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MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to

induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1,

next-generation sequencing (NGS)-based digital gene expression (DGE) profiling was

performed to collect the transcriptional data of differentially expressed genes (DEGs)

induced by MoHrip1. A total of 308 genes were identified with differential expression,

and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308

genes, a series of genes associated with the salicylic acid (SA) pathway, phytoalexin,

transcription factors, and pathogen-related proteins were identified. Both the SA

signaling pathway and the gibberellin (GA) pathway were activated, while the jasmonic

acid (JA) signaling pathway was repressed. The contents of endogenous SA and GA

and the morphological characteristics of the rice after treatment were measured to

provide evidence supporting the predictions made based on the DGE data. The 80 genes

mentioned above might be candidate genes for studying interactions with MoHrip1. The

transcriptional data provided global effect information in rice induced by MoHrip1, and all

the results demonstrated that MoHrip1 could induce pathogen resistance and promote

plant growth by regulating the contents of SA and GA directly or indirectly.

Keywords: elicitor, MoHrip1, DGE (digital gene expression profiling) sequencing, disease-resistance, signaling

pathways

INTRODUCTION

Rice blast, a major fungal disease caused by Magnaporthe oryzae, seriously affects rice production
worldwide (Ribot et al., 2008), leading to yield losses of 50–70% (Bagnaresi et al., 2012). As rice is
the world’s second most important human food crop (FAOSTAT, 2014), it is necessary to develop
methods to protect it from pathogenic diseases and to increase its production. Increasing research
on the molecular events governing the interactions between rice andM. oryzae have contributed to
methods for improving disease resistance (Chen and Ronald, 2011).

The elicitors include molecules isolated from various organisms, including viruses, oomycetes,
bacteria, and fungi. Some elicitors have been used to improve the pathogen resistance of
plants (Bent and Mackey, 2007). Such elicitor molecules include oligosaccharides, lipids,
peptides, glycoproteins, and proteins (Nürnberger, 1999; De Wit et al., 2009; Ellis et al., 2009).
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A range of elicitors was isolated from M. oryzae, including
sphingolipids, proteins, and glycoproteins. These elicitors induce
resistance responses and hypersensitive cell death in rice, while
inducing systemic acquired resistance (SAR) in plants (Koga
et al., 1998; Qiu et al., 2009; Peng et al., 2011). However,
these elicitor-activity compounds were not secretory proteins.
During the whole genome sequencing and research on the
M. oryzae proteome, several secreted proteins were identified and
characterized, such as MC69 (Saitoh et al., 2012), SLP1 (Mentlak
et al., 2012), Avr-effectors (PWL1, PWL2, AvrPi-ta, AvrPiz-t,
Avr-Pia, AvrPii, Avr-Pik/km/kp, Avr1-CO39, ACE1) (Liu et al.,
2013), andMoCDIP1-5 (Chen et al., 2013). MoHrip1 is a secreted
protein elicitor isolated from M. oryzae and can enhance the
defense of rice seedlings against infection by M. oryzae (Chen
et al., 2012).

Next-generation sequencing (NGS) technologies are rapidly
evolving and are changing biology research (Metzker, 2010).
Digital gene expression (DGE) is a relatively new approach based
on NGS technology for the study of the transcriptome, and this
method has advantages in studying genes that are expressed
differentially (Tao et al., 2012). The sequencing of the Rice
cv. Nipponbare (Oryza sativa spp. japonica) genome has been
implemented and published (Sasaki and Burr, 2000; Kawahara
et al., 2013), making sequencing-based transcriptome studies
(i.e., DGE) more accessible. To our knowledge, there have been
some RNA-seq studies focusing on rice resistance genes and the
interactions between pathogens and rice (Bagnaresi et al., 2012).
Furthermore, several studies aiming to identify differences in the
gene expression in rice suspension cells treated with elicitors
have been completed (Kim et al., 2000). However, no NGS-based
transcriptome studies have been conducted focusing on genes
induced by the mutual effects of intact rice and pathogen-derived
elicitors.

In this research, we employed DGE-based RNA-seq to study
the gene expression in rice induced by MoHrip1. Comparisons
between the treatment and controls allowed us to identify genes
sensitive to the elicitors. Many differentially expressed genes
(DEGs) related to the defense response were identified, along
with genes associated with plant growth. Even some specific
genes that were not expressed in untreated rice but that were up-
regulated in rice after treatment were identified. Our results may
widen the functional scope of the elicitor in inducing resistance
and may help identify genes that interact with the elicitor.

METHODS

Plant Material and Elicitor Preparation
Rice cv. Nipponbare (O. sativa spp. japonica) was used in this
study. For RNA-seq, the rice seeds were sterilized by immersion
in 2% sodium hypochlorite for 30 min. After they were washed
with deionized water 7–8 times, the seeds were germinated on 1/2
Murashige and Skoog (MS) medium for 5 days and transferred
to nutritional soil (Park et al., 2012). Rice plants were cultured
in a growth chamber at 30◦C in light and 25◦C in dark, with
a 12-h light/dark photoperiod. We treated the rice seedlings by
spraying with either elicitor (30 µM) or Tris-Cl (25 mM) as
a negative control at the three-leaf stage. Both the treated rice

and the negative control were sampled in two replicates at 0, 24,
48, 72 h after treatment (hat), separately. Samples for RNA-seq
were collected and frozen in liquid nitrogen and stored at−80◦C
until use.

The MoHrip1 used in this study was expressed and purified
as previously described (Chen et al., 2012; Zhang et al., 2013).
The recombinant expression vector containing the MoHrip1
gene was transformed into E. coli strain transetta (DE3)
competent cells (TransGen Biotech, Beijing, China) to express
the elicitor. The bacteria were first grown to achieve an OD600

of 0.8 in Luria Bertani (LB) medium at 37◦C. Then, the
protein was induced upon the addition of 0.1 mM isopropyl
β-D-1-thiogalactopyranoside (Sigma, St. Louis, MO, USA) at
16◦C. Twelve hours after induction, the cells were collected
by centrifugation and resuspension. After ultrasonication and
centrifugation, the supernatant containing the recombinant
protein was obtained. The protein purification mainly consisted
of two procedures: affinity chromatography with a His-Trap HP
column (GE Healthcare, Waukesha, WI, USA) and ion-exchange
chromatography with a Mono Q column (GE Healthcare,
Waukesha, WI, USA). After concentration, the purified protein
was detected by SDS-PAGE and was quantified using the BCATM

Protein Assay Kit (Pierce, Rockford, IL, USA).

DGE Library Preparation and Sequencing
A total of 14 samples (two replicates of non-treated rice and
two replicates of treated and control rice collected at three
time points) were prepared for RNA extraction. The total
RNA was isolated using an RNAprep Plant Kit (TIANGEN
Biotech, Beijing, China) according to the manufacturer’s
protocol. RNA purity was checked using a NanoPhotometer R©

spectrophotometer (IMPLEN, CA, USA). RNA integrity was
confirmed using an RNA Nano 6000 Assay Kit for the Agilent
Bioanalyzer 2100 system (Agilent Technologies, CA, USA) with a
minimum RNA integrated number (RIN) value of 7.

