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Quantitative Proteomic Analyses
Identify ABA-Related Proteins and
Signal Pathways in Maize Leaves
under Drought Conditions

Yulong Zhao *, Yankai Wang 7, Hao Yang T, Wei Wang, Jianyu Wu and Xiuli Hu *

State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan
Agricultural University, Zhengzhou, China

Drought stress is one of major factors resulting in maize yield loss. The roles of abscisic
acid (ABA) have been widely studied in crops in response to drought stress. However,
more attention is needed to identify key ABA-related proteins and also gain deeper
molecular insights about drought stress in maize. Based on this need, the physiology and
proteomics of the ABA-deficient maize mutant vp5 and its wild-type Vp5 under drought
stress were examined and analyzed. Malondialdehyde content increased and quantum
efficiency of photosystem Il decreased under drought stress in both genotypes. However,
the magnitude of the increase or decrease was significantly higher in vp5 than in Vp5. A
total of 7051 proteins with overlapping expression patterns among three replicates in the
two genotypes were identified by Multiplex run iTRAQ-based quantitative proteomic and
liquid chromatography-tandem mass spectrometry methods, of which the expression of
only 150 proteins (130 in Vp5, 27 in vp5) showed changes of at least 1.5-fold under
drought stress. Among the 150 proteins, 67 and 60 proteins were up-regulated and
down-regulated by drought stress in an ABA-dependent way, respectively. ABA was
found to play active roles in regulating signaling pathways related to photosynthesis,
oxidative phosphorylation (mainly related to ATP synthesis), and glutathione metabolism
(involved in antioxidative reaction) in the maize response to drought stress. Our results
provide an extensive dataset of ABA-dependent, drought-regulated proteins in maize
plants, which may help to elucidate the underlying mechanisms of ABA-enhanced
tolerance to drought stress in maize.

Keywords: Zea mays L., drought stress, abscisic acid (ABA), quantitative proteome, iTRAQ, LC-MS/MS, ABA
signaling pathways

INTRODUCTION

Humans are heavily dependent on cereals as a main food crop. Among cereal crops, maize is widely
cultivated all over the world, in addition to rice and wheat. Yet maize production is prominently
affected by drought stress, which has been proved to be one of the major stress factors causing
yield loss (Gong et al., 2014). It is predicted that the reduction of maize yield will reach 39.3%
when water reduction is ~40% (Daryanto et al., 2016). Many drought-tolerant maize varieties
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have been cultivated by breeding efforts and technology
improvement, which can increase the production of crops.
Nevertheless, the yield increase may be counteracted by the
prolonged drought stress caused by global climate change and
uncertainties of precipitation patterns. Food security is therefore
becoming more vulnerable in comparison with the past (FAO,
2008). For food security, it is necessary to determine more
deeply the effects of drought stress on maize development and
physiology, and the molecular mechanisms at different stages.

Both abscisic acid (ABA)-dependent and ABA-independent
signaling are involved in plant responses to stress (Roychoudhury
et al., 2013; Yoshida et al., 2014). For example, in Arabidopsis,
high temperature inhibited the function of the ubiquitin
proteasome system, but the inhibition was reduced in ABA
biosynthetic mutants and in plants by the treatment of
fluridone (ABA biosynthesis inhibitor), suggesting that it
was regulated by high temperature in an ABA-dependent
manner (Chiu et al, 2016). In Physcomitrella patens, the
accumulation of low-molecular-weight soluble (LMS) sugars
had no significant effect on the ABA-deficient mutant
ppabal and its wild type after hyperosmotic and ABA
treatments, suggesting that LMS sugars were regulated by
hyperosmotic stress in an ABA-independent way (Takezawa
et al., 2015).

When maize plants are subjected to adverse conditions,
various mechanisms are evoked to deal with stress challenges,
which include antioxidant capabilities, osmotic adjustment,
photosynthetic rate reduction, and ABA accumulation (Gong
et al., 2014; Sah et al, 2016). These processes involve the
expression of stress-response genes, many of which are regulated
by ABA (Fan et al, 2016). Therefore, ABA as an important
messenger regulates the adaptive response of plants to abiotic
stress (Sah et al., 2016). Currently, although the identification of
ABA receptors has greatly increased our understanding of ABA
perception in plants, this is not enough to identify the proteins
regulated by ABA when maize plants are subjected to drought
stress.

For this reason, this study aimed to better identify the
key proteins regulated by ABA when maize seedlings were
exposed to drought stress, and ultimately use this information to
guide agricultural planning and minimize maize yield reduction
caused by drought stress. Maize mutant viviparous-5 (vp5) is
deficient in ABA biosynthesis and suffers photo-bleaching of
leaves under normal light conditions (Robichaud et al., 1980;
Hable et al., 1998), and has a much reduced ABA content in
maize plants compared with wild-type Vp5 plants (Hu et al,
2015). Thus, the mutant vp5 and its wild-type Vp5 are ideal
materials in which to identify key drought-response proteins
regulated by ABA in maize plants. In this study, the differentially
expressed proteins in maize plants exposed to drought stress
were identified by multiplex run iTRAQ-based quantitative
proteomic analysis and liquid chromatography-tandem mass
spectrometry (LC-MS/MS) methods. As a result, 150 proteins
with significant changes in expression level were identified as
being significantly regulated by drought stress in an ABA-
dependent or -independent way.

METHODS

Plant Material and Treatments

Maize mutant vp5 and its wild-type Vp5 seedlings were used in
the present study. As described previously (Hu et al., 2015), the
vp5 mutant has reduced amounts of ABA because of a deficiency
in ABA biosynthesis (Robichaud et al., 1980). Homozygous
recessive kernels (vp5/vp5) lack carotenoids, causing white
endosperm and embryos, which are easily distinguishable from
the yellow wild-type kernels (Vp5/-). Because the recessive
mutation is lethal in the homozygous state, it is maintained as
a heterozygote. Seeds of vp5 and Vp5 plants were obtained by
selfing plants grown from heterozygous seeds (Maize Genetics
Stock Center, Urbana, IL, USA).

