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Phenotyping local crop cultivars is becoming more and more important, as they are
an important genetic source for breeding – especially in regard to inherent root system
architectures. Machine learning algorithms are promising tools to assist in the analysis
of complex data sets; novel approaches are need to apply them on root phenotyping
data of mature plants. A greenhouse experiment was conducted in large, sand-filled
columns to differentiate 16 European Pisum sativum cultivars based on 36 manually
derived root traits. Through combining random forest and support vector machine
models, machine learning algorithms were successfully used for unbiased identification
of most distinguishing root traits and subsequent pairwise cultivar differentiation. Up
to 86% of pea cultivar pairs could be distinguished based on top five important root
traits (Timp5) – Timp5 differed widely between cultivar pairs. Selecting top important
root traits (Timp) provided a significant improved classification compared to using all
available traits or randomly selected trait sets. The most frequent Timp of mature pea
cultivars was total surface area of lateral roots originating from tap root segments at
0–5 cm depth. The high classification rate implies that culturing did not lead to a major
loss of variability in root system architecture in the studied pea cultivars. Our results
illustrate the potential of machine learning approaches for unbiased (root) trait selection
and cultivar classification based on rather small, complex phenotypic data sets derived
from pot experiments. Powerful statistical approaches are essential to make use of the
increasing amount of (root) phenotyping information, integrating the complex trait sets
describing crop cultivars.

Keywords: breeding, cultivar classification, pea (Pisum sativum L.), random forest (RF), root phenotyping, root
trait selection, support vector machine (SVM)

INTRODUCTION

A policy report of the European Union noted recently that protein crops, e.g., bean, lentil, lupine,
pea, and soya, are currently grown on 1.8% of arable land in the EU only, compared with 4.7% in
1961, and about 8% in Australia and Canada, 14.5% in North America, and 25.5% in South America
(Jiang et al., 2004; EU, 2013; FAOSTAT, 2014; Cernay et al., 2015). This is despite grain legumes
representing a significant source of protein for food (Vaz Patto et al., 2014; Multari et al., 2015)
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and feed (Jezierny et al., 2010; Koivunen et al., 2014), and legume
cultivation reducing the need for N fertilizer even for subsequent
crops in the rotation (Preissel et al., 2015). Recent studies
have identified a comparative lack of breeding investment in
Europe to improve grain legume adaptation to local agro-climatic
conditions and management techniques (Annicchiarico and
Iannucci, 2008; Lizarazo et al., 2015). While distinct leguminous
crops are used locally for food and feed, and local cultivars are
kept in numerous collections in gene banks, research institutions,
and also in farms/home gardens, this genetic pool cannot be
used at its full potential for large-scale agriculture and breeding
programs until important traits have been determined.

Plant phenotyping intends measuring complex traits
related to growth, yield, and adaptation to stress at different
macroscopically scales of plant organization (Fiorani and Schurr,
2013). Examples for measured parameters are leaf vein structure
(Sack and Scoffoni, 2013; Caringella et al., 2015), photosynthetic
efficiency (Gilbert et al., 2011; Gorbe and Calatayud, 2012; Grady
et al., 2013), root morphology (Iyer-Pascuzzi et al., 2010; Bucksch
et al., 2014), biomass (Stachowicz et al., 2013; Poorter et al.,
2015), and yield quantity and quality (Iqbal and Lewandowski,
2014).

Especially the modification of root system architecture (RSA)
could contribute to improvements of desirable agronomic traits
such as yield, drought tolerance, and resistance to nutrient
deficiencies; thus, RSA was described key to a second green
revolution improving resource use efficiency of crops (Lynch,
2007). For example, an architectural trait enhancing topsoil
foraging is a higher number of basal roots – contributing
significantly to phosphorous acquisition (Lynch, 2011), while
deep rooting can, e.g., sustain water acquisition during drought
periods or improve uptake of percolating nitrate (Pinheiro et al.,
2005). Recently, an increased focus was laid on improving high-
throughput, image-based root phenotyping approaches (Berger
et al., 2010; Hartmann et al., 2011; Mairhofer et al., 2012; Fiorani
and Schurr, 2013; Li et al., 2014). See Kuijken et al. (2015) for a
recent review on the latest developments in root phenotyping and
an overview on environmental and genetic factors influencing
root phenotypes.

Advanced machine learning (ML) approaches encompass
promising statistical tools for variable selection and group
classification. While the use of ML approaches in non-
genetic/biochemical plant sciences is still scarce, ML was
introduced to promote RSA classification in the recent past
(Zhong et al., 2009; Iyer-Pascuzzi et al., 2010). Iyer-Pascuzzi et al.
(2010) use of ML methods mainly benefited from using a non-
invasive imaging system which enabled them to acquire 16 traits
from a high number of pictures [∼200 (pseudo-)replicates per
genotype]. However, the limited plant age and highly artificial
growth conditions are major disadvantages of many non-invasive
and high-throughput root phenotyping methods (Bucksch et al.,
2014): RSA differs with ontogeny (Hargreaves et al., 2009;
Wojciechowski et al., 2009; Hund et al., 2011) and is highly plastic
to edaphic conditions (Tracy et al., 2012; Rich and Watt, 2013).
Thus, analyses on mature plants in situ or under more realistic
growth conditions, which mostly rely on manual, destructive
methods [e.g., ‘shovelomics’; Trachsel et al. (2011)] continue to be

essential although the number of replicates and measurements is
often limited but the complexity of variables (i.e., traits) remains
high. Similar to the situation in cell biology (Sommer and Gerlich,
2013), available ML approaches in plant sciences have been
optimized for large-scale screenings, probably partially due to
the difficulty in applying ML algorithms with unbiased variable
selection on low number of replicates (Bucksch et al., 2014).