A total of 3 µg of RNA per sample was used as the input
material for the RNA sample preparations. Sequencing libraries
were generated using the NEBNext R© UltraTM RNA Library Prep
Kit for Illumina R© (NEB, USA) following the manufacturer’s
recommendations. In brief, mRNA was purified from the total
RNA using oligo (dT) magnetic beads. After fragmentation with
divalent cations in NEBNext First Strand Synthesis Reaction
Buffer (5X), first strand cDNA was synthesized using random
hexamer primers and M-MuLV Reverse Transcriptase (RNase
H−). Then, second strand cDNA synthesis was performed using
DNA Polymerase I and RNase H. To select cDNA fragments 150–
200 bp in length, the library fragments were purified using the
AMPure XP system (Beckman Coulter, Beverly, USA). PCR was
then performed with Phusion High-Fidelity DNA polymerase,
Universal PCR primers and an Index (X) Primer. Finally, the
PCR products were purified (AMPure XP system), and the library
quality was assessed on an Agilent Bioanalyzer 2100 system.

The clustering of the samples was performed on a cBot
Cluster Generation System using a TruSeq PE Cluster Kit v3-
cBot-HS (Illumina) according to the manufacturer’s instructions.
After cluster generation, the library was sequenced on an
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Illumina HiSeq 2000 platform, and 100-bp paired-end reads were
generated.

RNA-Seq Read Mapping and DE Gene
Clustering
The sequence data sets are available at the NCBI Short Read
Archive (SRA) under the accession number SRA325858. Raw
data had adaptor fragments and a few low-quality sequences,
along with several types of impurities. Clean data were obtained
by removing low-quality reads containing adapters or poly-N
sequences from the raw data. All downstream analyses were
based on clean, high-quality data.

The reference genome and gene model annotation files were
downloaded from the genome website directly. The reference
genome index was built using Bowtie v2.2.3 (Langmead et al.,
2009), and paired-end clean reads were aligned to the reference
genome using TopHat v2.0.12 (Trapnell et al., 2009). TopHat was
selected as the mapping tool, as it has the advantage of being able
to generate a database of splice junctions based on the genemodel
annotation file and, thus, to produce better mapping results than
other non-splice mapping tools. HTSeq v0.6.1 (Anders, 2010)
was used to count the read numbers mapped to each gene.
The reads per kilobase of transcript per million mapped reads
(RPKM) of each gene was calculated based on the length of the
gene and the read counts mapped to that gene (Mortazavi et al.,
2008).

Analysis of Differentially Expressed Genes
The DESeq R package (1.10.1) (Wang et al., 2010) was introduced
to perform differential expression analysis of two conditions (two
biological replicates per condition). DESeq (Anders and Huber,
2010) provides statistical methods for identifying differential
expression in DGE data using a model based on the negative
binomial distribution. The resulting P-values were adjusted using
the Benjamini and Hochberg’s approach for controlling the false
discovery rate (FDR) (Benjamini and Hochberg, 1995). Genes
with a FDR adjusted P < 0.05, as found by DESeq, were defined
as being significant differentially expressed.

Gene Ontology (GO) enrichment analysis of the DEGs was
implemented in the GOseq (Young et al., 2010) R package,
in which the gene length bias was corrected. GO terms with
corrected P < 0.05 were considered significantly enriched in
the DEGs. KEGG (Kyoto Encyclopedia of Genes and Genomes)
(Kanehisa et al., 2008) is a database resource for understanding
the high-level functions and utilities of a biological system.
KEGG has abundant molecular-level information, especially
in the format of large-scale molecular datasets generated by
genome sequencing and other high-throughput experimental
technologies. KOBAS (Mao et al., 2005) software was used to test
the statistical enrichment of the DEGs in the KEGG pathway.

Real-Time Quantitative RT-PCR Assay
For each condition, three independent RNA samples were used
to validate gene expression level by performing quantitative real-
time PCR. The cDNAs used as the template of Quantitative
RT-PCR were produced using the TransScript All-in-One First-
Strand cDNA Synthesis SuperMix for qPCR (TransGen Biotech,

Beijing, China), and the concentrations of the mRNAs were
adjusted to be the same. Quantitative RT-PCR was performed
using SuperReal PreMix Plus (TIANGEN Biotech, Beijing,
China). Each real-time RT-PCR reaction (20 µL) included 25
ng cDNA, 0.3 µM of each primer, and 1×SYBR Green PreMix.
All reactions were performed in three technical replicates on
a Bio-rad CFX96 Real-Time PCR Detection System (Bio-Rad,
CA, USA) under the following conditions: 95◦C for 15 min and
40 cycles of 95◦C for 10 s, 55◦C for 30 s, and 72◦C for 32 s to
determine the fluorescence level and to calculate cycle threshold
(Ct) values, followed by increments of 0.5◦C for 5 s along a
gradient from 65◦C to 95◦C. Melting curves were obtained to
ensure primer specificity. Gene relative expression level was
obtained by comparing with non-treated rice after normalization
with reference gene using the 2−11Ct approach. Osactin was used
as the reference gene, and the gene IDs and primer sequences
are listed in Table S1. Data were statistically validated by a
correlation test using the Pearson’s method.

Determination of the Endogenous Levels
of Salicylic Acid (SA)
For the SA content assay, the rice cultivation method was
the same as was used for the RNA-seq. Treated and control
rice samples were collected in three replicates at 0, 12, 24,
36, 48, 60, 72 h after treatment (hat). Leaf tissue treated
with MoHrip1 or buffer was collected, weighed and frozen in
liquid nitrogen. For each sample, 0.1 g of the frozen tissue was
extracted and quantitated for free SA, as described previously
(Bowling et al., 1994). In brief, the tissue was ground into
powder and homogenized in 1 mL of methanol-H2O-acetic acid
(80:19:1). After extraction overnight at 4◦C and centrifugation,
the supernatant was re-extracted with the solution described
previously. After the addition of 1 mL chloroform and further
centrifugation, the organic phase containing the free SA was
dried in a speed vacuum with heat (∼40◦C). The residue was
resuspended in 0.5 mL of methanol, filtered and analyzed by
Ultra Performance Liquid Chromatography (UPLC). UPLC was
performed on an ACQUITY UPLC@BEHC18 column (50 mm
× 2.1 mm, 1.7 µm) run at 40◦C with a flow rate of 0.4 mL
min−1. The analytes were eluted from the column with a mixed
solvent of water with 0.1% acetic acid (solvent A) and methanol
with 0.1% acetic acid (solvent B) using a linear gradient mode
(Matsuura et al., 2009). The ratio of A and B was 90:10 from
0 s to 3 min, and this ratio changed linearly from 90:10 to 10:90
between 3 and 4 min. The ratio of 90:10 was finally maintained
from 4 to 7 min. The authenticity of the SA from rice leaf extract
was verified based on the retention times and spectral properties,
which matched perfectly to those of commercial SA standards.

