectb

(E525nm)

Allele A:A Allele A:B Allele B:B Function (identified gene)

Rh12GR_283_1910Q 4.51E-08 −5.451 − 37 52 gene31631-v1.0-hybrid_Auxin_response_factor_8_ (putative)

RhMCRND_20203_163Q 5.29E-08 −2.631 − 40 51 gene31669-v1.0-hybrid_

Medium-chain-fatty-acid–CoA_ligase_(probable)

RhK5_1258_2078P 1.30E-07 −6.511 33 57 − gene08692-v1.0-hybrid_3beta-hydroxysteroid-

dehydrogenase/decarboxylase_isoform_2_(At3BETAHSD/D2)_

(similar_to)

Rh12GR_20064_1031P 1.82E-06 5.051 51 36 − gene31669-v1.0-hybrid_Medium-chain-fatty-acid–

CoA_ligase_(probable)

RhK5_7371_202Q 1.94E-06 5.100 − 38 52 gene31672-v1.0-hybrid_Glutathione_S-transferase_ (similar_to)

RhMCRND_7128_1021Q 2.37E-06 −1.901 − 39 48 gene31668-v1.0-hybrid_Medium-chain-fatty-acid–

CoA_ligase_(probable)

aTotal number of A:A, A:B, and B:B genotypes was counted in two environments and exceeded the number of 96 cultivars.
bThe effect was presented as untransformed values.

FIGURE 4 | Box plot of the effect of the SNPs in the auxin response factor 8 and 3-ß-OH-steroid-dehydrogenase genes on the anthocyanin content in

rose petals (small white square = mean; continuous line = median; asterisk = minimum, maximum; box = 1st and 3rd quartiles; and whisker =

standard deviation). Tassel compared only two genotype classes (one homozygote and one heterozygote for the SNP). The varieties were grouped according to

their SNP type as A:A, A:B, or B:B. The influence of population structure and kinship were not considered. Note that the calculations were performed using

transformed data, but the plots show the untransformed values.

Bonferroni threshold of α = 2.62e-6 (Table S7), the effects of
the significant SNPs on carotenoid content ranged from 0.00015
to 0.259 (E442nm). Most of the significant SNPs formed two

large clusters in linkage group 5 of F. vesca and P. persica with
more than 250 SNPs (Figures 7A,B). They may be located on
a part of the chromosome with low recombination. Two of
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the SNPs were located on contigs encoding genes of the MEP
(methylerythritol 4-phosphate) pathway, CMS (2-c-methyl-d-
erythritol-cyclodiphosphatase) and DXR (1-deoxy-d-xylulose 5-
phosphate reducto-isomerase). A third enzyme, more upstream
in the carotenoid biosynthesis, is Zeaxanthin epoxidase (ZEP,
p = 8.77e-6). It was located in linkage groups Fvb1 and Pp07.
ZEP is a part of the branch of the ß-carotenoid biosynthesis that
catalyzes the step from zeaxanthin to violaxanthin. Additionally,
several significant SNPs were mapped to linkage group four of F.
vesca and to linkage group one of P. persica. The positions of these
SNPs were close to the assumed position of a carotenoid cleavage
dioxygenase gene, CCD4. Other significant SNPs were located
in two cytochrome P450 monooxygenases (CP450): cytochrome
P450_71A24 (Pp04, Fvb5) and cytochrome CP450_CYP749A22
(Pp01, Fvb4).

The effects of SNPs on the carotenoid biosynthesis genes CMS
and DXR are shown as box plots in Figure 5. For the DXR-SNP,
the mean of the homozygous A:A genotypes was 0.074 (E442 nm),
whereas the mean for the A:B genotypes was 0.325 (E442 nm). The
effect of the SNP for CMS, the subsequent gene after DXR in
the carotenoid pathway, was 0.206 (E442 nm), and the mean was
also obviously higher in the A:B group [A:A = 0.0475 (E442 nm);
A:B= 0.253 (E442 nm)].

DISCUSSION

Floral traits in ornamental roses are determined by a number
of quantitative traits, e.g., petal number, flower size and
a large number of secondary metabolites that constitute
flower color and flower fragrance. Here, we applied GWAS
based on the rose WagRhSNP array to analyse factors
influencing the amount of anthocyanins and carotenoids in
petals. In this study, we tried for the first time to utilize
association genetics to exploit the vast phenotypic variation

in mainly tetraploid cultivated roses for an analysis of
quantitative traits.

