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One of the greatest challenges for agricultural science in the 21st century is to improve
yield stability through the progressive development of superior cultivars. The increasing
numbers of infectious plant diseases that are caused by plant−pathogens make it
ever more necessary to develop new strategies for plant disease resistance breeding.
Targeted genome engineering allows the introduction of precise modifications directly
into a commercial variety, offering a viable alternative to traditional breeding methods.
Genome editing is a powerful tool for modifying crucial players in the plant immunity
system. In this work, we propose and discuss genome-editing strategies and targets
for improving resistance to phytopathogens. First of all, we present the opportunities to
rewrite the effector-target sequence for avoiding effector-target molecular interaction
and also to modify effector-target promoters for increasing the expression of target
genes involved in the resistance process. In addition, we describe potential approaches
for obtaining synthetic R-genes through genome-editing technologies (GETs). Finally,
we illustrate a genome editing flowchart to modify the pathogen recognition sites
and engineer an R-gene that mounts resistance to some phylogenetically divergent
pathogens. GETs potentially mark the beginning of a new era, in which synthetic
biology affords a basis for obtaining a reinforced plant defense system. Nowadays it
is conceivable that by modulating the function of the major plant immunity players, we
will be able to improve crop performance for a sustainable agriculture.
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AN IMPORTANT REASON FOR ENHANCING THE PLANT
IMMUNE SYSTEM

The principal aim of sustainable intensification of agriculture is to increase food production while
minimizing pressure on the environment. Phytopathogens limit crop yields and pose a threat to
food sustainability worldwide. In the absence of genetic resistance, crop production relies heavily
on chemical control of pathogens. Reducing the dependence of food production on chemical
control is a key goal for avoiding negative environmental impacts caused by current practices
(Tilman et al., 2002) and taking significant global climate change into account (IPCC, 2007). Plant
domestication and breeding processes allow crops to be obtained with improved performance
and tailored traits. The most renewable strategy to manage plant disease is to develop resistant
plants, thereby obtaining environmental, economic, and social benefits. Therefore, the genes for
resistance to pests and diseases can be rightfully considered essential resources to meet human
food requirements (Mundt, 1994).
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PLANT IMMUNITY COMPONENTS

Plants have developed a plethora of defense mechanisms
underlying disease suppression to ward off damage caused by
pathogens. The response of plants to pathogen attack relies on
pathogen recognition at the cellular level, which then triggers
complex signaling pathways (Jones and Dangl, 2006; Andolfo
and Ercolano, 2015). When the plant perceives the signals
of danger as pathogen-associated molecular patterns (PAMPs)
or damage-associated molecular patterns (DAMPs), effectors,
prompt the stereotypical defense program (Wise et al., 2007).
The plant innate immune system is based on two distinct but
interconnected components, namely the immunity activation
component (IAC) and the immunity modulation component
(IMC). The IAC is based on a large number of surveillance
receptors: pattern-recognition receptors (PRRs) and Nibblers
(NB-LRR receptors) that recognize the presence of pathogens and
convey the message of invasion. The second component (IMC)
is based on the phytohormones that play a fundamental role in
regulating plant immune response (Shah, 2003; von Essen et al.,
2010).

In an exemplified model, three distinct stages (1: interaction, 2:
activation/modulation, and 3: effective resistance/immunity) can
be identified in a generic plant-pathogen interaction (Andolfo
and Ercolano, 2015). During the first stage, the conformation
of virulence factor targets is modified and several alterations
of primary plant metabolism are detected. In the second
stage, modification of virulence factor targets induces the
Nibblers/PRR-triggered signaling (NTS and PTS). Furthermore,
a feedback regulation of primary metabolisms, mediated by the
metabolic alterations, induced a hormone-tempered resistance
(HTR). In the effective resistance/immunity stage, the NTS/PTS,
and the HTR converge to confer a pathogen lifestyle-specific
resistance (PSR).