Growth Promotion Assay and
Determination of Endogenous Levels of GA
For the GA assay, the rice seeds were sterilized by immersion
in 75% ethanol for 5 min. After they were washed with sterile
water, seeds were immersed in different concentrations of elicitor
dilution (2.5, 5, 10, and 20 µg/mL) or H2O as a negative control
for 8 h. Then, the germinated seeds were transferred to liquid
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MS medium for cultivation. The leaf tissue was collected at 9, 11,
and 13 days after the rice seedlings were transferred to liquid MS
medium with three replicates. For the growth promotion assay,
the lengths of the seedlings and roots were measured, as were the
weights of the whole plants. To assess the endogenous GA levels,
the leaf tissue was ground into powder in liquid nitrogen after the
weight measurement and addition of phosphate buffer (pH 7.4,
0.01 mol/L), with a ratio of 1:9. The supernatant was collected
after centrifugation. Then, the GA level was determined using a
Plant Gibberellic Acid ELISA Kit (FUYING Biotech, Shanghai,
China) following the solid-phase enzyme immunoassay method
(Atzorn and Weiler, 1983). In brief, the supernatant was added
to a microtiter plate coated well with purified plant GA antibody
and was then incubated at 37◦C. The chromogen solution was
then added following the addition of horseradish peroxidase
(HRP)-conjugate reagent and incubated at 37◦C. After adding
the stop solution, the absorbance was obtained at 450 nm and was
matched with the GA standard curve to calculate the endogenous
GA levels of the leaf tissues.

Bioassay for MoHrip1-Induced Disease
Resistance in Rice
For the disease resistance assay, the rice seeds were divided
into three groups. Each group contains 25 rice seeds with three
replicates. The MM group indicated that the rice seeds were
immersed in MoHrip1 (10 µg/mL) as the GA assay then sprayed
with MoHrip1 (30 µM) at three-leaf stage as assay for RNA-
seq mentioned above. The M group indicated that the rice seeds
were immersed in MoHrip1 (10 µg/mL) then sprayed with Tris-
Cl (25 mM) at three-leaf stage. The CK group indicated that
the rice seeds were immersed in H2O then sprayed with Tris-
Cl (25 mM) at three-leaf stage as a negative control. After 3
days of incubation, three groups of rice plants were sprayed with
an aqueous suspension of 1 × 106 M. oryzae (KJ201) spores
per milliliter containing 0.05% (v/v) Tween 20. The inoculated
rice plants were maintained at 26◦C and 100% relative humidity
in a dark chamber for 24 h. Then we modified the growth
chamber with 70–80% relative humidity under a 14-h-light/10-
h-dark photoperiod (Chen et al., 2012). Leaf blast symptoms
were investigated at 7 days post-inoculation when typical lesions
appeared on the leaves of negative control rice plants. The disease
indices of plants inoculated with rice blast were compared. Each
seedling was researched and rated on a scale of 0–9 (0= resistant
and 9 = susceptible) according to the international specification
for rice blast disease.

RESULTS

DGE Sequencing of the MoHrip1-Treated
Rice
A previous study confirmed that rice treated with MoHrip1
show enhanced resistance to M. oryzae (Chen et al., 2012).
To obtain the global gene expression profile differences of
rice treated with MoHrip1 compared to those treated with
buffer (Tris-Cl) as a negative control, 24, 48, and 72 hat and
non-treated rice samples were prepared and sequenced on the

Illumina sequencing platform. A total of 14 DGE libraries were
constructed to identify differences in the gene expression levels.
The 14 libraries included non-treated rice samples (designated as
NoT0), rice samples of MoHrip1 and buffer at 24 hat (designated
asMoT1 and BuT1), rice samples ofMoHrip1 and buffer at 48 hat
(designated as MoT2 and BuT2), and rice samples of MoHrip1
and buffer at 72 hat (designated as MoT3 and BuT3), with two
replicates each. After removing reads containing adapters, reads
containing poly-N sequences, and low-quality reads, the total
clean reads per library ranged from 10.3 to 14.8 million. The total
reads mapped to the Rice cv. Nipponbare genome according to
the TopHat analysis ranged from 9.5 to 14.4 million (Table 1).
RPKM was introduced to calculate the expression level of each
gene. The value of “RPKM ≥ 1 or <1” was used as the threshold
to identify whether a gene was expressed or not (Table 2).

A saturation curve was constructed to determine whether the
amount of data fulfilled the requirement of quantifying the gene
expression level. The higher the gene expression level, the easier
it was to accurately quantify the gene (Figure S1). Biological
replicates were necessary for high-throughput sequencing to
obtain reliable analysis results (Hansen et al., 2011). Our
experiments showed extremely high levels of correlation for each
pair of biological replicates [in all cases examined, the Pearson
correlation coefficient (PCC) >0.97; Figure S2], indicating that
our sampling, assay, and analysis methods were steady and
robust.

GO enrichment analysis was performed to classify the gene
functions of the detected DEGs. Based on the sequencing data,
the genes detected differentially in the treated rice after 1 day
were enriched in two domains: biological process and molecular
function. The cardinal enriched terms were metabolic and
oxidation-reduction processes in the biological process domain
and oxidoreductase lyase activity in molecular function. Genes
detected differentially in treated rice after 2 days were enriched in
only one domain: the biological process domain, and the cardinal
term was metabolic process. In contrast, the genes detected
differentially in the treated rice after 3 days were not found to
be enriched (Figure S3).

To characterize the complex biological behaviors for the
transcriptome, the KEGG database was used to analyze
the pathway annotations for the DEGs. In the three rice
groups being compared between the treatment and control
conditions, only genes in the rice treated for 1 day showed
significant pathway enrichment. The pathways with the most
representation were the phenylalanine, tyrosine, tryptophan,
diterpenoid, phenylpropanoid, amino acid, and secondary
metabolite biosynthesis pathways and the plant-pathogen
interaction pathways (Figure S4; Table S2). These annotations
provided clues for investigating specific processes, especially
those involved in the biosynthesis of secondary metabolites and
plant-pathogen interactions.

Nineteen genes with a range of expression levels were selected
for the validation of the gene expression levels estimated by
RPKM using quantitative RT-PCR (qRT-PCR). The expression
levels of the 19 genes determined by the qRT-PCR analysis using
7 different RNA samples generated 133 data points. The data
for the cycle threshold (Ct) value and the log2 RPKM value of
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FIGURE 1 | Validation of DGE data by qRT-PCR. Scatter plots indicate the

Ct results of the qRT-PCR and the log2 RPKM values of DGE for 133 data

points from 19 genes in 7 different samples with a Pearson correlation

coefficient of R = −0.85.

the selected genes are given in Table S3. The CT value of the
qRT-PCR results correlated well with the log2 RPKM values of
the DGE, with a PCC of R = −0.85 (Figure 1), indicating that
the gene expression levels determined by DGE analysis were
positively correlated with those determined by qRT-PCR.