Heterozygosity is not Influenced by
Cultivar Age
The large number of markers used to genotype the association
panel revealed a high average heterozygosity of 55.2% in the
population, which is in agreement with previous studies on
marker diversity in cultivated roses (Debener et al., 1996; Esselink
et al., 2003). The value of heterozygosity is in fact the percentage
of polymorphic SNPs; thus, it is not surprising that the value is
somewhat lower than that found with 24 SSR markers in garden
roses (Vukosavljev et al., 2013). Unlike many other cultivated
plant species (Kilian et al., 2007; Gil-Ariza et al., 2009;Wang et al.,
2010; Gross et al., 2014), we did not see a reduction over time
when we considered the year of release of the variety. This may
corroborate observations on the sensitivity of rose for inbreeding
depression, which makes selfing unsuitable as a breeding strategy
(Pipino et al., 2011). It might also be the result of the large
range of ornamental traits that breeders have selected for, causing
selection to never be consistently in the same direction.We found
a lower percentage of polymorphic loci in the climber (40.9%)
and ground cover genotypes (50.2%). This could indicate some
degree of ascertainment bias if the genetic background of these
groups of roses is partly different from those of the cut and garden
roses from which the SNPs derived (Koning-Boucoiran et al.,
2015; Smulders et al., 2015). This would require further studies,
for instance, a study that searches for homologous regions in the
genomes of diploid species that have contributed to the tetraploid
groups.

Population Structure
Population structure and relatedness between genotypes can
be confounding factors in association mapping (Nordborg and
Weigel, 2008). Minimal population structure or relatedness will

FIGURE 5 | Box plot of the effect of SNPs in 1-Deoxy-D-xylulose-5-phosphate-reductoisomerase (DXR) and in 4-Diphospho-cytidyl-2-C-methyl-

d-erythritol-synthase (CMS) on the carotenoid content in rose petals (small white square = mean; continuous line = median; asterisk = minimum,

maximum; box = 1st and 3rd quartiles; and whisker = standard deviation). The varieties were grouped according to their SNP type as A:B or B:B. The

influence of population structure and kinship was not included. The averages were calculated after transformation but are presented as untransformed values.
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result in high statistical power, but larger collections offer more
power, and a collection of 100–500 individuals is recommended
(Hirschhorn and Daly, 2005; Rafalski, 2010). The STRUCTURE
software with the implemented Bayesian clustering approach is
a common tool to assess population structure with a moderate
number of markers. Together with the estimation of kinship,
this tool can reduce the rate of false positives in association
mapping (Pritchard et al., 2000; Rafalski, 2010). With 400 AFLP
and 175 SSR markers, we identified three subpopulations in
our rose association panel of 96 different cultivars. This is
comparable to the sample sizes used in various association
mapping studies with other crop species. For instance, the
association panel of Lindqvist-Kreuze et al. (2014) comprised
103 potato genotypes, and population structure was estimated
with 120 SNP markers. Seventy-one almond cultivars were the
basis of an association study on kernel phytosterol content
(Font i Forcada et al., 2015) in which population structure was
corrected using 40 SSRs. Simko et al. (2009) used 68 lettuce
cultivars for association with disease resistance and validated
the detected marker trait association in a second set of 132
cultivars.

Using Synteny
A major problem of association studies is filtering true marker-
trait associations out of a large number of false-positive
associations. Next to p-values and the extent of the observed
effects, the clustering of significant markers in particular genomic
regions is a criterion for true marker trait associations. However,
for rose, no completed genome sequence is available and relative
positions are known only for a small subset of the markers
that we applied in this study. Therefore, we used two related
rosaceous genomes assuming sufficient microsynteny to the rose
genome: the very closely related genome of strawberry and
the peach genome, which represents the next-closest relative
(Shulaev et al., 2008). In several conventional marker mapping
studies, strawberry was shown to be highly similar in its
genome structure and marker order with only minor differences
to roses (Gar et al., 2011; Spiller et al., 2011; Terefe-Ayana
et al., 2012). This strategy proved informative, as we found a
couple of clear clusters of significantly associated SNPs in both
genomes. Our attempt to locate candidate markers to a genomic
region failed for some markers (e.g., SUMO1) in one of the
two genomes, but many others were located in both genomes
(Figures 6A,B).