Among supervised ML algorithms, random forest (RF) is
a non-parametric method with high accuracy and robustness
to noise (Breiman, 2001). RF has been applied in several
biological fields, like gene (Díaz-Uriarte and De Andres, 2006)
and protein sequence (Pan and Shen, 2009) selection, and disease
prediction (Yang et al., 2014). However, most previous studies
mainly focused on improving classification accuracy with variable
selection rather than variable interpretation (Liu et al., 2014;
da Costa et al., 2015; Gowin et al., 2015) because the variable
importance measure is biased in the standard RF algorithm –
overestimating the importance of correlated predictor variables
(Strobl and Zeileis, 2008). However, unbiased variable selection
is essential to stable classification and meaningful interpretation
of plant traits and other data and can be achieved by
using an improved RF algorithm – based on a conditional
permutation scheme as a computational means to determine
variable importance (Strobl and Zeileis, 2008; Strobl et al., 2008).
Support vector machines (SVMs) are another set of supervised
ML methods which can be trained to classify individuals in
high-dimension space (Cortes and Vapnik, 1995). SVMs have
been widely used in neuro-image classification (Gaonkar and
Davatzikos, 2013) and face detection (Shan, 2012). SVMs can
be differentiated based on kernel functions (Okkan and Serbes,
2012): linear kernel functions (linear SVMs) were previously used
for variable selection of root systems (Iyer-Pascuzzi et al., 2010).
However, variable selection by ranking absolute values of weights
are biased, as the absolute weight values of irrelevant variables
can be as high as of important ones (Statnikov et al., 2006;
Gaonkar and Davatzikos, 2013). SVMs based on Gaussian radial
basis function (rbf) kernel often provide a better performance
on ‘noisy’ data sets not separable linearly – resulting in the more
widely use of rbf SVMs in classification (Hsu et al., 2010).

Powerful statistical approaches are essential to make use
of the increasing amount of (root) phenotyping information,
integrating the complex trait sets (describing RSA). Combining
RF with rbf SVMs for variable selection and group classification,
respectively, might overcome problems in applying ML
approaches on data sets characterized by a rather low signal-
to-noise ratio such as manually derived phenotyping data (Liu
et al., 2004). For example, Löw et al. (2012) found a significantly
higher classification accuracy of pre-crops in two out of four
agricultural regions using satellite images when applying a
combination of RF and SVMs compared to using either RF or
SVMs for both trait selection and classification. Thus, aims of
this study were to determine if (i) RF can be reproducible used
for selecting important root traits (i.e., root traits distinguishing
mature pea cultivars), and (ii) how root trait selection influences
cultivar classification by rbf SVMs. We hypothesize that rbf
SVMs classification is superior to traditional univariate tests if
important root traits are identified by RF. Pisum sativum L. was
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selected as test species because it is one of the most frequently
cultivated grain legumes worldwide (Alves-Carvalho et al., 2015),
with especially European genetic resources still insufficiently
characterized.

MATERIALS AND METHODS

Plant Material and Experimental Set-Up
Sixteen randomly selected cultivars of pea (P. sativum L.) were
used for root phenotyping (Table 1), originating either from
Southern (Portugal and Spain) or Northern Europe (Estonia,
Latvia, Norway, and Sweden). Seeds were provided by partners
within the EU FP7 project ‘Eurolegume’ and by the Nordic gene
bank.

Experiments were conducted in a large plastic foil greenhouse
from June 13th, 2014 to October 7th, 2014 located in Tulln,
Austria (48.33◦N, 16.05◦E). Aeration openings of the greenhouse
were fitted with mesh to prevent insect infestations. Solar
radiation, air temperature, and relative humidity were hourly
recorded 2 m above ground; mean air temperature during
the measurement period was 20.7◦C, relative humidity ranged
between 18.6–87.7% with a mean of 59.9%. Mean daily sum
of solar radiation was 13.28 MJ m−2 day−1, with a maximum
of 27.41 MJ m−2 day−1 at July 1st; day length (solar radiation
≥120 W m−2) varied between 10 and 16 h.

TABLE 1 | Sixteen pea (Pisum sativum L.) cultivars used locally for food in
different European countries and institutions donating the seeds for the
experiment.

Abbreviation Cultivar Country of
origin

Donor
institution

ps1.Estonia Eesti hall Estonia ECRI

ps2.Estonia Eesti kollane
soogihernes

Estonia ECRI

ps3.Estonia Jõgeva roheline Estonia ECRI

ps4.Estonia Seko Estonia ECRI

ps5.Latvia Alma Latvia SPPBI

ps6.Latvia Bruno Latvia SPPBI

ps7.Latvia k-4833 Stendes
Hero

Latvia SPPBI

ps8.Latvia Retrija Latvia SPPBI

ps9.Norway NGB 10778.1 Norway NordGen

ps10.Norway NGB 20045.3 Norway NordGen

ps11.Portugal Gp 3263 Portugal INIAV

ps12.Portugal Gp 3491 Portugal INIAV

ps13.Portugal Gp 3497 Portugal INIAV

ps14.Portugal Grisel Portugal INIAV

ps15.Sweden NGB 1025131 Sweden NordGen/
Uppsala U

ps16.Sweden NGB 131381 Sweden NordGen/
Uppsala U

ECRI, Estonia Crop Research Institute; NordGen, Nordic Genetic Resource Center,
Norway; INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Portugal;
SPPBI, Priekuli Plant Breeding Institute, Latvia; Uppsala U, Uppsala University,
Sweden.