Rapid adaptation to threats is orchestrated by a complex
regulatory network of interconnected signaling pathways. The
newly emerging picture indicates that complex crosstalk among
different classes of hormones might modulate disease resistance,
with outcomes dependent on pathogen lifestyles and the genetic
background of the host (Andolfo and Ercolano, 2015). Plant
defense systems have been extensively investigated in the last
decades, but exactly how they recognize pathogens and how
IAC and IMC are regulated remains unknown. During the
plant immunity process several gene networks are established
following signaling cascades, in which regulators must fine-
tune their activity to cooperate with or antagonize other
regulators. Although pathogens have evolved to hijack this
highly interconnected network of regulators to promote their
virulence (Grant and Jones, 2009), emerging evidence suggests
that crosstalk between immunity regulators offers the potential to
fine-tune plant defense responses. Knowledge of host receptors
variation should be combined with complementary knowledge of
PMAPs/Effectors variation in the pathogen in order to provide
effective new resistance genes. The large number of genes that
are thought to be involved in the resistance process complicates
our understanding of the biological molecules and pathways
involved. Naturally variable alleles in pathogen receptor genes

and downstream components of the resistance process, such
as mitogen-activated protein kinases, transcription factors, and
proteases/lipases, have been shown to contribute to disease
resistance (Druka et al., 2008; Chen et al., 2010; Moscou et al.,
2011; Camañes et al., 2012; Corwin et al., 2016). Identification
of such variants may help engineer long-lasting and broad-
spectrum disease resistance in crops with both durable resistances
to pathogens and increased yields (Dangl et al., 2013).

Following classical breeding methodologies, we can introgress
the resistance traits, making use of natural genetic variation,
through several rounds of genetic recombination. New alleles can
be introduced by random mutagenesis, although this is usually
followed by the time-consuming screening of large populations to
identify mutants (Parry et al., 2009; Sikora et al., 2011). Genome-
editing technologies (GETs) allow site-specific mutagenesis to be
achieved, overcoming the limits imposed by previous methods.
Indeed, plant disease resistance can be increased by targeting
suitable actors of plant defense machinery. However, to extend
GET applicability to the ever-increasing number of crops some
bottlenecks should be solved. In this work we describe suitable
methods with potential pitfalls and crucial targets for engineering
plant immunity.

TARGETED GENOME ENGINEERING
TECHNIQUES

Site-directed mutagenesis relies on the introduction of targeted
DNA double-strand breaks (DSBs) by action of programmable
nucleases. Small deletions, targeted insertions, and multiplex
genome modifications can result both from non-homologous
end joining (NHEJ) and homologous recombination (HR)
cellular DNA repair mechanisms. Artificial zinc-finger nucleases
(ZFNs; Kim et al., 1996) and transcription activator-like
effector nucleases (TALENs; Christian et al., 2010) contain
a DNA cleavage domain from the restriction enzyme
Fok I fused to an engineered DNA-binding domain. The
CRISPR (Clustered Regularly Interspaced Short Palindromic
Repeats)/Cas9(CRISPR-associated protein-9 nuclease) is based
on RNA-guided engineered nucleases. Such genome-editing
technology holds great promise due to its simplicity, efficiency
and versatility (Jinek et al., 2012). CRISPR/Cas9 cleavage coupled
with homology-directed repair (HDR) has the potential to enable
engineering of new alleles of endogenous genes or the sequential
insertion of transgenes at the same locus (Feng et al., 2014).
Moreover, the CRISPR/Cas9 system is advantageous over ZFNs
and TALENs since it allows simultaneous editing at multiple sites
across the genome (Cong et al., 2013).