According to our previous description (Hu et al, 2015),
Vp5 and vp5 seeds were germinated on moistened filter paper
after being surface-sterilized for 10min in 2% hypochlorite
and then rinsed in distilled water. After germination for 2
days, both vp5 and Vp5 seedlings were cultured in Hoagland’s
nutrient solution in a light chamber (day 28°C/night 22°C,
relative humidity 75%) under 400 jumol/m?/s photosynthetically
active radiation with a 14/10h (day/night) cycle. After 2
weeks, the seedlings were subjected to drought stress by
placing them in a —0.7 MPa PEG6000 solution for 8h
at 28°C under relative humidity of 40%. Control seedlings
were maintained at 28°C under relative humidity of 75%.
Subsequently, leaves of treated and untreated seedlings were
sampled, immediately frozen in liquid N5, and stored at —80°C
until analysis. Three or five replicates were performed for each
treatment.

The Quantum Efficiency of Photosystem I

(®PSII)

®PSII was measured by using an OS-30p Chlorophyll
Fluorometer (Opti-Sciences, Tyngsboro, Massachusetts, USA) in
the second full expand leaf.

Malondialdehyde (MDA)

MDA contents were measured according to a previous
description (Hodges et al., 1999). Fifty milligrams fresh weight
(FW) leaves in 1ml 80% (v/v) ethanol were homogenized in
a mortar. After centrifugation, the supernatant was reacted
with thiobarbituric acid to produce the pinkish-red chromogen,
thiobarbituric acid-malondialdehyde. Absorbance was measured
at 440, 532, and 600 nm by using a UV-vis spectrophotometer.
MDA content was calculated as nmol/g FW tissue.

Protein Extraction

According to our previous description (Hu et al., 2015), total
proteins from the second newly expanded leaf of the maize
seedlings were extracted according to the following procedure.
Approximately 0.5 g of fresh leaves from each biological replicate
were ground into a fine power in liquid N, in a mortar
and further ground in 4ml SDS buffer (30% sucrose, 2%
SDS, 100mM Tris-HCl, pH 8.0, 50mM EDTA-Na,, 20 mM
DTT) and 4ml phenol (Tris-buffered, pH 8.0) in a 10ml
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TABLE 1 | ABA and MDA content, and ®PSlI in maize vp5 and Vp5 leaves
under control and drought conditions.

Gene Control Drought Relative
type increase/
decrease (%)
ABA  Vp5 76.50 (ng/gFW) b 168.64 (ng/gFW) a 120.45 ¢
vp5 17.28 (ng/gFW) d  21.08 (ng/gFW) ¢ 21.98 1
MDA Vp5 5.12 (nmol/gFW) d  15.01 (nmol/gFW) b 193.1 ¢
vpd 7.45 (nmol/gFW) ¢ 24.78 (nmol/gFW) a 232.6 1
PPSIl Vp5 0.612a 0.410b 33.00 |
vp5 0.210¢ 0.128d 39.06 |
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Each value represents the average of three biological replicas. For Dun’s Results, different
characters are considered to be significant among different treatments. The symbols
“tand |” represent relative increase and decrease, respectively.

tube, followed by the addition of 1 mM phenylmethanesulfonyl
fluoride and PhosSTOP Phosphatase Inhibitor Cocktail (one
tablet/10 ml; Roche, Basel, Switzerland) to inhibit protease and
phosphatase activity, respectively. The mixture was thoroughly
vortexed for 30s, and the phenol phase was separated by
centrifugation at 14,000 x g and 4°C for 15min. The upper
phenol phase was pipetted into fresh 10ml tubes, and 4-fold
volumes of cold methanol plus 100 mM ammonium acetate
were added. After centrifugation at 14,000 xg and 4 °C
for 15min, the supernatant was carefully discarded and the
precipitated proteins were washed twice with cold acetone.
Finally, the protein mixtures were harvested by centrifugation.
Measurement of protein content was carried out using a 2-D
Quant Kit (Amersham Bioscience, America) containing bovine
serum albumin (2mg/ml) as the standard. To enhance the
quantitative accuracy, proteins extracted from every biological
replicate were adjusted to the same concentration for the
subsequent analysis (Wang et al., 2013; Hu et al., 2015; Zhang
et al., 2015).

Protein Digestion and iTRAQ Labeling

As described previously (Hu et al., 2015), protein digestion
was performed according to the FASP procedure (Umezawa
et al, 2013), and the resulting peptide mixture was labeled
using the 4-plex iTRAQ reagent according to the manufacturer’s
instructions (Applied Biosystems). Briefly, 200 ug proteins for
each sample were incorporated into 30 pl STD buffer (4% SDS,
100mM DTT, 150 mM Tris-HCI, pH 8.0). The detergent DTT
and other low-molecular-weight components were removed
using UA buffer (8 M urea, 150mM Tris-HCI, pH 8.0) by
repeated ultrafiltration (Microcon units, 30 kD). Then, 100 1
of 0.05M iodoacetamide in UA buffer was added to block
reduced cysteine residues, and the samples were incubated for
20min in darkness. The filters were washed with 100 ul UA
buffer three times and then washed twice with 100 u1 DS buffer
(50 mM trimethylammonium bicarbonate at pH 8.5). Finally, the
protein suspensions were digested with 2 pug trypsin (Promega)
in 40 pl DS buffer overnight at 37°C, and the resulting peptides

&

| LC-MS/MS ]

L5

| Quantitation and identification of proteins from replicate 1 (or 2, or 3) |

{

Annotation of the overlap proteins from three replicates and functional
analysis with blast 2GO and KEGG

FIGURE 1 | iTRAQ 4-plex labeling and LC MS/MS workflow for
identifying proteins in the ABA-deficient mutant vp5 and wild-type Vp5
seedling leaves under drought conditions.

Vps Common wpsS

123 7 20

FIGURE 2 | Venn diagram showing the number of significantly
expressed proteins in maize leaves under drought stress. The diagram
shows the overlap between the ABA-deficient mutant vp5 and the wild-type
Vp5.

were collected as a filtrate. The peptide content was estimated
by UV light spectral density at 280 nm of a 0.1% solution
using an extinction coefficient of 1.1 that was calculated on the
basis of the frequency of tryptophan and tyrosine in vertebrate
proteins.