Differential Gene Expression Analysis
To identify the genes induced by treatment with MoHrip1
and to assess gene expression pattern changes, we next
evaluated the DEGs at all-time points. The final RPKM of one
gene with replicates in the same condition was the average
value for all replicate data. In general, the absolute value of
“|log2(FoldChange)| > 1” and the “q < 0.005” were used as
the threshold to identify the DEGs in a sequencing experiment
without replicates. Now that DESeq was used to eliminate
biological deviation in the study with replicates, we set padj
< 0.05 as filtering standard for genes that were expressed
differentially.

The generated libraries formed 9 volcano plots and 3 Venn
diagrams based on 9 DEG comparisons (MoT1 vs. NoT0, MoT2
vs. NoT0, MoT3 vs. NoT0, BuT1 vs. NoT0, BuT2 vs. NoT0, BuT3
vs. NoT0, MoT1 vs. BuT1, MoT2 vs. BuT2, and MoT3 vs. BuT3).
Based on the volcano plot, 214 DEGs were obtained at 24 hat,
including 163 up-regulated genes and 51 down-regulated genes.
Furthermore, 103 DEGs were obtained at 48 hat, including 78 up-
regulated genes and 25 down-regulated genes. Finally, 21 DEGs
were obtained at 72 hat, including 14 up-regulated genes and 7
down-regulated genes (Figure S5). A Venn diagram was used to
obtain the overlapping DEGs in the comparison group to see
which DGEs were induced transiently and which DGEs were
induced over a relatively long period of time. In this experiment,
28 genes were induced at both 24 and 48 h, 1 gene was induced
at both 24 and 72 h, and 1 gene was induced at both 48 and
72 h, indicating that these genes may play important roles in
induced resistance after treatment with MoHrip1 (Figure S6A).

It can also be concluded through the volcano plot and Venn
diagram that both the treatment and the control conditions could
induce gene expression differentially compared with the non-
treated condition, while the treated samples induced more DGEs
relative to the non-treated condition than the control samples
(Figures S6B,C, S7).

Differences in Gene Expression Patterns
As Assessed by Clustering Analysis
A total of 308 DEGs (|log2(FoldChange)| > 1, q < 0.005)
were identified when rice samples treated with MoHrip1 or
buffer after 24, 48, 72 h were compared with non-treated rice
samples. All genes were used to generate clusters using the
clustering affinity search technique (CAST). We identified two
representative hierarchical clusters, consisting of a total of 24
genes, showing interesting regulation patterns at 24 and 48 hat
(Figure 2). In the MoHrip1-treated group, these 24 genes were
induced at 24 and 48 hat; in the buffer-treated group, these
24 genes were suppressed at all-time intervals that we analyzed
(24, 48, 72 hat). These genes included peroxidase N (prxRPN),
the ABC transporter (PDR20), and the heat stress transcription
factor (Spl7). Two genes were specifically associated with the
shikimate pathway (DHQDT/SDH, EPSPS) and three genes were
specifically associated with the tryptophan pathway (IGPS, PAT,
TS; Table S4) (Maeda and Dudareva, 2012). These shikimate and
tryptophan pathway-associated genes were also included in the
KEGG enrichment (data not shown). These results suggest that
MoHrip1 can induce genes in several ways in rice, while the
buffer has no such effect.

DGE Analysis Reveals the Molecular
Events Induced by MoHrip1 in Rice
Previous studies have identified genes and pathways that
participate in or are related to the resistance of blast. In our DGE
data, we examined how these genes were expressed in rice after
treatment with MoHrip1. This research aimed to identify genes
or pathways critical for blast-resistance in rice, especially those
induced by MoHrip1.

Pathogenesis-Related Proteins
The importance of pathogenesis-related proteins (PRs) in
blast-resistance has been reported (Agrawal et al., 2001;
Muthukrishnan et al., 2001; Hwang et al., 2007). Among the
35,679 genes detected in at least one of the 14 DGE libraries, 13
genes encode PR proteins, including 2 copies of pathogenesis-
related protein 1 (PR1), 6 β-1-3-glucanases (PR2), 1 chitinase
(PR3), 2 thaumatin-like proteins (PR5), and 2 prebenazole-
induced genes (PR10). Among the 2 PR1 genes, increased
transcripts accumulated in the treated samples in one gene
(OS07G0129200), while increased transcripts accumulated
in the control samples in the other. One (OS05G0375400)
of the 6 PR2 genes was induced in the control samples, and
5 genes (OS01G0940700, OS01G0940700, OS07G0539900,
OS07G0539900, OS07G0539100) were induced in the treated
samples. The only PR3 gene (OS10G0542900) detected was
up-regulated in the treated samples and down-regulated
in the control samples. As for PR5 and PR10, all genes
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FIGURE 2 | Hierarchical clustering of the differentially expressed genes. The heat map shows the gene expression clusters and sample clusters. Each line

indicates data from a single gene. The color bar represents the log10(RPKM) of each gene, ranging from green (−2) to red (2). Two detailed gene clusters show the

genes that are up-regulated in the MoHrip1-treated samples after 24 and 48 h and down-regulated in the buffer-treated samples after 24, 48, and 72 h.

detected (OS12G0628600, OS12G0569500, OS12G0555000,
OS12G0555200) were induced both in the treated and control
samples, while the level of transcript accumulation in the control
samples was much lower (Figure 3A).

WRKY, NAC, and the ERF Transcription
Factor
Transcriptional control of the expression of resistance genes plays
a crucial role in the response to stress in plants. Transcription
factors have been identified as important for regulating defensive
gene expression (Singh et al., 2002). In our research, WRKY,
NAC, AP2/ERF were three types of transcription factors (TFs)
detected, all of which were found to participate in the regulation
of plant defense genes (Gutterson and Reuber, 2004; Wei
et al., 2013; Sun et al., 2015). Two genes (OS06G0649000,
OS01G0584900) encoding WRKY TFs were detected with
increased transcript accumulation in the treated samples, while
no changes were observed in the control samples. The remaining
6 genes (OS01G0246700, OS01G0246700, OS05G0322900,
OS05G0343400, OS05G0474800, OS02G0181300) encoding
WRKY TFs were detected in both groups but were up-regulated
only in the treated groups.

The two NAC-related genes (OS01G0816100,
OS01G0816100) detected were induced in the treated rice.

All four genes encoding the ERF TFs were up-regulated after
treatment, except for one (OS04G0546800), which was mainly
down-regulated after treatment (Figure 3B).

Antifungal-Related Proteins
Phytoalexins, ATP-binding cassette (ABC) transporters, and
peroxidases are three types of compounds whose encoding genes
were detected in our data, and all are known to be involved
in reducing pathogen-related damage. Then, we classified these
compounds as antifungal-related proteins. Phytoalexins play
important roles in the disease resistance of various plant species,
and diterpenes comprise a major portion of the phytoalexins,
which are induced in rice after infection with pathogenic fungi
or a pathogen-derived elicitor (Duan et al., 2014; Umemura et al.,
2014). All the phytoalexin synthesis-related genes were detected
in at least one treated and control group and accumulated to
higher transcript levels in rice under the treatment but not the
control conditions, except for one gene (OS03G0225900), which
was induced in the treated group and repressed in the control
group (Figure 3C).