The applicability of GETs in the field of plant biology was
already demonstrated in the model species Arabidopsis thaliana
(Christian et al., 2010; Osakabe et al., 2010; Cermak et al., 2011;
Li et al., 2013) and Nicotiana benthamiana (Nekrasov et al.,
2013; Gao et al., 2015) as well as in other crops including
rice, sorghum, wheat, corn, soybean, tobacco, potato, petunia,
sweet orange, liver worth, and poplar (Shan et al., 2014; Luo
et al., 2016; Rani et al., 2016). Stable inheritance of homozygous
mutations induced by GETs and segregation of the mutation in
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the off springs was reported in several species (Maeder et al.,
2008; Christian et al., 2010; Zhang et al., 2010; Qi et al., 2013;
Brooks et al., 2014; Fauser et al., 2014; Feng et al., 2014; Jia
et al., 2014; Schiml et al., 2014; Zhang et al., 2014; Zhou
et al., 2014; Forner et al., 2015). GETs have been shown to be
excellent tools to engineer metabolic circuits for synthetic biology
applications (Bortesi and Fischer, 2015) since gene expression
could be modulated by an inactive nuclease fused with either
transcriptional activation or repression domains (Gilbert et al.,
2013; Maeder et al., 2013; Bortesi and Fischer, 2015). Indeed, the
transcription of a PDS gene of N. benthamiana was modified by
Piatek et al. (2014). With the availability of an increasing amount
of genomic data, genome engineering is developing increasingly
precise methodologies. There is no general strategy for obtaining
successful modifications. In silico approaches can help to predict
candidates for resistance (Sanseverino and Ercolano, 2012) and
to select target site, minimizing the occurrence of off-targets
(Peng et al., 2016; Rani et al., 2016). Identification of amino
acid residues under selective pressure can also provide valuable
support (Iovieno et al., 2015). In order to reduce off-target activity
two separate sgRNA target sequences can be used to guide a
Cas9 nickase variant to two adjacent positions in the genome.
Indeed, the enzyme induces a single-strand break (SSB) in each of
the two DNA strands, increasing cleavage specificity (Schiml and
Puchta, 2016). Optimization of delivery methods, HDR incidence
and enzyme activity could also increase editing efficiency and
specificity (Peng et al., 2016). Finally, genetic transformation and
plant regeneration are bottlenecks in plant editing of several
species, in particular tree species and need to be improved to
extend the use of GETs in important crops (Luo et al., 2016).

GENOME-EDITING APPLICATIONS FOR
PLANT DISEASE RESISTANCE

The growing need for crop yield stability has prompted breeding
research to design plants able to respond to pathogen attacks
without fitness penalties. GETs have been employed to modify
major players of plant immunity at different levels in several
crops. Host susceptibility genes (S-genes) have been successfully
manipulated to promote resistance to key pathogens. TALEN
and CRISPR/Cas9 technologies were both used to target the
mildew-resistance locus O (MLO) in wheat (Wang et al., 2014),
generating plants resistant to powdery mildew disease. GETs
were used to generate plants resistant to bacterial leaf blight,
caused by Xanthomonas oryzae pv. oryzae, impairing down the
transcriptional regulation of S-genes by the effector. Indeed, the
plants stably edited in the OsSWEET14 promoter were resistant
to bacterial strains since the effector was unable to activate
the transcription of its target (Li et al., 2012). The metabolic
pathways that regulate hormonal balance can be modified to
enhance the IMC component of plant immunity. This goal
was achieved by using GETs to cause the down-regulation of
ethylene-responsive factors (ERF). In particular, the ethylene
pathway in rice was successfully modified to increase resistance
to Magnaporthe oryzae (Liu et al., 2012), using CRISPR/Cas9
technology to target a mutation in OsERF922 (Wang et al., 2016).

In addition, the utility of GETs to introduce resistance was also
demonstrated by the deletion of a host factor not directly involved
in IMC but strictly required for pathogen survival (Pyott et al.,
2016).

Furthermore, a new player can be introduced into plant
immunity by using GETs. Indeed, the portability of the
CRISPR/Cas9 system was demonstrated for introducing a new
source of resistance to the geminivirus, circular single-stranded
DNA (ssDNA) viruses that replicate within the nuclei of plant
cells, causing serious damage to many dicotyledonous crop
plants such as beet severe curly top virus in Arabidopsis and
N. benthamiana (Ji et al., 2015) and bean yellow dwarf and
tomato yellow leaf curl virus in N. benthamiana (Ali et al., 2015;
Baltes et al., 2015). When plant immunity can target the D/S
DNA replicative form, using CRISPR/Cas9 in a similar way to
its endogenous role in Archaea, it is possible to trigger mutations
and interfere with the copy number of freely replicating viruses.
CRISPR/Cas9 was also used to knock down the eIF(iso)4E
gene encoding for a translation complex in cucumber (Cucumis
sativus). The induced mutation in the host eIF(iso)4E, confers
resistance to cucumber vein yellowing virus (CVYV), zucchini
yellow mosaic virus (ZYMV), and papaya ringspot virus-type W
(PRSV-W) (Chandrasekaran et al., 2016). A novel approach to
developing therapies for infectious diseases is to block bacteria,
without killing them. In Phytophthora sojae, the possibility of
editing a pathogen gene (Avr4/6) involved in the immunity
activation was efficiently proved (Fang and Tyler, 2016).