Seeds of all cultivars were germinated in a growth chamber
(Fitotron; Weiss-Gallenkamp, UK) at 25 ± 1◦C. Seeds were
coated with a rhizobium suspension (Steinberga et al., 2008)
before being planted in 0.5-L plastic bags (10 cm high) filled with
washed quartz sand (0.7–1.2 mm-sized) amended with 1 g of slow
release fertilizer (Osmocote Pro 3-4M; 17-11-10+2MgO+TE;
ICL Specialty Fertilizers, Tel Aviv, Israel). Initial germination
was conducted in darkness; after the first seed germinated,
light (PAR 350 µE m−2 s−1) was turned on (16 h light/8 h
dark). Germination time varied between 4 and 6 days with
minor differences between cultivars (data not shown). After 10–
14 days, eight similar-sized seedlings per cultivar were selected
for transplanting.

In the greenhouse, eight blocks of 16 plastic tubes each (128
tubes in total) were established on wooden frames in North to
South direction. The plastic tubes used as pots/growing cylinders
in the experiments were 108 cm long and 20 cm in diameter
(∼32 L); the bottom was sealed with a cap; holes covered with
a glass fiber mat allowed for free drainage. Before the tubes
were filled with washed, 0.7–1.2 mm-sized quartz sand, a plastic
liner was installed in each tube allowing for undisturbed removal
of the substrate during harvest; the liner was perforated at
the bottom 10 cm. Measurements in large plastic tubes have
previously shown good agreement with maximum rooting depth
and root length density as determined in the field and have been
used to explore root traits in other legumes such as chickpea
(Kashiwagi et al., 2006; Vadez et al., 2008). For transplanting,
germination bags were placed inside the tubes and cut open at
the side and bottom to prevent root disturbance. One plant per
cultivar was randomly arranged in each of the eight blocks. 8.3 g
of an AMF inoculum (Glomus mosseae BEG95, G. intraradices,
and G. geosporum BEG199; supplied by Dr. Aleš Látr, Symbiom,
Czech Republic) were added to each plant individual around the
root systems at depths of 0–10 cm before the tube was brimmed
with additional sand. An automated, pressure-compensated drip-
irrigation system was used to supply all plants with ample
amounts of water and a modified Long Ashton nutrient solution
(Jia et al., 2004); amounts were adjusted to increasing plant size
and weather conditions.

Harvest and Analysis
Plants were randomly harvested within blocks at 71–92 days after
transplanting. After harvesting the shoots (data not shown), the
tubes were placed horizontally and the plastic liner was pulled
out on a 1.5 mm-mesh table. After the plastic liner was cut
open, roots were then manually excavated as previously described
by Kashiwagi et al. (2005) and others. No roots reached the
bottom of the tube and few roots were discovered at the sides,
indicating a rather unrestricting pot size. After the root system
was uncovered, the maximum rooting depth was determined.
It was further washed and rinsed in a bucket filled with clean
tap water (Miguel, 2012), photographed next to a size standard,
stored in a water-filled plastic bag, and transported to the lab for
further analysis. Detached (i.e., shed/broken off) root segments
were accurately collected from the remaining sand on the mesh
table (mesh size: 2× 2 mm), stored in paper bags and transported
to the lab, oven dried (65◦C, 48 h) and added to root biomass. In
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the lab, the root systems were stored at 4◦C until further analysis
(≤3 weeks) took place (Hu et al., 2013).

For in-depth architectural and morphological analysis, the
root systems of 5–7 plant individuals per cultivar (97 plants in
total) were manually dissected into tap root and laterals. Laterals
along the tap root and the tap root were separated into the five
depth classes 0–5, 5–10, 10–20, 20–40, and 40-100 cm. Three
lateral root samples from the depth classes 0–5, 5–10, and 10–
20 cm along the tap root were scanned in water-filled trays (Epson
Expression 10000XL; Epson, Nagano, Japan) at 400 dpi, grayscale.
Pictures were analyzed for diameter, surface area, length, and
volume with the PC program WinRhizo 2012b Pro (Régent Inst.,
Ville de Québec, QC, Canada). Subsequently, all root samples
were dried (65◦C, 48 h) and weighed to an accuracy of ± 0.1 mg
(CP225D; Sartorius, Göttingen, Germany). The specific root area
(SRA, cm2 g−1), specific root length (SRL, cm g−1), tissue density
(TD, g cm−3), the total root surface area (totalRSA), root length
(RL), and root volume were calculated. Determined root traits
(Guo et al., 2008; Rewald et al., 2011) are listed in Table 2 (Cramer
et al., 2007; Alves-Carvalho et al., 2015).

Data Analysis
Thirty-six root traits in total, either directly measured or
calculated, were available for analysis (Table 2). Non-normal
distributed root traits were box-cox transformed with ‘MASS’
package, version 7.3-44, in R for Windows version 3.2.2 (R Core
Team, 2015). Multiple imputation was conducted by ‘Amelia’
package, version 1.7.3. The R code used for data preparation can
be found as Supplementary Method S1.