For labeling, each iTRAQ reagent was dissolved in 70 pl
ethanol and added to the respective peptide mixture. The
samples, Vp5-control, Vp5-drought, vp5-control, and vp5-
drought, were multiplexed and vacuum dried. Three independent
biological experiments were performed.
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Vp5-CK Vp5-D vp5-CK vp5-D

B-actin

Experiments were repeated at least three times.

Chlorophylla-b binding protein 2

Chloroplast outer envelope 24 kD protein

Glutathione S-transferase GST24

Glutathione S-transferase GSTU6

Heat shock cognate 70 kDa protein 2

NAD(P)H-dependent oxidoreductase

Photosystem Il reaction center protein L

Putative RING zinc finger domain superfamily protein

FIGURE 3 | Gene expression analysis of eight proteins in maize Vp5 and vp5 leaves under drought stress conditions. The eight proteins included
chlorophyll a-b binding protein 2, chloroplast outer envelope 24 kD protein, glutathione S-transferase GST 24, glutathione S-transferase GSTUB, heat shock cognate
70 kDa protein 2, NAD(P)H-dependent oxidoreductase, photosystem Il reaction center protein L, and putative RING zinc finger domain superfamily protein.

Peptide Fractionation with Strong Cation
Exchange Chromatography

According to our previous description (Hu et al, 2015),
iTRAQ-labeled peptides were fractionated by strong cation
exchange chromatography using the AKTA Purifier system (GE
Healthcare). The dried peptide mixture was reconstituted and
acidified with 2 ml buffer A (10 mM KH,POy in 25% ACN, pH
2.7) and loaded onto a PolySULFOETHYL 4.6 x 100 mM column
(5m, 200 A, PolyLC Inc, Maryland, USA). The peptides were
eluted at a flow rate of 1 ml/min with a gradient of 0-10%
buffer B (500 mM KCI, 10 mM KH,POy4 in 25% of ACN, pH
2.7) for 2min, 10-20% buffer B for 25min, 20-45% buffer
B for 5 min, and 50-100% buffer B for 5min. The elution
was monitored by absorbance at 214nm, and fractions were
collected every 1 min. The collected fractions (about 30 fractions)

were finally combined into 10 pools and desalted on C18
Cartridges [Empore™ SPE Cartridges C18 (standard density),
bed inner diameter 7 mm, volume 3 ml, Sigma]. Each fraction
was concentrated by vacuum centrifugation and reconstituted in
40l 0.1% (v/v) trifluoroacetic acid. All samples were stored at
—80°C until LC-MS/MS analysis.

Liquid Chromatography (LC)-Electrospray
lonization (ESI) Tandem MS (MS/MS)
Analysis by Q Exactive

As described previously (Hu et al., 2015), experiments were
performed on a Q Exactive mass spectrometer that was coupled
to an Easy nLC (Proxeon Biosystems, now Thermo Fisher
Scientific). Ten microliters of each fraction were injected for
nanoLC-MS/MS analysis. The peptide mixture (5 pug) was loaded
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onto a C18 reversed-phase column (Thermo Scientific Easy
Column, 10cm long, 75um inner diameter, 3 um resin) in
buffer A (0.1% formic acid) and separated with a linear gradient
of buffer B (80% acetonitrile and 0.1% formic acid) at a flow
rate of 250nl/min controlled by IntelliFlow technology over
140 min. MS data were acquired using a data-dependent top10
method dynamically choosing the most abundant precursor
ions from the survey scan (300-1800m/z) for higher-energy
collisional dissociation fragmentation. Determination of the
target value was based on predictive automatic gain control.
Dynamic exclusion duration was 60 s. Survey scans were acquired
at a resolution of 70,000 at m/z 200, and the resolution for
higher-energy collisional dissociation spectra was set to 17,500
at m/z 200. Normalized collision energy was 30 eV, and the
underfill ratio, which specifies the minimum percentage of the
target value likely to be reached at maximum fill time, was defined
as 0.1%. The instrument was run with peptide recognition mode
enabled.

Data Analysis
According to our previous description (Hu et al, 2015),
MS/MS spectra were searched using Mascot 2.2 (Matrix
Science) embedded in Proteome Discoverer 1.4 against the
uniprot_Zea_mays_87227_20150504.fasta (87227 sequences,
download May 4th, 2015) and the decoy database. The
parameters used in Mascot searches for normal peptides
were as follows: Peptide mass tolerance: 20 ppm, MS/MS
tolerance: 0.1 Da, Enzyme: Trypsin, max missed cleavage: 2,
Fixed modification: Carbamidomethyl (C), iTRAQ4plex(K),
iTRAQ4plex(N-term), Variable modification:Oxidation (M),
FDR < 0.01. The protein and peptide probabilities were set
at 50 and 60%, respectively. Proteins with at least two unique
peptides, a Mascot score of at least 25, and detection in at least
two replicates were further used.

For each replicate of proteomics, iTRAQ ratios between
drought stressed plants and controls for each run were converted
to z-scores to normalize the data.
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Bioinformatics

As described previously (Hu et al, 2015), the molecular
functions of the identified proteins were classified according to
their gene ontology annotations and their biological functions.
The subcellular localization of the unique proteins identified in
this study was predicted using the publicly available program
WolfPsort (http://wolfpsort.org). Protein-protein interaction
networks were analyzed using the publicly available program
STRING (http://string-db.org/). STRING is a database of known
and predicted protein-protein interactions. The interactions
include direct (physical) and indirect (functional) associations,
and they are derived from four sources: the genomic context,
high-throughput experiments, coexpression, and previous
knowledge. STRING quantitatively integrates the interaction
data from these sources for a large number of organisms and,
where applicable, transfers information between these organisms.