OPPORTUNITY TO OBTAIN A
SYNTHETIC R-GENE FOR SINGLE OR
MULTI-RESISTANCE

Traditional resistance breeding is based on the introgression of
resistance traits, such as NLR (nucleotide-binding, leucine-rich
repeat) genes, from wild species into elite varieties (Ercolano
et al., 2012; Andolfo et al., 2014). Genetic variation for disease
resistance within a plant is most often explained by allelic
variation in the receptor encoding genes. Unfortunately, R-gene-
mediated resistance is based on recognition of a single elicitor
and the frequency of resistance breakdown is typically high.
Therefore, a continuous influx of novel resistance genes in
breeding programs is required. Recent transgenic strategies also
allow the efficient transfer of R-genes between plant species
(Faino et al., 2010; Horvath et al., 2012; Narusaka et al., 2013).
However, the deployment of novel resistance genes through both
conventional breeding and transgenic approaches is hampered
by the low occurrence of R-genes with the useful response
specificities. Specific R-gene targets could be edited since one
or few polymorphic amino acids in the coiled-coil (CC) and/or
nucleotide-binding (NB) domain are known to be responsible
for recognition specificity (Ashikawa, 2012). In addition, it was
observed that a double aminoacidic mutation enhanced the
ability of the R-protein to trigger cell death (Stirnweis et al., 2014).

A recent work demonstrated that synthetic immune receptors
(I2) can be engineered to confer resistance to phylogenetically
divergent pathogens (Giannakopoulou et al., 2015). GETs could
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be very useful for designing and engineering R-genes with
novel activities, where mutants identified in one gene could be
transferred to homologs (Figure 1A). As shown in Figure 1B,
genome editing could be useful also exploited to combine several
pathogen recognition sites (PRSs) into a novel engineered R-gene
able to mount resistance to some conserved pathogen effectors
and/or PAMPs. Indeed, several works have shown that certain
motifs are sufficient to determine resistance in the plant host.
The highly conserved EDVID motif of the CC domain has
been shown to be important for the function of the R proteins
(Rairdan et al., 2008). Other studies revealed that overexpression
of the isolated Toll/interleukin-1 receptor (TIR) domains of
several Nibbler proteins is sufficient to trigger a hypersensitive
reaction (Zhang et al., 2004; Swiderski et al., 2009; Bernoux et al.,
2011; Collier et al., 2011; Maekawa et al., 2011). Furthermore,
several studies showed that modular assembly of subdomains
from different PRRs is used to form functional receptors. Indeed,
the extracellular-leucine-rich repeat (eLRR) receptor kinases of
the EFR receptor were replaced by corresponding parts from
different families or species (for example from FLS2 or XA21),
broadening its spectrum against diverse pathogens (Albert et al.,
2010; De Lorenzo et al., 2011; Schwessinger et al., 2015).

Knowledge gathered from one R-gene could be exploited to
improve the candidates from other plant species to rapidly deliver
agronomically useful resistance genes. A promising approach to
improving disease resistance could be achieved by combining
engineered R-genes in the same cultivar for conferring resistance
to different pathogens (Piquerez et al., 2014).