Random Forest and Support Vector Machines
Random forest (Breiman, 2001; Strobl et al., 2009) was used to
rank root traits according to their importance for classification;
SVMs (Vapnik and Vapnik, 1998) were used for multiclass
or pairwise cultivar classification. A flow chart outlining data
handling steps can be found as Supplementary Method S2.

Because the multiclass classification resulted in very low
accuracy (see Supplementary Figure S1), only the pairwise
classification was pursued further. In order to use the ‘cforest’
function in the R ‘Party’ package (version 1.0–23) for root traits
importance measure, individuals of each pair of cultivars were
oversampled four-times (to gain the number of data points
required by the software algorithm) for pairwise classification.
As RF was used for traits important measure only, the whole
oversampled data set was used. Afterward, the number of root
traits randomly chosen at each split (building each tree), mtry,
was tuned. Even though it has been suggested that mtry =

√
n,

n is the amount of root traits, always generates acceptable
classification accuracy (Díaz-Uriarte and De Andres, 2006), the
accuracy might vary (Verikas et al., 2011). Thus, 1000 trees with
14 mtrys (i.e., using 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, or
32 traits), were constructed in RF to determine the importance
of each root trait in each pairwise comparison. In a third step,
root traits were ranked in each pair based on their importance.
Root traits importance was calculated in RF based on unbiased
conditional inference permutation test (Strobl and Zeileis, 2008;
Ball et al., 2014). The most important root trait was defined as

the one leading to the highest mean decrease of classification
accuracy when values of a variable are randomly permuted across
all 1000 trees (Breiman, 2001). Because negative importance
values are due to random variation around zero (Strobl et al.,
2009), values of root traits importance were first subtracted by
the absolute value of the lowest negative importance and then
normalized between 0 and 1 before being ranked in each pair.

Cultivar classification by either SVMs or RF were conducted
through passing different combinations of top ranking important
root traits derived from RF to SVMs/RF classification models.
In order to find the combination of top ranking important root
traits (Timp) that generate SVMs/RF models with the highest
overall prediction accuracy, different numbers of Timps (Timpi)
were tested in SVMs/RF classification. Even though the number
of variables in final SVMs models should generally be <10
(Nicodemus et al., 2010), nine trait combinations were tested: top
i important root traits (Timpi= 2, 3, 5, 7, 9, 11, 13, 15) and all root
traits (36). In rbf SVMs models, twelve kernel parameter C and
regularization parameter gamma (Meyer, 2015) from 10−5 to 106

were tuned; the best combination of C and gamma leading to the
highest prediction accuracy was chosen through leave-one-out
cross-validation (LOOCV; Kohavi, 1995). Each SVMs pairwise
classification model was validated with LOOCV. The accuracies
of RF classification were derived from out of bag error (OOB);
Timp = 1 was used to find the maximum HACCs when tuning
different mtrys and Timps combinations. The validation accuracy
of models means whether the different labeled observations were
accurately classified.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(1)

Where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and FN
is the number of false negatives. The validation accuracy was
treated as final prediction accuracy of SVMs/RF classifications.
Classifications with an average prediction accuracy ≥80% were
regarded as a high accuracy classifications (HACCs); the 80%
level was determined acceptable by previous ML studies (Wang
et al., 2010; Liu et al., 2014; Shang and Chisholm, 2014; Zheng
et al., 2014; Sacchet et al., 2015). The whole process – RF ranking
of root traits in each cultivar pair, SVMs and RF classification of
pairs using different mtrys and Timps – was repeated three times;
the average accuracy with standard error was calculated. The
combination of different mtrys and different Timpis generating
the highest average accuracy of SVM/RF models was treated
as optimal mtry and Timpi combination; the frequencies of the
corresponding top five important root traits (T5IRT) from all
HACCs were calculated. Because SVM models yielded higher
classification accuracies than RF (Figure 1; Supplementary Figure
S2), classification by RF was not pursued further. Subsequently
the accuracies of SVMs models derived from Timp5 were
compared to six runs of randomly selected subsets of five root
traits each (R_5.1–R_5.6) to determine the benefits of root trait
selection based on RF for cultivar classification.

The R for Windows package ‘party’ (v. 1.0–23) was used
for RF trait ranking; the R package ‘e1071’ (v. 1.6–7) was used
for rbf SVMs classification (data scaled), the ‘randomForest’
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TABLE 2 | Abbreviation and description of 36 root traits derived either from direct measurement or from calculation after manual phenotyping of 16
European P. sativum cultivars.

Abbreviation Unit Definition Level of trait

slatdiam2.5 mm The average diameter of single lateral root originated from 0 to 5 cm deep tap root Lateral roots

slatlth2.5 cm The average length of single lateral root originated from 0 to 5 cm deep tap root

slatsa2.5 cm2 The average surface area of single lateral root originated from 0 to 5 cm deep tap root

sLSRL2.5 cm g−1 The average specific root length (root length divided by dry biomass) of single lateral root originated
from 0 to 5 cm deep tap root

sLSRA2.5 cm2 g−1 The average specific root area (root area divided by dry biomass) of single lateral root originated
from 0 to 5 cm deep tap root

sLTD2.5 g cm−3 The average tissue density (root dry biomass divided by root volume) of single lateral root originated
from 0-5 cm deep tap root