Previous studies have shown that ABC transporters are
associated with various host-pathogen interactions. The
pleiotropic drug resistance (PDR) subfamily of plant ABC
transporters has been implicated in plant defense (Jasiński
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FIGURE 3 | Heat maps show increased or decreased gene transcripts

in rice following MoHrip1 and buffer treatment, using the

corresponding non-treated samples as controls. The bottom color bar

represents the log10 of the RPKM values for each gene, ranging from green

(−2) to red (2). A comparison of the gene expression levels in rice after

treatment with MoHrip1 and buffer for the PR proteins (A); transcription factors

(B); phytoalexin-, ABC transporter-, and peroxidase-related genes (C); SA and

JA pathways (D); and CYP450- and ZFP-related genes (E).

et al., 2001; Campbell et al., 2003). In the 6 genes encoding
ABC transporters (Figure 3C), half were induced and half were
repressed in the rice under control conditions. However, all
of the genes were up-regulated and obtained a higher level of
expression in the rice after treatment than in the control rice
samples.

Increased peroxidase (POX) activity has been observed in
a number of resistant interactions involving plant-pathogen
interactions. A previous study demonstrated that POXs were up-
regulated in rice when infected by M. oryzae (Chittoor et al.,
1997; Rauyaree et al., 2001). Five genes related to POX were
detected in our data (Figure 3C). Two genes (OS07G0677500,
OS03G0235000) were repressed in the control but induced in
the treatment samples. The expression levels of the other 3
genes (OS07G0677100, OS07G0677200, OS01G0963000) in the
groups showed that both the treatment and control conditions
could induce gene expression, but that MoHrip1 produced a
more intense effect in up-regulating the genes. These findings
suggest that phytoalexin, the ABC transporter and POX might
be involved in the resistance induced by MoHrip1 in rice.

Salicylic Acid and Jasmonic Acid Pathways
SA and jasmonic acid (JA) are two major phytohormones
responsible for regulating plant defenses against various
pathogens (Bari and Jones, 2009; Thaler et al., 2012). SA
biosynthesis derives from chorismate, an intermediate of
plant phenylpropanoid pathway, then the phenylalanine
ammonia lyase (PAL)-mediated pathway. PAL is a key
regulator of the phenylpropanoid pathway and also plays
an important role in regulating SA biosynthesis. The core
events of JA pathway are defined after hormone perception
by SCFCOI1, JAZ (JAsmonate ZIM domain) repressors are
targeted for proteasome degradation, releasing MYC2 and
de-repressing transcriptional activation (Chaman et al., 2003;
Chico et al., 2008). All genes encoding JAZs (OS10G0392400,
OS03G0180900, OS03G0181100, OS04G0395800) had relatively
low expression levels in rice under control conditions and
relatively high expression levels in rice after MoHrip1 treatment.
The PAL-encoding gene (OS05G0427400) has the same
expression patterns in rice under the treatment and control
conditions with the JAZs (Figure 3D). Therefore, it can be
implied that SA pathway was activated and the JA pathway was
blocked in rice treated with MoHrip1.

Cytochrome and Zinc-Finger Protein
The cytochrome P450 (CYP450) family is a superfamily of
enzymes that participate in metabolism and form antibiotic
compounds (Zhou et al., 1999; Nomura et al., 2002). In our
data, eight genes related to CYP450 were detected. Four genes
accumulated higher levels of transcripts in the treated rice, and
these genes were induced in both the treated and control groups.
Three genes were induced in the rice under treatment and were
repressed in the control rice. One gene (OS04G0171800) was
induced under control conditions and repressed under treatment
conditions (Figure 3E).

Zinc-finger proteins (ZFPs) form a transcription factor family
known to be involved in various forms of abiotic stresses,
such as drought, high salinity, hot, and cold, according to
many studies. However, the available research on their responses
to biotic stresses remains limited (Huang et al., 2007; Islam
et al., 2009). Four genes encoding ZFPs were repressed in
rice under control conditions and were induced in rice under
treatment conditions. The other 4 genes encoding ZFPs were
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induced in rice under control conditions but accumulated more
transcripts in rice under treatment conditions, except for one
gene (OS07G0129200), which had lower transcript levels in the
treated rice (Figure 3E). The responses of CYP450 and ZFP to
the elicitors indicated that these genes might be involved in
contributing to the induced resistance and could be considered
candidate resistance genes.

The Identification of Genes Induced
Specifically by MoHrip1 in Rice
In our data, we have identified 80 genes with particular
expression patterns in the MoHrip1-treated group and no
similar expression patterns in the buffer-treated group. These
genes can be classified into five groups (Figure 4): Figure 4A,
significantly induced in the MoHrip1-treated rice at 24 hat with
low or undetected expression in the other conditions; Figure 4B,
significantly induced in the MoHrip1-treated rice at 48 hat with
low or undetected expression in the other conditions; Figure 4C,
significantly induced in the MoHrip1-treated rice at 72 hat with
low or undetected expression in the other conditions; Figure 4D,
significantly induced in the MoHrip1-treated rice at 24 and 48
hat with low or undetected expression in the other conditions;
Figure 4E, significantly induced in the MoHrip1-treated rice at
48 and 72 hat with low or undetected expression in the other
conditions. These results may provide data for discovering genes
that can interact with MoHrip1 in rice.

Nine genes (indicated by arrows in Figure 4) that were
up-regulated in MoHrip1-treated rice and not expressed in
the buffer-treated rice were selected for qRT-PCR validation
(Figure 5). These genes include three leucine-rich repeat
proteins, an EF-hand type protein, a salicylic acid-binding
protein, an ABC-transporter-like protein, two ZFPs and one heat
shock protein (Table S5). The qRT-PCR results were consistent
with the DGE data, as all gene expression levels in the rice under
the control conditions were extremely low compared to those in
the rice under treatment at certain time intervals. The 9 genes
were verified as induced by MoHrip1 in rice and may be related
to the resistance of rice induced by the elicitor. These genes can
be selected as MoHrip1 interaction genes for further study.

Endogenous Levels of SA in Rice
SA plays an important role in the plant immune response,
and significant progress has been made in recent years in
understanding the SA-mediated defense response (An and Mou,
2011). Previous research has led to a popular belief that SA and
JA have antagonistic interactions (De Vleesschauwer et al., 2013).
In this experiment, the SA levels in rice under the treatment
and control conditions were measured as the MoHrip1-treated
rice showed enhanced resistance to blast according to the results
of a previous study (Figure 6). Moreover, the sequencing data
indicate that the JAZ genes were induced significantly in rice
under treatment conditions. JAZs were the repressors of the JA
signaling and were involved in a negative regulatory feedback
loop of the JA transduction pathway (Chico et al., 2008).