ABA Assay

According to our previous description (Hu et al., 2012), maize
leaves (0.5-1.0g) were ground in liquid N, with a mortar,
extracted with 2ml of ice-cold 80% methanol containing 1 mM
butylated hydroxytoluene to prevent oxidation, and then stored
overnight at 4°C. The extracts were centrifuged at 12,000 x
g for 15min at 4°C. The pellets were extracted once and
stored at 4°C for 1h. The two resulting supernatants were
combined and passed through a C18 Sep-Pak cartridge (Waters,
Milford, MA, USA). The efflux was collected and dried in N».
The residues were then dissolved in 10 mM phosphate buffer
solution (pH 7.4), and concentrations of ABA were determined
in enzyme-linked immunosorbent assay (ELISA). Statistical
analyses of the physiological measurements were conducted
using independent Student’s ¢-tests with SPSS statistics software
(version 17.0).
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Gene Expression Analysis by

Reverse-Transcription PCR

As described previously (Hu et al., 2010), total RNA was isolated
from leaves by using an RNeasy mini kit according to the
instructions supplied by the manufacturer (Qiagen, Valencia,
CA). Approximately 3 ug of total RNA was reverse transcribed
into cDNA using SuperScript II reverse transcriptase (Invitrogen,
Carlsbad, CA). cDNA was amplified by PCR using the primers
shown in Supplementary Table S1. To standardize the results,
the relative abundance of B-actin was also determined and used as
the internal standard. Aliquots of the PCR reactions were loaded
on agarose gels and stained with ethidium bromide.

Statistical Analysis

The proteins and ABA assays were the mean of three replicates.
The means were compared by a one-way analysis of variance
and Duncan’s multiple range test at a 5% level of significance.
False discovery rates attained by the Benjamini-Hochberg
method were used to adjust p-values (correction for multiple
comparisons). The significance of differences between Vp5 and
vp5 were compared by ¢-test analysis at the 5% level.

RESULTS

The Influence of Drought on ABA, MDA,

and ®PSII

After vp5 and Vp5 plants were subjected to drought treatment,
the ABA content of leaves was measured by ELISA. Whether
under normal or drought stress conditions, the ABA content in
Vp5 leaves was more than 6-fold higher than that in vp5 leaves;
compared with the corresponding control, the relative increase in

ABA content was 120.45 and 21.98% in Vp5 and vp5 leaves under
drought stress, respectively (Table 1). MDA is generated by lipid
peroxidation, so the change in MDA content reflects the extent of
membrane damage. Our results indicated that MDA content was
prominently elevated by drought stress, and the relative increase
was 193.1 and 232.6% in Vp5 and vp5 leaves, respectively,
compared with the corresponding control (Table 1). ®PSII is one
of the chlorophyll fluorescence parameters and is classically used
to monitor change in photosynthetic performance. The present
results indicated that the relative decrease in ®PSII caused by
drought stress was 33.00 and 39.5% in Vp5 and vp5 leaves,
respectively, compared with the respective controls. Regardless of
drought stress level, the ®PSII of Vp5 was significantly more than
that of vp5. These results indicate that the ABA-deficient mutant
vp5 is more susceptible to drought stress than Vp5 and is very
useful material to study the key proteins regulated by ABA under
drought stress.

Identification of Differentially Expressed

Proteins under Drought Stress

After vp5 and Vp5 seedlings were subjected to drought stress,
total proteins from leaves were extracted and analyzed by
multiplex run iTRAQ-based quantitative proteomic analysis
and LC-MS/MS methods according to the workflow shown in
Figure 1, resulting in the identification of 7051 proteins at a
false discovery rate of 1%. Of the 7051 proteins (indentified
peptides, see Supplementary Excels S1-S3), based on p < 0.01,
there were 150 proteins with a >1.5-fold (increased) or <0.66-
fold (decreased) expression change ratio under drought stress
relative to the respective controls (Figure 2). In order to validate
the above-mentioned results of protein abundance, the transcript
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expression levels of eight interesting proteins were analyzed
by reverse-transcription PCR. The results indicated that the
transcription patterns of the eight proteins were concomitant
with protein expression levels, which supported the results
attained by iTRAQ-based quantitative proteomic analysis and
LC-MS/MS (Figure 3).

The drought-response proteins in vp5 and Vp5 were
annotated using Blast2GO according to the biological process
“cell component and molecular function” (Figures 4, 5A-C).
The results showed that the differentially expressed proteins
in Vp5 were mainly involved in such signal pathways as
photosynthesis,  oxidative  phosphorylation,  glutathione
metabolism, and RNA degradation (Figure4D), which
was different from the signaling pathways identified in vp5
(Figure 5D). Figure 6 shows the comparisons of the biological
process, molecular functions, cellular components, and signaling
pathways of proteins identified in Vp5 and vp5 under drought
stress, which clearly indicated a difference in significantly
expressed proteins between Vp5 and vp5 under drought
stress.

ABA Regulation for Drought-Response

Proteins

Plants respond to abiotic stress by ABA-dependent and ABA-
independent mechanisms (Sah et al., 2016). In the present study,
150 proteins with a fold change >1.5 included 7 identified
in both genotypes (Table 2), 123 only in Vp5 (Table 3), and
20 only in vp5 (Table 4). Specifically, among the 7 (Table 2),
123 (Table 3), and 20 (Table4) proteins, there were 5, 64,
and 8 uncharacterized proteins, respectively. Among the seven
common proteins in the two genotypes (Table 2), the expression
of four proteins (COHF37, B7ZX39, B6T3J3, and K7TKJ3)
was increased in Vp5 but decreased in vp5 under drought
conditions, indicating that these proteins were up-regulated by
drought stress in an ABA-dependent manner; drought stress
decreased the expression of protein B4FMW4 by a similar
extent in Vp5 and vp5, indicating that the protein was down-
regulated by drought stress in an ABA-independent manner;
drought stress significantly decreased the expression of two
proteins (B6TM56, COPBJ1) in Vp5, but significantly increased
the expression of these two proteins in vp5, indicating that
they were up-regulated by drought stress but down-regulated
by ABA.