slatdw2.5 g The average dry weight of single lateral root originated from 0 to 5 cm deep tap root

latRL2.5 cm The length of all the lateral roots originated from 0 to 5 cm deep tap root

latRL7.5 cm The length of all the lateral roots originated from 5 to 10 cm deep tap root

latRSA2.5 cm2 The surface area of all the lateral roots originated from 0 to 5 cm deep tap root

latRSA7.5 cm2 The surface area of all the lateral roots originated from 5 to 10 cm deep tap root

latRV2.5 cm3 The volume of all lateral roots coming originated from 0 to 5 cm deep tap root

latRV7.5 cm3 The volume of all lateral roots coming originated from 5 to 10 cm deep tap root

latRDW2.5 g All lateral roots dry weight from 0 to 5 cm deep tap root

latRDW7.5 g All lateral roots dry weight from 5 to 10 cm deep tap root

latRDW g The dry weight of all lateral roots

latn2.5 The number of lateral roots originated from 0 to 2.5 cm deep tap root

latn5 The number of lateral roots originated from 2.5 to 5 cm deep tap root

latn7.5 The number of lateral roots originated from 5 to 10 cm deep tap root

tapdiam2.5 mm The diameter of tap root from 0 to 5 cm depth Tap root

tapdiam7.5 mm The diameter of tap root from 5 to 10 cm depth

tapTD2.5 g cm−3 The tissue density of tap root from 0 to 5 cm depth

tapTD7.5 g cm−3 The tissue density of tap root from 5 to 10 cm depth

tapdw2.5 g Tap root dry weight from 0 to 5 cm depth

tapdw7.5 g Tap root dry weight from 5 to 10 cm depth

tapRL cm Tap root length

tapRSA cm2 Tap root surface area

tapRV cm3 Tap root volume

tapRDW g Tap root dry weight

lateraltapRDWR g g−1 The ratio of all lateral roots dry weight and tap root dry weight Root system

lateraltapSAR cm2 cm−2 The ratio of all lateral roots area to tap root area

totalRSA cm2 Total root surface area of whole root system

totalRL cm Total root length of whole root system

totalRV cm3 Total root volume of whole root system

rootdw g Root dry weight

rootdep cm Root depth

package (v. 4.6–12) for RF classification. The R code used for RF
root traits ranking and rbf SVMs classification can be found as
Supplementary Method S3.

Univariate Permutation Test
In order to compare the efficiency between a univariate
test and the combination of RF and rbf SVMs in cultivar
classification, an exact permutation test (Hesterberg et al.,
2005) was carried out (α = 0.05), with both Bonferroni
and fdr correction (Benjamini and Hochberg, 1995),
to compare the root traits involved in each pairwise
classification. The R code used can be found as Supplementary
Method S4.

RESULTS

RF Root Traits Selection and SVMs
Classification
The classification accuracy of SVMs multiclass classifications
with and without root trait selection were 16.5 and 22.7%,
respectively (Supplementary Figure S1), thus a pairwise approach
was pursued thereafter. Similarly, the number of HACCs
generated from different mtrys and Timpis combinations in
pairwise RF (77 HACCs with mtry = 32, Timpis = 2;
Supplementary Figure S2) were much lower compared to the
classification accuracy achieved by pairwise SVMs (see below
and Figure 1). Thus, this RF/RF approach was not followed
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FIGURE 1 | Comparison of the number of high accuracy classifications (HACCs; prediction accuracy ≥80%) using rbf SVMs models with different
numbers of Pisum sativum root traits randomly chosen for each tree, mtrys, and different number of top important root traits, Timp_i = 2, 3, 5, 7, 9,
11, 13, 15 (mean ± SE; n = 3 runs). One hundred twenty pairs of 16 European P. sativum cultivars were analyzed. A dashed blue line represents the number of
HACCs (HACCN) retrieved using all 36 root traits in SVMs classification. A line connecting HACC numbers derived by using different number of Timps at constant
mtry = 24 was added for visualization.

further but a combination of RF (for trait ranking) and SVMs (for
classification) was used. Through testing a series of combinations
of different mtrys and Timpis, mtry = 24 and Timpi = 5 (Timp5)
generated the highest number of HACCs in pairwise comparison,
101 (averaged from three runs; 100, 101, 103 HACCs) out of
120 pairs (Figure 1). Although other combinations of mtrys and
single-digit Timpis resulted in similar numbers of HACCs, the
run which contained the highest number of HACCs (103) was
used exemplary for further analysis (Figure 2). The least number
of HACCs (54) was computed from SVMs models using all
available root traits (36). The number of HACCs thus increased
by 91% through root trait selection with RF and tuning SVMs to
Timp5. Both single SVMs model accuracy and the total number
of HACCs based on six runs of five randomly selected root traits
each (R_5.1–5.6) are similar or decreased compared to using
all 36 root traits (All_36) and much lower than SVMs models

involving the top five important root traits (Timp_5), respectively
(Figure 3).