The SA levels detected in rice under the control conditions
were not very different, while the SA levels in rice under the
treatment conditions were altered significantly during the time
intervals we assessed. The SA levels in MoHrip1-treated rice

FIGURE 4 | The 80 genes with particular expression patterns in rice

after treatment and low or undetected expression in rice after control

treatment. Each line indicates data for one gene. Each row indicates a cluster

of genes for each library. The color bar on the right represents the log10 of the

RPKM values for each gene, ranging from blue (−2) to red (2). (A): 30 genes

could be detected in MoT1 and could not be detected in any control libraries;

(B): 34 genes could be detected in MoT2 and could not be detected in any

control libraries; (C): 1 gene could be detected in MoT3 but could not be

detected in the other five libraries; (D): 12 genes could be detected in MoT1

and MoT2 but could not be detected in MoT3 and the control libraries; (E): 3

genes could be detected in MoT2 and MoT3 but could not be detected in

MoT1 and the control libraries. The arrows indicate 9 genes that were selected

randomly and exhibited significantly higher gene expression levels in the

treatment group than in the control groups.

decreased slightly at 12 hat and increased prominently to their
highest level at 24 hat. The SA levels started to decrease at 36 and
48 hat, began to increase at 60 hat and finally decreased again at
72 hat. Intriguingly, the SA levels of the rice under the treatment
conditions across all time intervals were higher than those of the
rice under control conditions, excluding 48 hat, at which the SA
levels reached their lowest point. This result can be explained
through the feedback regulation of SA, which was likely induced
significantly by MoHrip1.

Endogenous Levels of GA in Rice and
Growth Promotion
Gibberellins (GAs) are a type of essential phytohormone and
control many aspects of plant growth and development. Recent
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FIGURE 5 | Validation of the DGE results by qRT-PCR of the 9 genes that were up-regulated in the MoHrip1-treated rice but were not expressed in the

buffer-treated rice. The expression levels on the y-axis were relative to the non-treated rice (NoT0) after normalization with the β-actin gene. This experiment was

repeated three times, and data are presented as the average ± SD with n = 3; hat: h after treatment.

FIGURE 6 | Endogenous SA levels of rice. The SA levels (µg/g FW) on the

y-axis were relative to those of non-treated rice (NoT0). The experiment was

repeated three times, and the data are presented as the average ± SD with n

= 3. Asterisks indicate statistically significant differences, as measured using

SAS software (Duncan’s t test, **p < 0.01, *p < 0.05).

studies have revealed that crosstalk between GA and JA
signaling is involved in both plant development and defense.
Moreover, the crosstalk is regulated by interaction between
the DELLA and JAZ proteins as repressors to modulate the

activity of relative transcriptional factors in response to the
GA and JA signals (Hou et al., 2013). We predicted that
the induced JAZs might indirectly affect GA levels. The
endogenous GA levels were then measured, along with the
length and weight of the rice under the treatment and control
conditions (Figures 7, 8). All measured data indicated that 5
µg/ml was the best concentration of MoHrip1 to produce the
greatest effect on promoting the growth of rice. According
to this experiment, the morphological differences observed at
each concentration of MoHrip1 started 9 days after treatment
(Figures 7A–C, 8). Moreover, the phytohormone GA also
required 9 days for growth promotion to be observed at a
significant level (Figure 7D). These results indicate thatMoHrip1
may influence the level of GA and that there is an optimum
concentration at which GA is most effective in regulating plant
growth.

Induction of Resistance to Rice Blast by
MoHrip1
Three groups of rice plants were sprayed with M. oryzae spore
suspension (strain KJ201) after 3 days of incubation with either
MoHrip1 or Tris-Cl. Screening was carried out on detached
leaves. The lesions on the leaves of CK group exhibited typical
and severe symptoms at 7 days after inoculation. At this time,
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FIGURE 7 | Growth promotion and GA level of plant seeds treated with a range of concentrations of MoHrip1. (A) Average length of the plant stem. (B)

Average length of the plant root. (C) Average weight of the whole plant. (D) GA levels of plants under different treatment conditions. Values are presented as the mean

± SD of three replicates, each consisting of 15 seedlings. Asterisks indicate statistically significant differences, as measured using SAS software (Duncan’s t test, **p

< 0.01, *p < 0.05).

FIGURE 8 | Rice seeds treated with a range of concentrations of MoHrip1 show significant differences in their growth morphological characterization.

(A) Rice seed germination after 9 days of treatment. (B) Rice seeds germinated after 11 days of treatment. (C) Rice seeds germinated after 13 days of treatment. The

group arranged horizontally in each graph indicates the different concentrations of MoHrip1 used to treat the rice seeds (0, 2.5, 5, 10, and 20 µg/mL, from left to right).
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FIGURE 9 | Typical disease symptoms on leaves of MoHrip1-treated

and control-treated rice plants. Rice plants were sprayed with M. oryzae

spores after being treated with MoHrip1 or Tris-Cl 3 days. The MM group

indicated that the rice seeds were immersed in MoHrip1 (10 µg/mL) then

sprayed with MoHrip1 (30 µM) at the three-leaf stage. The M group indicated

that the rice seeds were immersed in MoHrip1 (10 µg/mL) then sprayed with

Tris-Cl (25 mM) at the three-leaf stage. The CK group indicated that the rice

seeds were immersed in H2O then sprayed with Tris-Cl (25 mM) at the

three-leaf stage as a negative control.

TABLE 3 | Disease severity of rice blast in leaves of MoHrip1-treated and

control-treated rice plants.

Rice seedling samples Rice blast score

MM (Rice immersed in MoHrip1 and sprayed

with MoHrip1)

3.126 ± 0.212Aa

M (Rice immersed in MoHrip1 and sprayed

with Tris-Cl)

3.734 ± 0.173Ab

CK (Rice immersed in H2O and sprayed with

Tris-Cl)

5.862 ± 0.285B

The disease scores of the rice seedlings were evaluated on a scale of 0–9 at 7 days post-

inoculation. Values are presented as the mean ± SD of three replicates, each consisting

of 25 seedlings. Values with different letters indicate statistically significant differences

(Duncan’s t test, different capital letters means p < 0.01, different small letters means

p < 0.05).

only small and constrained lesions were observed on the leaves
of both MM group and M group, and most of the plants
remained green and healthy. While the constrained lesions on
leaves of MM group were smaller than those on leaves of
M group (Figure 9). The disease severity of all plants from
the three groups was evaluated on a standard international
0–9 scale at 7 days post-inoculation, the leaf blast score of
MM was a little lower than that of M group. While the blast
score of MM group and M group was much lower than that
of CK group (Table 3). Furthermore, we measured the root
length of rice plants after we examined the disease indices. MM
group and M group exhibited obvious function of MoHrip1
in growth promotion (Figure S8). Taken together, the results
from the disease-resistance assay and growth promotion assay
reconfirmed the inference that MoHrip1 could not only increase
rice plant resistance to the rice blast but also promote plant
growth.

DISCUSSION

Advantages and Defects of DGE in the
Gene Expression Profiling Study
In the early stage of studies, elicitor-responsive genes were
identified by means of differential mRNA display analysis,
DNA microarrays, and other methods (Kim et al., 2000; Day
et al., 2002). These methods were later replaced by NGS-based
transcriptome profiling, which is based on the sequencing of
relatively short reads, with extensive sequence data to allow for
the detection and quantification of rare or novel gene discovery
(Morrissy et al., 2009). DGE, as used in this study, includes
profiles based on NGS, generates digital rather than simulated
gene expression measurements and avoids many of the inherent
limitations of other analysis methods (Xiao et al., 2013).