Among the 123 proteins with 1.5-fold changes of expression
level only in Vp5 (Table 3), the expression of 63 proteins was
increased in Vp5 under drought conditions, indicating that
these proteins were up-regulated by drought stress in an ABA-
dependent manner; the expression of 60 proteins was decreased
under drought conditions, indicating that these proteins
were down-regulated by drought stress in an ABA-dependent
manner.

Among the 20 proteins with 1.5-fold changes of expression
level only in vp5 (Table4), drought stress increased the
expression of 13 proteins in vp5 but only slightly affected
their expression in Vp5, indicating that these proteins were
down-regulated by ABA. By contrast, drought stress significantly

TABLE 2 | Proteins with significant expression level changes in both Vp5 and vp5 leaves under drought stress.

Regulation of ABA and drought stress

T-test

vp5: D/control Vp5: D/control vp5: D/contro

Vp5: D/control

Description

Accession

P-value

P-value Average?

Average?

3

0.000  Up-regulated by drought in an ABA-dependent way

1632 1.545 0.504 0.518 0.514 1.599 0.002 0.512 0.001

1.620

Uncharacterized protein

COHF37
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gamma-glutamylcysteine

synthetase

Up-regulated by drought in an ABA-dependent way

1.503 0.000 1.013 0.914 0.011

1.203 0.825

1.508 1.478 1.011

1.523

Glutathione S-transferase

GST 24

QIFQB5

4Each value represents the average of three biological replicates. The average is significant at a p < 0.01 level. A t-test value < 0.05 is considered to be significant between ABA-deficient mutant vp5 and wild-type Vp5. D, drought stress.

decreased the expression of seven proteins in vp5 but only slightly
affected their expression in Vp5, indicating that these proteins
were up-regulated by ABA.

Chloroplast Proteins Involved in ABA
Signaling under Drought Stress

In the present study, 27 chloroplast proteins were found to be
related to ABA in maize leaves under drought conditions
(Table 5). Among these, three proteins related to the
transcriptional process included an uncharacterized protein
(B4FJH1) with nucleotide binding function, ribonucleoprotein
A (B6T531), and FHA transcription factor (K7UIV2), of which
the uncharacterized protein and ribonucleoprotein A were
down-regulated by drought in an ABA-dependent manner while
the FHA transcription factor was up-regulated by drought in
an ABA-dependent manner; two proteins related to protein
synthesis included eukaryotic translation initiation factor 3
subunit E (B4FDY7) and 50S ribosomal protein L20 (P26566),
which were up- and down-regulated by drought in an ABA-
dependent manner, respectively; nine proteins related to the
photosynthesis process included uncharacterized proteins
(B4FB57 and COPLS3) with chlorophyll binding function,
chlorophyll a-b binding protein 2 (B6STN4), photosystem
I reaction center subunit XI (B6SXR2), an uncharacterized
protein (K7U2VO0) with electron transport function, oxygen
evolving enhancer protein 3 (K7UG66), NAD(P)H-quinone
oxidoreductase (P11647), photosystem II reaction center protein
L (P60138), and ATP synthase epsilon chain (P00835), of which
NAD(P)H-quinone oxidoreductase chain 4 was down-regulated
by drought stress in an ABA-dependent manner while the other
eight proteins were up-regulated by drought stress in an ABA-
dependent manner. In addition, there were five enzymes—an
uncharacterized protein (B4F9Q3) with glutathione_S-Trfase_N,
3-oxoacyl-[acyl-carrier-protein] synthase (B6TGG7), aldo-keto
reductase yakc (B6TYB4), an uncharacterized protein (B8A310)
with hydrolase activity, and putative gamma-glutamylcysteine
synthetase (Q8W4W3)—and seven proteins with unknown
function (B4FBH1, B4FDKS8, B4FMW4, B4FPH3, COHFZ5,
K7WEH3, and B4AFMW4).

ABA-Regulated Enzymes under Drought
Stress

In this study, 28 enzymes were found to be implicated in drought
and ABA signaling (Table 6). Six enzymes, including glutathione
peroxidase (B6SU31), peroxidase (B8A1T1, K7UZ21), an
uncharacterized protein (B4F9Q3) with glutathione_S-Trfase_N,
glutathione S-transferase GSTU6 (B6TP77), putative gamma-
glutamylcysteine synthetase (Q8W4W3), and glutathione
S-transferase GST24 (Q9FQB5), were involved in glutathione
synthesis and the removal of reactive oxygen species. Of the six
enzymes, the expression levels of glutathione peroxidase,
two peroxidases, and putative gamma-glutamylcysteine
synthetase were down-regulated by drought stress in an
ABA-dependent way while an uncharacterized protein,
GSTU6, and GST24 were up-regulated by drought stress in
an ABA-dependent way.
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ABA-dependent way

center protein L

1.015 0.823 0.002 Down-regulated by drought in an
ABA-dependent way

0.000

1.105 1.027 0.584

0.569  0.579 0.913

0.604

Putative

Q8W4W3

gamma-glutamylcysteine

synthetase

Up-regulated by ABA

0.000

0.003
0.001

0.626
0.544

0.341

1.063
0.580

1.063  1.079 0619 0.638  0.621
0.526 0.545

0.613

1.057
0.601

Uncharacterized protein

K7WEH3

Down-regulated by drought in an

ABA-independent way

0.334

0.003

0.542

0.546

Uncharacterized protein

B4FMW4

4Each value represents the average of three biological replicates. The average is significant at a p < 0.01 level. A t-test value < 0.05 is considered to be significant between ABA-deficient mutant vp5 and wild-type Vp5. D, drought stress.

The expression levels of 12-oxo-phytodienoic acid reductase
(Q49HD?Y, involved in jasmonic acid synthesis) and dual
specificity protein phosphatase 4 (B6U4B9) were down- and
up-regulated by drought stress in an ABA-dependent way,
respectively; the expression levels of NAD(P)H-dependent
oxidoreductase (B6SZK3) and aldo-keto reductase yakc
(B6TYB4), belonging to the monomeric NADPH-dependent
oxidoreductase family, were up-regulated by drought stress in an
ABA-dependent manner; the expression levels of mitochondrion
cytochrome ¢ oxidase subunit 3 (P09138) and chloroplast
NAD(P)H-quinone oxidoreductase chain 4 (P11647) were
down-regulated by drought stress in an ABA-dependent
manner, indicating that the electron transport of mitochondria
and chloroplasts was inhibited under drought conditions;
the expression levels of uncharacterized protein (B4FB53)
belonging to the ubiquitin-conjugating enzyme family, soluble
inorganic pyrophosphatase, leucine-rich repeat receptor protein
kinase EXS (B6SZL9), and chloroplast ATP synthase epsilon
chain (P00835) were up-regulated by drought stress in an
ABA-dependent way.