The Timp5 in each of the 103 HACCs are ranked as 1st,
2nd, 3rd, 4th, and 5th and indicated with different colors in
Figure 4 (see Supplementary Table S1 for a list of Timp5 and
Supplementary Table S2 for normalized importance values of
Timp5). The most frequent Timp5 of the analyzed pea cultivars
in all HACCs (T5IRT) are latRSA2.5, tapdiam2.5, latn2.5,
tapdw7.5, and totalRSA (see Table 2 for trait abbreviations) with
proportions of 31, 23, 21, 21, and 21%, respectively (Figure 5).
The root traits measured at both 0–5 and 5–10 cm depth (along
the tap root) are lateral root surface area, tap root diameter, lateral
root number, tap root dry weight (tapRDW), lateral root length,
lateral root dry weight (latRDW), lateral root volume, and tap
root TD. Four out of eight root trait pairs measured at 0–5 cm
depth (i.e., latRSA2.5, tapdiam2.5, latn2.5, latn5, and tapTD2.5)
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FIGURE 2 | Prediction accuracies of rbf SVMs models (mtry = 24) using different numbers of top important root traits (Timp_i = 2, 3, 5, 7, 9, 11, 13,
15) and all (36) root traits (All_36) for 120 pairwise comparisons among 16 European P. sativum cultivars. Prediction accuracies from 80% (white) to 100%
(blue) are shown as color gradient; lower accuracies are displayed in gray. Cultivars are listed in Table 1.

have a higher frequency among all Timp5 than corresponding
ones from 5–10 cm depth along the tap root while the other four
have similar frequencies (Figure 5, inset); the average frequency
of Timp5 from 0–5 cm depth is 18 compared to 14 from 5–10 cm
depth along the tap root.

In order to confirm whether conditional inference
permutation test can rank root traits without bias, correlation
coefficients of Timp5s are compared in different pairwise
classifications. For example, Timp5 in the pair ps1.Estonia vs.
ps2.Estonia (Figure 4, first line; Supplementary Tables S1 and
S2) are tapRDW between 5–10 cm depth (tapdw7.5), lateral root
try weight of 0–5 cm depth (latRDW2.5), total root system dry
weight (rootdw), latRDW, and SRL of lateral roots at 0–5 cm
depth (sSRL2.5). In this pair, the highest Pearson correlation
between the most important root trait tapdw7.5 (ranked 1st) and
the other four traits is 0.52 (Figure 6; see Supplementary Figure
S3 for Spearman correlation); tapRDW, which has a very high
correlation coefficient of 0.89 with tapdw7.5, is not involved in
the Timp5 of the pair ps1.Estonia vs. ps2.Estonia. Rootdw and
latRDW, which are highly correlated with a Pearson coefficient

of 1, ranked as 3rd and 4th in the classification of ps1.Estonia
and ps2.Estonia (Figure 6). In another example (ps1.Estonia
vs. ps7.Latvia), both rootdw and latRDW are among the Timp5
but rootdw is ranked 1st while latRDW is ranked 5th (Figure 4;
Supplementary Tables S1 and S2).

The highest correlation coefficient among T5IRTs was 0.93
(Pearson correlation, Figure 6; see Supplementary Figure S3 for
Spearman correlations) between latRSA2.5 and totalRSA while
the lowest was 0.31 (Pearson) between tapdw7.5 and lateral root
number at 0–2.5 cm depth (latn2.5). The frequencies of latRSA2.5
and totalRSA among T5IRTs (Figure 5) are among the highest
with 32 and 22, respectively, while they only appear nine times
simultaneously in the same pairwise classification.

Permutation Test Comparing the
Difference of the Mean of Single Root
Trait
Comparing the efficiency of ML techniques conducted by RF
and SVMs with a univariate permutation test, only 46.6%
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FIGURE 3 | Prediction accuracies of rbf SVMs models (mtry = 24) using five randomly selected root traits each in six runs (R_5.1, R_5.2, R_5.3, R_5.4,
R_5.5, and R_5.6) compared to prediction accuracies using top five important root traits (Timp_5), and all (36) root traits (All_36) for 120 pairwise
comparisons among 16 European P. sativum cultivars. Prediction accuracies from 80% (white) to 100% (blue) are shown as color gradient; lower accuracies
are displayed in gray. Cultivars are listed in Table 1.

(Bonferroni-corrected) and 47.5% (fdr-corrected) of HACCs
(based on Timp5) have significantly different root traits.
Significantly different root traits in univariate permutation
tests can be found in (supplementary) figures (Figure 7,
with Bonferroni correction; Supplementary Figure S4, with
fdr correction). SVMs were not always superior to univariate
permutation test without root traits selection: classification
accuracies of several pairwise SVMs classifications involving
significantly different root traits in univariate permutation test
were lower than 80% [see, e.g., ps11.Portugal vs. ps16.Sweden
(Figure 7; Supplementary Figure S4)].

Three examples are given to visualize the mean difference
of root traits in pairwise comparisons. There are significant
different root traits between ps1.Estonia vs. ps8.Latvia and the
cultivars are also classified with high accuracy (92.3%; Figure 8).
In contrast, cultivars ps3.Estonia vs. ps9.Norway are classified
with high accuracy (90.9%), however, without any significant root
traits identified by univariate permutation test (Supplementary

Figure S5). There are (visibly) no significant different root traits
between cultivars ps1.Estonia vs. ps14.Portugal and they are
not accurately classified either – accuracy 69.2% (Supplementary
Figure S6). The most significantly different root traits (the lowest
p value in univariate permutation test) can be different from
the most important root traits (ranked by RF) in each pairwise
classification, e.g., Timp5 in the pair ps3.Estonia vs. ps9.Norway
are tapdw7.5, tapRDW, rootdw, latn5, and latRDW while the
rank order based on p values from permutation test changed
to latn5, tapdw7.5, tapRDW, latRDW, and rootdw. No tied
importance values of Timp5, indicating higher ranking root traits
are more important in RF, have been found.