DGE has already been used for studying genes in many
species, such as wheat, sweet potato, and rice (Tao et al.,
2012; Xiao et al., 2013). In general, current studies aiming at
resistance-related genes in rice, which introduced NGS-based
technology, use two styles of research model: a pathogen vs.
whole plant model or a pathogen secretion vs. rice suspension
cell model (Day et al., 2002; Bagnaresi et al., 2012). In this
study, MoHrip1, a protein elicitor secreted by M. oryzae, and
the whole rice plant form a new style of research model.
We obtained sufficient data from the Illumina sequencing
experiment (Table 1) to allow for gene detection and applied real-
time PCR to validate the DGE veracity (Figure 1). A total of 308
genes were differentially expressed, and 80 genes were expressed
in the treatment condition but not in the control condition.
These findings indicate that pathogen secretion (elicitor) vs.
the whole plant could constitute a third research model and
that DGE could fulfill the technical requirements needed to
identify potentially interesting genes. This technology also has its
drawbacks. DGE was a method designed to identify DEGs based
on relatively short sequence reads. Therefore, the differences
between the experimental and control groups are necessary;
genes with similar expression levels in the groups but acted
functionally might be ignored. In conclusion, our results provide
an overview of the gene expression patterns of elicitor-treated
rice and offer a valuable set of data for the further discovery of
candidate genes that interact with the elicitor.

SA Played a Major Role in the
Blast-Resistance of Rice and May Be
Regulated by MoHrip1
M. oryzae is a hemibiotrophic pathogen, as its invasion begins
with a biotrophic phase followed by necrotrophic phase, leading
to host cell death (Talbot, 2003). In general, the JA pathway is
associated with defense against necrotrophic pathogens, while
the SA pathway is thought to be involved in the plant resistance
to biotrophic and hemibiotrophic pathogens (Bari and Jones,
2009). The positive role of the SA pathway in blast-resistance
has been reported (Iwai et al., 2007; Daw et al., 2008). The SA
pathway includes two steps: SA biosynthesis followed by SA
signal transduction, which leads to the activation and expression
of SA-responsive genes (Ellis and Amrhein, 1971; Zhu-Salzman
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FIGURE 10 | Validation of the DGE transcriptome results by qRT-PCR for the genes involved in the resistance induced by MoHrip1 in rice. The

expression levels on the y-axis were relative to those of the non-treated samples (0 h) after normalization with the rice β-actin gene. The experiment was repeated

three times, and the resulting data are presented as the average ± SD, with n = 3; hat: h after treatment.

et al., 1998). The JA pathway possesses two similar steps to the
SA pathway (Fonseca et al., 2009).

Based on our data, the SA biosynthesis pathway was
activated, and the result was confirmed by qRT-PCR for PAL
(OS05G0427400), which was involved in SA biosynthesis.
In contrast, the JA signal transduction pathway was
blocked, and this result was confirmed by qRT-PCR for
the JAZ2 (OS03G0180900), JAZ4 (OS03G0181100), and
JAZ5 (OS04G0395800) repressors of JA signal transduction
(Figure 10). One SA biosynthesis-associated gene and 3 JA
pathway repressor genes were significant differentially expressed.

As the antagonistic function hypothesis for the SA-JA crosstalk
research prevailed, and the endogenous SA levels in the treated
condition were obviously higher than those in the control
condition, it can be predicted that SA biosynthesis was induced
in rice treated with MoHrip1.

Previous studies have identified some PR genes involved in
pathogen resistance located downstream of the SA pathway that
are regulated by the SA signals (Agrawal et al., 2001; McGee
et al., 2001; Rakwal et al., 2001). These PR genes were also
found to be up-regulated, and this result was confirmed by
qRT-PCR for PR1a (OS07G0129200), PR3 (OS10G0542900), PR5
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(OS12G0628600), PR10a (OS12G0555000), and PR10b/PBZ1
(OS12G0555200) (Figure 10). Furthermore, transcription factors
were another important part of regulators involved in pathogen
resistance. Some TFs were found to act as a node between
the SA and JA pathway, which activates SA-induced genes and
represses JA-induced genes (Li et al., 2004; Shimono et al.,
2007). Some TFs are involved in the plant defense response
along with SA (Kaneda et al., 2009). Some TFs associated with
SA were induced in rice under treatment conditions, and the
results were verified by qRT-PCR forWRKY24 (OS01G0826400),
WRKY53 (OS05G0343400), WRKY70 (OS05G0474800), and
NAC4 (OS01G0816100) (Figure 10).

An increasing number of studies has shown that rice possesses
a high basal level of SA. Although the primary function of SA
may not be to induce the expression of defense genes, it still
appears to protect rice from damage during pathogen infection
(Yu et al., 1997; Yan and Dong, 2014). From our results, even
though the SA content increased, no significant difference was
noted in the rice in the treatment group compared with the
rice in the control group. Furthermore, a large amount of
resistance-related substances, which were associated with SA,
were obviously accumulated. It can be assumed that an increased
level of SAmay not only provide an effective signal to induce gene
expression but also play an important role in reducing pathogen-
induced damage. Moreover, our results verified the importance
of the SA pathway in blast-resistance.

Phytoalexin May Be Important in
Blast-Resistance Induced by MoHrip1
Phytoalexins include a range of secondary metabolites produced
in rice upon M. oryzae infection that function in the defense
system (Wang et al., 2012; Miyamoto et al., 2014). The rice
phytoalexins have been identified to fall into two groups, and
the diterpenoid-type phytoalexins formed the major portion
of these substances. All phytoalexin-related genes that were
up-regulated in our data were involved in the biosynthesis
of phytocassanes A–E and oryzalexin A–F. Oryzalexin is
considered a biologically important phytoalexin, as it has high
antimicrobial activity in in vitro assays. There is no direct
evidence to prove its function in blast-resistance. The two types
of phytoalexin shared the same precursor. Our results showed
that phytoalexin biosynthesis related genes were increased in rice
after treatment with MoHrip1, and the results were confirmed by
qRT-PCR for CPS2 (OS02G0571100), KSL10 (OS12G0491800),
KOL4 (OS06G0569500), and CYP76M8 (OS02G0569400). These
findings suggest that phytoalexins, especially Oryzalexin, may
be important in the blast-resistance induced by MoHrip1
and that phytocassanes may be involved in the defense
response.