To uncover the interactions among these enzymes, especially
protein kinases/phosphatases, with other proteins exhibiting
significantly changed expression levels under drought stress,
protein-protein interaction analysis was conducted using
STRING software (Figure 7). In the network of interactions, five
enzymes were found to play core roles in the response of maize
leaves to drought stress, which included ubiquitin-conjugating
enzyme (4342488), serine/threonine protein phosphatase
(4333572), HAD-superfamily hydrolase (LOC_0s03g19760.1),
NADH dehydrogenase subunit 4 (3131398), and glutathione
S-transferase (4346305).

Ubiquitin-conjugating enzyme (4342488) had interactions
with core histone H2A/H2B/H3/H4 domain containing protein
(4324498), SWI/SNF-related matrix-associated actin-dependent
regulator (4335086) of chromatin subfamily A, and ubiquitin
fusion protein (LOC_Os03g13170.1), which further interacted
with core histone H2A/H2B/H3/H4 domain containing
protein, eukaryotic translation initiation factor 3 subunit E
(4342741), and maf (OsJ_34216). Serine/threonine protein
phosphatase (4333572) had interactions with suppressor of Mek
(OsJ_01603) and metallo-beta-lactamase (4329586), while they
further interacted with core histone H2A/H2B/H3/H4 domain
containing protein (4324498) and ubiquinol-cytochrome
C reductase hinge protein (4329594), respectively; NADH
dehydrogenase subunit 4 (3131398) had interactions with
cytochrome b559 alpha chain (3131413) and chloroplast 50S
ribosomal protein L20 (LOC_Os08g15306.1), while they further
interacted with photosystem I reaction center subunit XI
(4352085) and ribosomal protein L51 (OsI_10460), respectively.

HAD-superfamily hydrolase (LOC_0Os03g19760.1) had
interactions with core histone H2A/H2B/H3/H4 domain
containing protein (4324498), expressed protein (4352930),
glutathione S-transferase (4346305), photosystem I reaction
center subunit XI (4352085), and oxygen evolving enhancer
protein 3 (4329766), while glutathione S-transferase also had
interactions with these proteins. In addition, exosome complex
exonuclease (OsI_30553) had an interaction with actin-related
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Down-regulated by ABA

0.001 0.000

1.684
1.015

0.430

1.059
0.584

1.590
1.027

1.049 1.005 1.584 1.577
0.579 0913 1.105

0.569

1.123
0.604

Beta-glucosidase aggregating factor

QoLLsr

Down-regulated by drought in an

ABA-dependent way

0.002

0.823

0.000

Putative gamma-glutamylcysteine

synthetase

Q8W4W3

Up-regulated by drought in an

ABA-dependent way

0.914 0.011

1.013

1.503 0.000

1508 1.478 1.011 1.203 0.825

Glutathione S-transferase GST 24 1.523

QIFQB5

0.008 0.424 0.001 0.000 Down-regulated by drought, but
up-regulated by ABA

0719 0.723 0414 0424 0.434 0.719

0.715

Peroxidase J (Fragment)

Q9ZTS9

4Each value represents the average of three biological replicas. The average is significant at a p < 0.01 level. A T-test value < 0.05 is considered to be significant between ABA-deficient mutant vp5 and wild type Vp5. D, drought stress.

protein 2/3 complex subunit 2 (4324174). The results indicated
that the five enzymes might have an active role in protein
defense/degradation and photosynthesis protection under
drought stress (maize protein query sequences matched to rice
protein query sequences; see Supplementary Table S2).

Proteins Related to Stimuli Response

under Drought Stress

Among 150 differentially expressed proteins, 21 proteins
were characterized as “response to stimulus” (Figures 5, 6A,
Table 7). Among the 21 proteins, the expression levels of
three proteins (B4FBV4, B4FBY1, and COHF37) belonging
to the small heat shock protein (sHSP) family were up-
regulated by drought stress in an ABA-dependent manner;
two peroxidases (B8A1T1, K7UZ21) were down-regulated by
drought in an ABA-dependent way, and peroxidase (Q9ZTS9)
was down-regulated by ABA; DHN2-like protein (B7U627)
and an uncharacterized protein (B4G1HI1) of the dehydrin
family, FHA transcription factor (K7UIV2) and DREPP4
protein (B6TNI6) were up-regulated by drought stress in an
ABA-dependent manner. In particular, the expression of two
uncharacterized proteins (COPLS3 with ADP binding function,
K7TI96 with nucleotide binding function) had 4.53- and 5.23-
fold changes in Vp5 expression, while there was no obvious
difference in expression level in vp5 under drought stress
conditions.

Main Signaling Pathways Mediated by ABA

under Drought Stress

Based on the KEGG analysis, signaling pathways in which the
differentially expressed proteins were involved for Vp5 (Table 3)
and vp5 (Table4) under drought stress were classified into
48 and 26 categories, respectively (for proteins corresponding
to each signaling pathway, see Supplementary Tables S3, S4).
For Vp5 (Figure4), the top three categories with the most
proteins were photosynthesis (10), oxidative phosphorylation
(4), glutathione metabolism (3), and RNA degradation (3). For
vp5 (Figure 5), each of 26 categories had only one protein.
Particularly, 10 signal pathways were in common in Vp5 and
vp5; 38 were only found in Vp5; 16 were only found in
vp5. Among the top 12 categories in Vp5 (Figure 5), signaling
pathways such as photosynthesis, glutathione metabolism,
RNA degradation, phenylalanine metabolism, phenylpropanoid
biosynthesis, ribosome, MAPK signaling pathway, and protein
processing in endoplasmic reticullum were found only in Vp5
while oxidative phosphorylation, RNA transport, alcoholism, and
systemic lupus erythematosus were also found in vp5.