DISCUSSION

Machine learning algorithms are promising statistical tools
to assist humans in the analysis of complex data sets and
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FIGURE 4 | Top five important root traits (Timp5) ranked as 1st, 2nd, 3rd, 4th, and 5th in each of 103 HACCs; rbf SVMs prediction accuracy ≥ 80%.
Cultivars are listed in Table 1, root trait abbreviations in Table 2.
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FIGURE 5 | Frequencies of top five important root traits (Timp5) in 103 high accuracy classifications (HACCs; rbf SVMs prediction accuracy ≥80%)
identified out of 120 pairwise comparisons among 16 European P. sativum cultivars. The inset illustrates the frequencies of root traits from 0 to 5 cm depth
along the tap root (gray bars) and from 5 to 10 cm depth (white bars), respectively; a solid line indicates the average number of Timp5 from 0 to 5 cm depth, a
dashed line indicates the average number of Timp5 from 5 to 10 cm depth tap root. Root trait abbreviations are listed in Table 2.

started to be widely used in many research fields including
(plant) genomics/proteomics (Ma et al., 2014; Libbrecht and
Noble, 2015). To the best of our knowledge, they have been
only applied twice on RSA differentiation yet (Zhong et al.,
2009; Iyer-Pascuzzi et al., 2010). This is surprising because

as new technologies for generating large plant phenotypical
data sets emerge, demand will drastically increase for new
statistical techniques. Phenotyping is estimated in becoming the
major operational bottleneck in limiting the power of genetic
analysis and genomic prediction (Rahaman et al., 2015). Data
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FIGURE 6 | Pearson correlation coefficients among 36 root traits determined on mature plants of 16 European P. sativum cultivars (n = 5–7). Positive
correlations are visualized by a red color gradient, negative correlations by a blue color gradient. Root trait abbreviations are listed in Table 2.

complexity of particular sets of traits is generally high, especially
in root systems where the developments causing a specific
architecture, and the physiology and performance of individual
root segments/units within the branched root system are not well
understood yet.

So far, most of the techniques developed for RSA phenotyping
involve the of use seedlings (Kuijken et al., 2015). Although
there are examples in which the early stage root phenotype
has predictive value for later developmental stages (Tuberosa
et al., 2002), the seedling root phenotype may not always be
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FIGURE 7 | P-values of univariate permutation tests (Bonferroni-corrected) comparing the difference of means of each single root trait between 16
mature P. sativum L. cultivars in each pair. Significantly (P-values < 0.05) increased root traits are marked green, significant decreased root traits are marked
red, P ≥ 0.05 white; accuracy. Timp_5 and accuracy. All_36 (light blue) indicating HACCs with Timp5/all root traits involved in SVMs, respectively. Cultivars are listed
in Table 1, root trait details in Table 2.
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FIGURE 8 | Normalized root traits determined on mature plants of 16 European P. sativum cultivars (mean ± SE; n = 5–7). Two horizontal lines visualize
traits of the cultivars ps1.Estonia (solid) and ps8.Latvia (dashed). Cultivars are listed in Table 1, root trait abbreviations in Table 2.

representative of the mature plant (Watt et al., 2013). Because
replicate numbers from manual phenotyping of mature root
systems are limited but mature root systems often have a higher
complexity, adapted statistical methods need to be developed
to make full use of data sets. Here we applied combined ML
algorithms with unbiased variable importance measure for the
first time successfully, to the best of our knowledge, on a small
RSA/root morphology data set manually derived from 97 mature
plants of 16 European pea cultivars. The importance of 36 root
traits was measured and ranked in RF. Pairwise classifications
were analyzed either by SVMs based on a Gaussian radial basis
kernel function (rbf SVMs) or by RF (standard algorithm) with
the RF-identified top ranking root traits. The overall accuracy of
models was cross-validated. The combination of SVMs and RF
improved the classification accuracy – confirming earlier results
by Löw et al. (2012) in remote sensing.

When compared to classical statistical tools, our results
demonstrated that all pairwise classifications with significant root
traits from univariate permutation test belong to HACCs with
Timp5, however, almost half of HACCs derived from Timp5
don’t have any significantly different root traits. This points to the
advantages of combining RF and SVMs in root traits importance
measure and cultivar classification. Besides robustness to noises,
RF considers both the influence of single variables separately and
the multivariate interactions with other variables, which make
this advanced ML approach more efficient, accurate, and reliable
(Breiman, 2001; Zhu et al., 2012). Among the HACCs with
significantly different root traits, the ranking of top five important
root traits (Timp5) was not matched by p values from univariate
permutation test, i.e., the most significantly different root traits
differ with the most important root traits identified by pairwise
classification. This might be due to that SVMs classification
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concerns more about parameters (root traits) involved in the
SVMs models while traditional multi/univariate analyses focus
more on differences of specific root traits between two groups
(Gaonkar et al., 2015). We conclude that the combination of
RF root traits selection and SVMs classification can make full
use of all possible information of root traits in pea cultivars’
classification.