SNPs Associated With Anthocyanin
Accumulation in Rose Petals
As a simple measure for red and pink flower colors, we used the
total amounts of anthocyanins determined by spectrophotometry
in extracts prepared at defined flower stages. This has the
advantage that other factors, e.g., cellular pH, cofactors, or
flower age, which influence the visual characteristics of the
anthocyanins in the natural context, are excluded; therefore,
the phenotypic complexity can be partially reduced. This
strategy was successful, as evidenced by the high correlation
between the greenhouse and the field environment, which

differ significantly in terms of temperature profiles and UV
radiation.

Our study indicates that at least five genomic regions contain
factors influencing anthocyanin concentration. Interestingly, all
of these regions contained either SNP markers from genes with
known functions in anthocyanin metabolism or candidate genes
mapping to these regions (Table S3). The cluster in linkage group
Fvb1 of Fragaria comprised the marker with the lowest p-value,
a homolog to an auxin response factor known to influence
anthocyanin concentration by regulating auxin expression in
apple (Ji et al., 2015), Arabidopsis (Liu et al., 2014), tobacco (Zhu
et al., 2013) and cabbage (Kang and Burg, 1973), and a family
member of GSTs, which have important functions in anthocyanin
transport from the cytosol to the vacuole. GSTs are responsible
for color variation in a number of ornamental species, including
petunia and carnation (Zhao, 2015). Homologues of the SUMO-
1 transcription factor on Fragaria chromosome 1 are regulators
of signal transduction in auxin signaling in plants (del Pozo
et al., 1998; Vierstra and Callis, 1999). Because chromosome 1
of Fragaria is mostly collinear with the ICM linkage group 2 of
Rosa (Gar et al., 2011), this region is likely to be close to the QTL
for anthocyanin content in a diploid biparental rose population
(Henz et al., 2015).

Several transcription factors on Fragaria chromosome 2 were
associated with anthocyanin accumulation: WRKY transcription
factor 17, a ubiquitin-like_protein_SMT3 (SUMO1), and
UTP4/Cirhin, a WD40 repeat protein (Freed et al., 2012).
Zorrilla-Fontanesi et al. (2011) detected in strawberry
associations between a putative R2R3 Myb transcription
factor and QTLs for anthocyanin accumulation in linkage group
2. The Fragaria chromosome 2 is largely syntenic with rose the
ICM linkage group 6 harboring major QTLs for the anthocyanin
content, which were also stable across several environments
(Henz et al., 2015). The cluster of SNPs mapped on Fragaria
chromosome 4 included SNPs in the rose 4_CL gene and
various Myb transcription factors, which are known to regulate
anthocyanin biosynthesis. The transcription factor myb90-like
(myb90), also known as “Production of Anthocyanin Pigment
2” (PAP2), was identified on Fragaria chromosome 6 and is
a member of the MBW-complex (Maier and Hoecker, 2015).
The MBW-complex activates anthocyanin biosynthetic genes
and is a complex of the transcription factors R2R3-Myb, basic
Helix-Loop-Helix (bHLH), and WD40 proteins (Petroni and
Tonelli, 2011; Maier and Hoecker, 2015).

SNPs Associated with Carotenoid
Accumulation in Rose Petals
Eugster and Märki-Fischer (1991) could identify nearly
40 different carotenoids in the extract of rose petals, most
prominently Violaxanthin together with Auroxanthin,
Luteoxanthin and ß-Carotene (Ohmiya, 2011). Glick (2009)
identified as main components Violaxanthin and Neoxanthin,
which comprised 85% of the total carotenoid content in the
petals of the rose cultivar “Frisco.” The biosynthetic pathway
to Violaxanthin occurs via Zeaxanthin, and the modification
is catalyzed by the enzyme Zeaxanthin epoxidase (ZEP). The
carotenoids in the rose petals in our association study panel
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FIGURE 6 | (A) GWAS for anthocyanin content. SNPs are mapped to the genome of homologous sequences in Fragaria vesca, including those in annotated genes

(green dots). On top of the graph, the positions of various known candidate genes in the F. vesca genome sequence are shown as red triangles. The purple dotted line

represents the Bonferroni adjusted significance level. For abbreviations of genes, including functions, see Table S8. (B) GWAS for anthocyanin content. SNPs are

mapped to the genome of homologous sequences in Prunus persica, including those in annotated genes (green dots). On top of the graph, the positions of various

known candidate genes in the P. persica genome sequence are shown as red triangles. The purple dotted line represents the Bonferroni adjusted significance level.