For Vp5, the top signaling pathway—photosynthesis—
included 10 proteins (B6SP61, K7U2V0, B6SXR2, K7UG66,
P00835, P60138, B6STN4, B4FB57, P11647, and COPLS3),
of which the expression of B6SP61 and P11647 was down-
regulated by drought stress in an ABA-dependent manner while
the expression of the other eight proteins was up-regulated
by drought stress in an ABA-dependent way; the second
signaling pathway—oxidative phosphorylation—included four
proteins (P09138, P11647, BAFWTS5, and P00835), of which
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FIGURE 7 | Protein-protein interaction network analysis among the significantly expressed proteins in maize Vp5 and vp5 leaves under drought stress
using String software.

P09138 and P11647 were down-regulated by drought stress in  stress caused major disturbances to crop photosynthesis and
an ABA-dependent manner, and B4FWT5 and P00835 were  antioxidant defense.

up-regulated by drought stress in an ABA-dependent way;

glutathione metabolism (including three proteins: Q8W4W3,

B6SU31, and B6TP77) and RNA degradation (including three DISCUSSION

proteins: B6T763, B4FPS3, and COPMV2) were the third top

signaling pathways. Among the six proteins, the expression of — Due to increased food demand with increasing population and
Q8W4W3, B6SU31, and B6T763 was down-regulated by drought  crop yield loss by abnormal environmental changes, increased
stress in an ABA-dependent manner while that of B6TP77,  or stable production of crops under normal or stress conditions
B4FPS3, and COPMV2 was up-regulated by drought stress in  is necessary. Therefore, it will be helpful for food security to
an ABA-dependent way. These results indicated that drought  explore the mechanisms of crop tolerance to stress. ABA is a vital
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hormone and confers tolerance to abiotic stress (Sah et al., 2016).
Although there are some studies concerning proteomic analysis
of maize tolerance to drought stress (Benesova et al., 2012; Yang
et al., 2014), there are still few studies investigating the roles of
ABA in proteomic changes during maize tolerance to drought
stress. In this regard, the present study focused on the roles of
ABA in drought-induced proteomic changes by comparing the
ABA-deficient maize mutant vp5 and its wild-type Vp5.

ABA-Mediated Chloroplast Proteins and

Photosynthesis under Drought Stress

It has been proved that photosynthesis of C4 plants is highly
sensitive to drought stress. With sustained drought, stomatal
conductance, and CO, assimilation rate decrease rapidly (for a
review, see Ghannoum, 2009). Our previous results showed that
ABA regulated the phosphorylation of 21 chloroplast proteins
under osmotic stress conditions (Hu et al, 2015). In this
study, photosynthesis was the top signaling pathway affected by
drought stress. Twenty-seven chloroplast proteins were regulated
by ABA in maize plants exposed to drought stress, of which
10 proteins were involved in photosynthesis. Among these 10
proteins, drought down-regulated the expression of ferredoxin-1
and NAD(P)H-quinone oxidoreductase chain 4, but up-regulated
the expression of photosystem I reaction center subunit XI,
oxygen evolving enhancer protein 3, ATP synthase epsilon
chain, photosystem II reaction center protein L, chlorophyll a-
b binding protein 2, and two uncharacterized proteins in an
ABA-dependent way.

In rice, ABA and salt treatment enhanced the expression
of oxygen evolving enhancer protein 2 (Abbasi and Komatsu,
2014). In Arabidopsis, drought stress down- and up-regulated the
expression of ferredoxin-1 and ferredoxin-2 genes, respectively
(Lehtimaki et al., 2010). In maize, drought enhanced the
expression of ferredoxin and PsaK (photosystem I reaction center
subunit) in the drought-tolerant genotype CE704 but down-
regulated their expression in the drought-sensitive 2023 genotype
and the expression of PsbP (23 kDa extrinsic polypeptide
of photosystem II) in two genotypes (BeneSova et al., 2012).
These results indicate that the expression patterns of chloroplast
proteins related to photosynthesis are complex under drought
conditions and highly dependent on the species and genotypes
of plants, and the length and severity of stress.

Of the 27 chloroplast proteins, five proteins were involved
in synthesis of chloroplast proteins, including eukaryotic
translation initiation factor 3 subunit E and FHA transcription
factor (up-regulated by drought in an ABA-dependent way),
and uncharacterized protein, ribonucleoprotein A, and 50S
ribosomal protein L20 (down-regulated by drought in an
ABA-dependent way). In Arabidopsis, over-expressing wheat
eukaryotic translation initiation factor 3 subunit G enhanced
the survival rate and photosynthetic efficiency of plants under
drought stress (Singh et al., 2013). In maize, drought down-
regulated the expression of ribonucleoprotein A in the drought-
tolerant CE704 and drought-sensitive 2023 genotypes, but
down-regulated the expression of ribosomal protein S18 in
CE704 and up-regulated its expression in the 2023 genotype
(Benesova et al., 2012). These results indicate that drought stress
disturbs chloroplast protein synthesis, and eukaryotic translation

initiation factor 3 could play an active role in enhancing the
tolerance of crops to drought stress.

ABA Involved in Drought-Induced Protein

Homeostasis and Degradation

In order to gain functional activity, it is necessary for most
proteins to fold into fine three-dimensional structures. However,
under stress conditions, many proteins are at great risk of
aberrant folding and aggregation. In order to avoid these hazards,
cells need to depend on a complex network of molecular
chaperones to prevent aggregation and promote efficient folding
(Hartl et al., 2011; Kim et al., 2013). Recent advances showed that
drought increased the expression levels of several sHSPs in maize
leaves but decreased their expression in maize kernels (Benesova
et al,, 2012; Yang et al., 2014). Our previous study indicated that
ABA regulated the changes in phosphorylation level of several
sHSPs in maize leaves under drought stress (Hu et al., 2015).
In the present study, drought stress enhanced the expression of
three sHSPs (COHF37, B4FBV4, and B4FBY1) but decreased the
expression of HSP70 (B6SZ69) in an ABA-dependent manner.
Taken together, these results show that HSPs as chaperons play
extensive roles in maize endurance to drought stress.