Our results clearly demonstrated the importance of selecting
important root traits by RF to obtain an efficient classification
based on RSA among dicot crop cultivars. SVMs models using
all available traits or including five randomly selected root traits
(R_5) were not able to increase the overall accuracy, which
confirmed the necessity of root traits selection through RF
in cultivar differentiation. This finding is in accordance with
previous ML approaches in other scientific fields (Wang et al.,
2010; Löw et al., 2012; Liu et al., 2014). The improved accuracy
probably benefits from alleviating the ‘curse of dimensionality’
through root traits selection, removing non-informative signals
(Chu et al., 2012). Thus, we can show that the identification
of a few important root traits, in our case five, significantly
increases the classification accuracy. While we did not find
any single pea root trait that was always more important than
others in all HACCs, a more targeted cultivar differentiation
and trait selection for breeding can be obtained when focusing
on root traits with highest frequency among T5IRTs. The most
frequent T5IRT among the tested pea cultivars was the surface
area of all lateral roots originating at the tap root between
0–5 cm (latRSA2.5) – appearing in more than one third of
the pairwise comparisons. Distinguishing cultivars based on
latRSA2.5 value can have important ecological effects: greater
latRSA2.5 implicates more absorptive lateral root surface area
in the topsoil and thus the potential for enhanced P or topsoil
water foraging. Lower latRSA2.5 values means that plants are
possibly privileging deep soil exploration (Miguel et al., 2015)
with potential influences on drought tolerance or performance
in low input agriculture (Bonser et al., 1996). Another frequent
T5IRT in pea was latn2.5, the number of laterals originating at
the tap root between 0–5 cm, which is somehow comparable to
the trait ‘whorl numbers’ of Phaseolus vulgaris seedlings (Miguel
et al., 2013). Miguel and colleagues could show that common
bean genotypes with greater whorl numbers accumulated up to
60% more biomass under low-phosphorus conditions.

Completely intact root systems can hardly be collected by
destructive harvesting methods, especially of mature plants with
deeper root systems grown in the field; similar, lateral root
traits are likely more affected by destructive sampling, e.g.,
by root tip shedding, than tap root traits. RSA information
retrieved from top soil layers is thus likely more accurate
(Miguel, 2012). Interestingly, the number of Timp5 derived
from 0–5 cm depth of the pea tap root were more frequent
than the ones originating from 5–10 cm depth, indicating
that root traits from the top of the tap root have a greater
potential to differentiate pea cultivars. This knowledge is already
utilized by ‘shovelomics’ approaches, which only excavate the
root crown of mature plants for phenotypical analysis (Trachsel
et al., 2011; Bucksch et al., 2014). Our findings thus provide
additional evidence that shovelomics can be considered an

informative field-based high-throughput phenotyping approach
due to the strong contribution of topsoil root traits to cultivar
distinction.

Root system depth and average radius were previously
identified as frequently top-ranked root traits in linear SVMs
classification to distinguish different rice genotypes (Iyer-
Pascuzzi et al., 2010). In our study the top two frequently
important root traits were latRSA2.5 and tapdiam2.5 while root
system depth (rootdep) was much less frequently present in
Timp5. However, the top important root traits identified by
Iyer-Pascuzzi et al. (2010) might be subject to change as the
used ranking method was recently deemed biased (Gaonkar and
Davatzikos, 2013). However, the difference of key root traits is
likely also related to species-specific differences between rice and
pea, but also the differences in growth stages (juvenile vs. mature),
media (gel vs. sand), and analyzing methods (see “Discussion”
above).

Correlation among traits is generally considered as an
indication of their redundancy for classification. However, they
may still provide complementary information and an otherwise
inconclusive variable can provide a significant performance
in combination with others (Guyon and Elisseeff, 2003). The
correlation of Timp5 from all pairwise classifications varied
greatly in this study: On the one hand, highly correlated root
traits were not always top-ranked; on the other hand, root
traits that were highly correlated with the most important Timp
could even not be important at all in our study. The correlation
variance of Timp5 thus confirms the unbiased root traits
importance measure through conditional inference permutation
test – increasing data interpretability.

CONCLUSION

The accurate classification of 86% (103 of 120) genotype pairs
of pea indicated that most of the studied cultivars could be well
differentiated by using a few most distinguishing root traits, as
selected through RF. This implies that past culturing did not
lead to a major loss of RSA variability of the studied European
pea cultivars. Breeders are envisioned to work more effectively in
future breeding programs by knowing distinguishing (pea) root
traits in advance (Manavalan et al., 2010). In specific, pairwise
classification approaches can help breeders to make informed
decisions on cultivars selection for crossing. Powerful statistical
approaches are essential to make use of the increasing amount of
phenotyping information available, integrating the complex trait
sets. In particular, this study showed that combining RF with rbf
SVMs for variable selection and group classification, respectively,
can overcome problems in applying ML approaches on data sets
characterized by a rather low signal-to-noise ratio. Thus, ML
methods are generally envisioned to make plant phenotypical
data analyses more effectively, robust and comprehensive.
However, our experiment under standardized conditions might
have caused the loss of root traits adaptive to local environmental
conditions. Thus, further ML-supported analysis of field-derived
root phenotypes under varying environments are urgently
needed, selecting genotypes that feature specific sets of traits

Frontiers in Plant Science | www.frontiersin.org 14 December 2016 | Volume 7 | Article 1864

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01864 December 3, 2016 Time: 14:0 # 15

Zhao et al. Machine Learning Improves Phenotypic Analyses

facilitating plant performance under local edaphic and climatic
conditions. Advanced methods must be urgently developed in
order to facilitate the phenotyping of mature root systems under
realistic growing conditions.
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