For abbreviations of genes, including functions, see Table S8.

were characterized spectroscopically at 442 nm, which does not
distinguish between different carotenoids. We detected as many
as 303 significant SNPs associated with carotenoid content, 250
of which clustered in two positions on chromosome 5 of both
Prunus and Fragaria. The majority of these 250 significant SNPs
are not located in the genes causing the effect themselves, but
they are closely linked to one or few of such genes located on the
same chromosomal regions with low recombination rates. This
extreme clustering was most probably due to the high linkage
disequilibrium around the two clusters. The causes of this LD are
not clear yet. Possible reasons might be either linkage to factors
suppressing recombination in roses or the presence of genes
under high selection pressure in cultivated roses. However, the
fact that these two large clusters of significant SNPs were detected
on both the Fragaria and the Prunus genome independently
indicates that this is not due to a computational artifact of
the GWAS or potential assembly errors in the target genome
regions, but a real effect of the chromosomal region. Both target
sequences have been independently assembled by different

research groups and our results on rose sequences that match the
same region in both heterologous genomes indicate synteny for
the location of these sequences in all three genomes. Due to the
huge number of significant carotenoid SNPs, we further discuss
only SNPs in potential candidate genes (Table S4).

Carotenoids are synthesized from isopentenyl diphosphate
(IPP) and dimethylallyl diphosphate (DMAPP) via the MEP
pathway. Enzymes of the MEP pathway significantly influence
carotenoid production (Lois, 2000;Moehs et al., 2001; Rodríguez-
Concepción et al., 2001, 2003; Carretero-Paulet et al., 2002, 2006).
We identified two SNPs for carotenoid accumulation in roses
in the coding region of genes of the MEP pathway: CMS and
DXR. The importance of DXR was shown with Arabidopsis, as
down-regulation resulted in reduced pigmentation and defects
in chloroplast development, whereas overexpression led to
the accumulation of isoprenoids, such as chlorophylls and
carotenoids (Carretero-Paulet et al., 2006).

Carotenoid accumulation is also influenced by degradation.
Campbell et al. (2010) showed that a reduced expression of the
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FIGURE 7 | (A) GWAS of carotenoid content. SNPs are mapped to the genome of homologous sequences in Fragaria vesca, including those in annotated genes

(green dots). On top of the graph, the positions of various known candidate genes in the F. vesca genome sequence are shown as red triangles. The purple dotted line

represents the Bonferroni adjusted significance level. For abbreviations of genes, including functions, see Table S8. (B) GWAS of carotenoid content. SNPs are

mapped to the genome of homologous sequences in Prunus persica, including those in annotated genes (green dots). On top of the graph, the positions of various

known candidate genes in the P. persica genome sequence are shown as red triangles. The purple dotted line represents the Bonferroni adjusted significance level.

For abbreviations of genes, including functions, see Table S8.

carotenoid cleavage dioxygenase 4 (CCD4) gene increased the
carotenoid level in mature potato tubers 2- to 5-fold. Similarly,
Glick (2009) found a high correlation between carotenoid
degradation in the rose cultivars “Frisco” and “Golden gate” and
the expression of RhCCD4. In chrysanthemum, the loss of the
CmCCD4a gene caused a change in petal color from white to
yellow; the level of color mutation from white to yellow may
depend on the copy number of the CmCCD4a gene (Ohmiya
et al., 2012; Yoshioka et al., 2012). We detected several significant
SNPs for carotenoid accumulation on Fragaria chromosome 4
and Prunus chromosome 1, close to a CCD4 gene (Figures 7A,B,
Table S5). It is obvious that the activity of the CCD4 genes affects
the carotenoid content in different plants, but the role of the
CCD4 genes in the degradation of carotenoids in roses needs
more research.