Chaperone T-complex protein 1 has been extensively studied
in humans and animals (Sinha et al., 2014; Wu et al., 2015),
but the function of chaperone T-complex protein 1 remains
poorly understood in plants. In this study, drought significantly
elevated the expression of T-complex protein 1 subunits zeta
(B6U118) and delta (COHGTS5) in an ABA-dependent way. This
study therefore extends our understanding of T-complex protein
1 function in plants and is also the first research to our knowledge
identifying the role of T-complex protein 1 in the maize response
to drought stress.

The ubiquitin-dependent proteolytic pathway degrades most
proteins and is the primary proteolysis mechanism in eukaryotic
cells. Ubiquitination involves the successive action of at
least three enzymes: ubiquitin-activating enzyme, ubiquitin-
conjugating enzyme, and ubiquitin ligase (Zhang et al., 2015).
In the current study, ubiquitin-conjugating enzyme (B4FB53)
was obviously increased by drought stress in an ABA-
dependent manner and had interactions with six proteins
under drought conditions, including ubiquitin fusion protein
(B6SHW9). In addition, drought increased the expression
levels of carboxypeptidase (COHHB1) and an uncharacterized
protein (B4FEE1) with serine-type endopeptidase activity.
In amaranth leaves, the content of ubiquitin conjugating
enzyme was also enhanced under drought stress (Huerta-
Ocampo et al, 2009). Our previous study indicated that
the phosphorylation levels of eight ubiquitin proteins were
significantly changed in maize leaves under drought stress (Hu
et al., 2015). Taken together, these results suggest a higher rate
of unnecessary or damaged protein degradation under drought
conditions.

Antioxidative Proteins Regulated by ABA
under Drought Stress

Oxidative stress refers to the imbalance of reactive oxygen
species and the antioxidant defense system,
which in the oxidative damage of many
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macromolecules and an excessive reduction of electron
transport chain components in chloroplasts, mitochondria,
and various detoxification processes (Cruz de Carvalho,
2008). Therefore, it is necessary for plants to start fine
regulation mechanisms to remove reactive oxygen species
under stress conditions. In the present study, nine proteins
involved in processes related to redox homeostasis were
differentially regulated: three isoforms of glutathione S-
transferase,  glutathione  peroxidase, ~NADH-ubiquinone
oxidoreductase  10.5 kDa subunit, NAD(P)H-quinone
oxidoreductase chain 4, and three isoforms of peroxidase
(Table 6).

Glutathione S-transferase can reduce H;O, to its
corresponding hydroxyl compounds, which may remediate
oxidative damage of membranes. Glutathione peroxidase
can active with and remove H,O,. In this study, drought
stress increased the expression levels of three glutathione
S-transferase isoforms but decreased the expression levels
of glutathione peroxidase and three peroxidase isoforms in
an ABA-dependent manner. The protein-protein interaction
network analysis indicated that glutathione S-transferase had
interactions with six proteins, suggesting its important role
in antioxidative defense. Other studies indicated that the
expression levels of glutathione S-transferase and glutathione
peroxidase were scarcely affected in drought-tolerant maize
genotypes but were significantly increased in drought-sensitive
maize genotypes under drought conditions (Benesova et al.,
2012; Yang et al,, 2014). Taken together, these results show
that the cooperative relations among the antioxidative proteins
play an important role in redox homeostasis under drought
conditions.

Dehydrins and xylanase inhibitor proteins act as cell
rescue/defense-related proteins. Dehydrins play important roles
in protecting the stability of membrane proteins, adjusting
cell osmotic pressure, and stabilizing and preventing the
denaturation of macromolecules (Close, 1996; Mohammadkhani
and Heidari, 2008). Xylanase inhibitor proteins are believed to
play a role in plant defensive reactions (Dornez et al.,, 2010;
Vasconcelos et al., 2011). A previous study indicated that the
expression levels of dehydrin and xylanase inhibitor protein 1
were barely affected in the drought-tolerant maize line L0964
but were significantly increased in the drought-sensitive line
B73 under drought conditions (Yang et al., 2014). In the maize
drought-tolerant CE704 and drought-sensitive 2023 genotypes,
the expression of dehydrin RAB-17 was increased under drought
stress, but the increase was greater in CE704 than in the 2023
genotype. However, drought stress increased the expression of
xylanase inhibitor (TAXI-IV) in the drought-tolerant CE704
genotype but decreased its expression in the drought-sensitive
2023 genotype (Benesova et al., 2012). In the current study, two
isoforms of dehydrin were up-regulated by drought in an ABA-
dependent manner; xylanase inhibitor protein 1 was up-regulated
by drought but down-regulated by ABA. These results indicate
that the regulation of drought stress by dehydrin and xylanase
inhibitor protein depends on the plant species, genotype, and the
severity/length of drought stress.

Overall, the application of the maize ABA-deficient mutant
vp5 and its wild-type Vp5 was very useful to identify drought-
response proteins involved in ABA signaling pathways.
Among the 150 proteins identified, 67 proteins were up-
regulated by drought in an ABA-dependent way; 60 proteins
were down-regulated by drought in an ABA-dependent
way. Under drought stress, the top three signaling pathways
affected were photosynthesis, oxidative phosphorylation
(mainly chloroplast-mediated ATP synthesis), and glutathione
metabolism, indicating that ABA plays an important role in
regulating photosynthesis, ATP synthesis, and antioxidative
reactions in maize under drought stress. In addition, stimuli-
response proteins (such as chaperone proteins and dehydrins),
antioxidative proteins (such as glutathione S-transferase), and
proteins for protein degradation (such as ubiquitin-conjugating
enzyme, carboxypeptidase and endopeptidase) might have
more effective roles in maize tolerance to drought stress. The
present study provides a basis for further understanding the
mechanisms and roles of ABA in maize responses to drought
stress.
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