GA May Be Induced to Promote Plant
Growth through the Crosstalk between
Della and Jaz, Which Is Induced By
MoHrip1
GAs are plant hormones that play pivotal roles in promoting
growth. Current research suggests that GA promotes plant

growth by regulating the degradation of DELLAs, a class
of nuclear growth repressors. High levels of DELLAs will
provide feedback that negatively controls GA levels, while low
levels of DELLAs may stimulate GA production to obtain a
balance between the GAs and DELLAs (Claeys et al., 2014).
Previous studies have demonstrated that the GA-signaling
repressor DELLA and the JA-signaling repressor JAZ engage
in crosstalk that modulates the action between GA and JA
to regulate plant growth (Yang et al., 2012). According to
our data, the JAZs are induced by MoHrip1, followed by
more extensive crosstalk between the JAZs and DELLAs.
Although the level of DELLAs was not measured, it can be
predicted that increased JAZs led to DELLA repression based
on the GA contents measured in this experiment, resulting
in an overall growth promotion in rice. The results were
confirmed by qRT-PCR (Figure 10) and morphologic testing
(Figure 7).

Intriguingly, the GA and phytoalexin synthesis pathways
shared the same precursors: geranylgeranyldiphosphate (GGDP)
and ent-copalyldiphosphate (ent-CPP). However, there appears
to be separate sets of ent-CPP synthases for gibberellin (KS1) vs.
phytoalexin (KSL7, KSL10) biosynthesis. There was no evidence
to demonstrate that KS1 was induced in the rice after treatment,
while the genes encoding KSL7 and KSL10 were confirmed
to be up-regulated under treatment. These findings suggested
that the increased GA levels did not result from the sequential
catalysis derived from GGDP and were instead affected by the
crosstalk between the GA and JA pathway repressors caused by
MoHrip1.

CONCLUSION

We present an RNA-seq study focusing on the response of rice
to secretion protein elicitors. Our transcriptome data provide
comprehensive insight into the gene expression profiles induced
by MoHrip1 in rice. SA was the main phytohormone induced
to participate in blast-resistance, and the JA pathway was
repressed in rice after treatment with MoHrip1. Phytoalexins
were induced to synthesized and played an important role in
reducing the damage caused by pathogen infection. The GA
content increased to promote plant growth after rice was treated
with MoHrip1. There was a balance and exchange between
the plant defense response and plant growth promotion. The
DGE data revealed that the protein elicitor MoHrip1 possessed
the potential not only to protect plants by inducing pathogen-
resistance but also to regulate plant growth indirectly, even
though involvement with some other aspects of the plant life
cycle. Nine genes were identified as candidates, and it would be of
great value to further characterize their roles in interactions with
MoHrip1.
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Figure S1 | Saturation curve of DGE sequencing. Quantified gene expression

with 10, 20, 30......90% of the total mapped reads as the final scores. Comparing

the RPKM of one gene in each score with the final gene expression level means

that genes can be quantified accurately in this score when the deviation is less

than 15%. The X-axis represents the percentage of reads mapping to the

genome, while the Y-axis represents the ratio of genes with a qualify error of 15%.

The pictures from (A–N) represent NoT0_1, NoT0_2, MoT1_1, MoT1_2, BuT1_1,

BuT1_2, MoT2_1, MoT2_2, BuT2_1, BuT2_2, MoT3_1, MoT3_2, BuT3_1, and

BuT3_2, respectively.

Figure S2 | Pearson correlation coefficients between samples. The axis

represents the gene expression levels of one sample in two replicates under the

same condition. (A–G) represent the correlations between the two replicates of

the NoT0, BuT1, MoT1, BuT2, MoT2, BuT3, and MoT3 groups, respectively.

Figure S3 | Histogram of GO enrichment. The x-axis indicates the number of

genes enriched in terms, while the y-axis indicates the enriched GO terms.

Different colors represent biological process (green), cell component (blue) and

molecular function (red). ∗ Indicates GO terms with significant enrichment. (A–C)

Represent the GO enrichments of the differentially expressed genes in rice after 1,

2, and 3 days of treatment, respectively.

Figure S4 | Scatter diagram of the KEGG enrichment. The y-axis indicates

the name of the pathway, and the x-axis represents the Rich factor. The spot size

indicates the number of differentially expressed genes in the pathway. The q-value

represents the corrected p-value, and a q < 0.05 indicates significant enrichment.

(A–C) Represent the pathway enrichment of differentially expressed genes in rice

after 1, 2, and 3 days of treatment, respectively.

Figure S5 | Volcano plot. The volcano plot indicates the expressed genes, and

red or green spots indicate genes with significant expression differences. Red

indicates up-regulated genes, while green indicates down-regulated genes. Blue

spots indicate genes without significant expression differences. The x-axis

indicates the fold change in the gene expression levels in the different samples.

The y-axis indicates the statistical significance of the gene expression differences.

MoT1 vs. BuT1, MoT2 vs. BuT2, and MoT3 vs. BuT3 represent the comparison

between the treatment and control rice groups after MoHrip1 treatment for 1, 2,

and 3 days.

Figure S6 | Venn diagrams of the groups. (A) Differentially expressed genes

among the three groups of treated and control samples superimposed. (B,C),

numbers of differentially expressed genes in the treated and control samples

compared with the non-treated samples. NoT1, MoT1, BuT1, MoT2, BuT2,

MoT3, BuT3 represent the 0-day non-treatment group, the 1-day treatment

group, the 1-day control group, the 2-day treatment group, the 2-day control

group, the 3-day treatment group, and the 3-day control group, respectively.

Figure S7 | Volcano plots show that the treated rice samples have more

differentially expressed genes relative to the non-treated rice samples

than the control rice samples. MoT1 vs. NoT0, MoT2 vs. NoT0, and MoT3 vs.

NoT0, and MoT3vsNoT0 represent the comparisons between the treated rice and

the non-treated rice after MoHrip1 treatment for 1, 2, and 3 days. BuT1 vs. NoT0,

BuT2 vs. NoT0, and BuT3 vs. NoT0 represent the comparisons between the

control and non-treated rice groups after treatment with protein buffer for 1, 2, and

3 days.

Figure S8 | Root growth promotion of rice after treated with MoHrip1 or

Tris-Cl. (A) Root growth promotion of rice plants. (B) Average length of rice

plant root. MM (Rice immersed in MoHrip1 and sprayed with MoHrip1), M

(Rice immersed in MoHrip1 and sprayed with Tris-Cl), and CK (Rice immersed

in H2O and sprayed with Tris-Cl) were measured after 7 days inoculation with

M. oryzae spores. Values are presented as the mean ± SD of three replicates,

each consisting of 25 seedlings. Asterisks indicate statistically significant

differences, as measured using SAS software (Duncan’s t test, ∗∗p < 0.01, ∗p

< 0.05).

Table S1 | Primer sequences used in this study.

Table S2 | Statistics of the pathway enrichment of differentially expressed

genes detected in treated rice after 1 day. A corrected p < 0.05 represents

statistically significant enrichment of that pathway.

Table S3 | Ct and Log2 RPKM values for selected genes. Genes were

designated as “undetected” when RPKM = 0.01.

Table S4 | List of the gene IDs and their functional descriptions from two

detailed gene clustering analyses.

Table S5 | Eighty genes with particular expression patterns in the treated

rice and low or undetected expression in the control rice. Gene IDs with

bold fonts were selected for qRT-PCR validation.
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