Beside these SNPs located in the two regions on Fragaria
chromosomes 4 and 5 and the corresponding Prunus
chromosomes 1 and 5, we detected a SNP in the coding
region of ZEP with a p-value of 8.77e-6 for the association
located on Fragaria chromosome 1.

CONCLUSIONS

This is the first association mapping study in rose. We focussed
on the anthocyanin and carotenoid contents, which largely
determine petal color. The phenotype data were collected in
the field and in the greenhouse, and the overall levels of
these compounds were not influenced by the differences in
environment. To analyse the GWAS-associated SNPs in the
absence of a rose genome sequence, we mapped the underlying
rose contigs to the genome sequence of the related species
Fragaria vesca and Prunus persica. Clusters of hits on these
sequenced genomes in regions with known candidate genes
confirmed that these genomes are probably largely syntenic
and suggested that we identified 17 (anthocyanins) to 351
(carotenoids) trait-marker associations. Some of these had
large effect sizes: these QTLs may be useful in breeding for
intense flower colors in that parental breeding lines with
combinations of several markers with high SNP dosages
(duplex to quadruplex) might now be selected using the
validated SNPs.
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Figure S1 | Frequency distribution of carotenoids (A) in greenhouse (Federal

Plant Variety Office, Hannover) and absorption spectra of carotenoid extracts of

three rose cultivars with the main carotenoid peak at 442 nm (B).

Figure S2 | Estimation of the number of subpopulations. (A) The mean log

likelihood of data L(K) (±SD) (y-axis) as a function of K (x-axis) over ten repetitions

for three independent runs in Structure 2.3.4. (B) 1K (y-axis) as a function of K

(mean ± SD) (x-axis) estimated with the method of Evanno et al. (2005) for the

same runs.

Figure S3 | Principal component analysis of the association panel

generated in DARwin 5.0.158 using 926 filtered AFLP and SSR markers.

The defined subpopulation I is circled in red, subpopulation II in green and

subpopulation III in yellow. The cultivars are colored according to their share of

belonging to a subpopulation (≥70%) as in the neighbor joining tree (Figure 1B).

Figure S4 | Distribution of relatedness in the association panel estimated

in SPAGeDi.

Figure S5 | Heterozygosity of the 96 rose varieties of the association panel

plotted against the age of the varieties.

Figure S6 | Frequency distribution of the total amount of anthocyanins in

the greenhouse at the Federal Plant Variety Office (left) and in the field at

Herrenhausen (right).

Figure S7 | Extracts from rose petals containing anthocyanins and

carotenoids (above) and rose leaves containing carotenoids only (below).

Figure S8 | Spearman rank correlation between the total amount of

carotenoids in rose petals from 20 cultivars grown in the field and in the

greenhouse (Spearman’s rho = 0.939).

Table S1 | Rose Association panel: Cultivars, breeder, origin, and breeding

year of roses, code number (1–141) and flower color. Cultivars with ploidy

levels differing from tetraploid are labeled as (1) or (2).

Table S2 | Primer sequences, annealing temperature and linkage map

location in rose (according to Spiller et al. 2011) of 27 SSR markers used

in the association studies with the 96 rose cultivars. Rh primers are from

Esselink et al. (2003); RMS primers are published at http://www.wipo.int/pctdb/

en/wo.jsp?wo=2003097869&IA=WO2003097869&DISPLAY=STATUS.

Table S3 | Candidate genes for anthocyanin biosynthesis localized in the

genomes of F. vesca and P. persica.

Table S4 | Candidate genes for carotenoid biosysnthesis in the genomes

of F. vesca and P. persica.

Table S5 | SNPs significantly associated with the anthocyanin and

carotenoid contents after Bonferroni correction at a significance level of

α = 2.62E-6.

Table S6 | Anthocyanin SNP markers and their position on the genome of

Fragaria vesca 2.0.

Table S7 | SNPs significantly associated with carotenoid content and their

function, p-value, and effect (untransformed value) on carotenoid content

in rose petals.

Table S8 | Abbreviations for known transcription factors, carotenoid and

anthocyanin biosynthetic pathway genes.
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