ADDITIONAL GENOME-EDITING
TARGETS FOR DISEASE RESISTANCE IN
CROP PLANTS

One way to achieve broader spectrum resistance is to make
use of PRRs. As with the identification of NLRomes, efforts
have been made to identify PRRomes (Tang et al., 2010;
Andolfo et al., 2013). In addition, detailed knowledge of
plant immunity signaling will enable the construction of a
novel, resilient immune response network in plants. It is
well known that phytopathogens secrete effector proteins that
suppress plant immunity (Figure 2A). Effector-target genes
have great potential in breeding for plant disease resistance
(Gawehns et al., 2013). GETs could be used to rewrite the

FIGURE 1 | Flowchart of disease resistance genes editing. (A) Modification of a non-functional pathogen recognition site (PRS; red line) to obtain a synthetic
functional R-gene (yellow line). (B) Another potential use of editing technology is the engineering of a novel synthetic R-gene able to mount resistance to several
pathogens by combining PRS from different R-genes (R1-R5).
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FIGURE 2 | Novel genome editing targets for plant disease resistance breeding. Two genome editing applications (A,B) to obtain resistance plant are
presented. (A) In the first example, the modification (blue line) of the effector-target to restore resistance is proposed. The target gene sequence (red line on the left
side) is modified (red-blue line on the right side) to impede the effector- (cyan pentagon) target (red-blue hexagon) interaction. (B) The second example describes the
possibility of modifying the effector-target promoter. In particular, it is depicted a cis-acting regulatory element (CRE; yellow rectangle on the left side) that controls the
gene-expression of effector-target (curve red line) and product release (cyan pentagon). On the right, the increase of CREs (red rectangles on the right side)
enhances the effector-target expression (curve red lines) and product release (cyan pentagons) conferring a partial resistance (thin red arrows). The dashed red
arrows in (A,B) panels and dashed black line in (A) indicate an interrupted connection between components involved in the resistance process.

effector-target sequence to avoid their molecular interaction
(Figure 2A) and to modify the interaction during IAC. Indeed,
it was highlighted that a single amino acid change in the
effectors (such as in Phytophthora infestans EPIC1 and in
Phytophthora mirabilis PmEPIC) and in their corresponding
targets (in tomato PLCP and potato RCR3) impairs interaction
(Dong et al., 2014). Moreover, the sequence variations in
effector targets may cause quantitative variations in resistance
phenotypes (Niks et al., 2015). Some important components
of immunity, such as RIN4, are targets of effectors and might
be successfully manipulated by GETs. A rin4 mutant exhibits
increased resistance to the oomycete Peronospora parasitica
and the bacteria Pseudomonas syringae (Luo et al., 2009) in
A. thaliana. The effector may suppress immunity through
attenuation ofHTR, acting on hormone synthesis routes, which
are required for resistance to many pathogens. GETs might be
used to target the negative regulators of HTR. Indeed, impaired
function of negative regulators of the salicylic acid (SA) response
(such as the MAP kinase MPK4) leads to increased resistance
in A. thaliana against Pseudomonas syringae and Peronospora
parasitica (Petersen et al., 2000). Some pathogen effectors
could target the host cell physiology through ubiquitination.
Since this process contributes crucially to plant immunity,
it could be engineered by genome editing. Several studies
showed that the knockout of host ubiquitin ligase increased
resistance to biotrophic pathogens in A. thaliana (Trujillo et al.,
2008) and to Phytophthora infestans in potato (Bos et al.,
2010). The effectors not only interfere with IAC surveillance
system but can also modify the plant defense transcriptome

more directly. DNA target fragments within the regulatory
sequences upstream of the genes that determine resistance
to pathogens could be modified as shown in Figure 2B.
Indeed, early works demonstrated that insertions of short
donor sequences can be achieved through the CRISPR/Cas9
system (Li et al., 2013; Shan et al., 2013). It would thus be
possible to reprogram the promoter, inserting cis-regulatory
elements (CREs) to enhance transcription (Figure 2B). Recently,
it was demonstrated that the overexpression of a mutant of
the phosphatase catalytic subunits (PP1c-1) attenuates infection
from Phytophthora infestans, interacting with the RXLR effector
(Boevink et al., 2016).

In general, GETs allow plant resistance to be modulated by
acting on the immunity players, improving the performance of
important crops for a sustainable agriculture. Such technologies
allow specific mutations to be introduced into effector targets,
reducing the pleiotropic effects of complete gene deletion and
help to bring about gain-of-function mutations that may promote
the use of a quantitative grading of resistance as a valuable
approach to protecting crops.
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