
fpls-07-01898 December 14, 2016 Time: 16:45 # 1

REVIEW
published: 16 December 2016
doi: 10.3389/fpls.2016.01898

Edited by:
Basil J. Nikolau,

Iowa State University, USA

Reviewed by:
Tadao Asami,

University of Tokyo, Japan
Feng Chen,

University of Tennessee, USA

*Correspondence:
Shanfa Lu

sflu@implad.ac.cn

Specialty section:
This article was submitted to

Plant Metabolism
and Chemodiversity,

a section of the journal
Frontiers in Plant Science

Received: 13 July 2016
Accepted: 30 November 2016
Published: 16 December 2016

Citation:
Liu M and Lu S (2016) Plastoquinone

and Ubiquinone in Plants:
Biosynthesis, Physiological Function

and Metabolic Engineering.
Front. Plant Sci. 7:1898.

doi: 10.3389/fpls.2016.01898

Plastoquinone and Ubiquinone in
Plants: Biosynthesis, Physiological
Function and Metabolic Engineering
Miaomiao Liu and Shanfa Lu*

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,
China

Plastoquinone (PQ) and ubiquinone (UQ) are two important prenylquinones, functioning
as electron transporters in the electron transport chain of oxygenic photosynthesis
and the aerobic respiratory chain, respectively, and play indispensable roles in plant
growth and development through participating in the biosynthesis and metabolism
of important chemical compounds, acting as antioxidants, being involved in plant
response to stress, and regulating gene expression and cell signal transduction. UQ,
particularly UQ10, has also been widely used in people’s life. It is effective in treating
cardiovascular diseases, chronic gingivitis and periodontitis, and shows favorable
impact on cancer treatment and human reproductive health. PQ and UQ are made
up of an active benzoquinone ring attached to a polyisoprenoid side chain. Biosynthesis
of PQ and UQ is very complicated with more than thirty five enzymes involved. Their
synthetic pathways can be generally divided into two stages. The first stage leads to
the biosynthesis of precursors of benzene quinone ring and prenyl side chain. The
benzene quinone ring for UQ is synthesized from tyrosine or phenylalanine, whereas
the ring for PQ is derived from tyrosine. The prenyl side chains of PQ and UQ are
derived from glyceraldehyde 3-phosphate and pyruvate through the 2-C-methyl-D-
erythritol 4-phosphate pathway and/or acetyl-CoA and acetoacetyl-CoA through the
mevalonate pathway. The second stage includes the condensation of ring and side chain
and subsequent modification. Homogentisate solanesyltransferase, 4-hydroxybenzoate
polyprenyl diphosphate transferase and a series of benzene quinone ring modification
enzymes are involved in this stage. PQ exists in plants, while UQ widely presents in
plants, animals and microbes. Many enzymes and their encoding genes involved in PQ
and UQ biosynthesis have been intensively studied recently. Metabolic engineering of
UQ10 in plants, such as rice and tobacco, has also been tested. In this review, we
summarize and discuss recent research progresses in the biosynthetic pathways of PQ
and UQ and enzymes and their encoding genes involved in side chain elongation and
in the second stage of PQ and UQ biosynthesis. Physiological functions of PQ and UQ
played in plants as well as the practical application and metabolic engineering of PQ
and UQ are also included.
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INTRODUCTION

Plastoquinone (PQ) and ubiquinone (UQ) are two important
prenylquinones functioning as electron transporters in plants.
They are involved in photophosphorylation and oxidative
phosphorylation located in chloroplast thylakoids and
mitochondrial inner membrane, respectively (Swiezewska,
2004). PQ and UQ are both made up of an active benzoquinone
ring attached to a polyisoprenoid side chain. The length of
polyisoprenoid side chain determines the type of PQ and UQ.
Difference between PQ and UQ in chemical structure mainly lies
in diverse substituent groups of benzoquinone ring (Figure 1).
Plant PQ and UQ usually include nine or ten units of isoprenoid
side chain. For instance, the main PQ and UQ in Arabidopsis
thaliana have nine such units, known as PQ9 and UQ9,
respectively. PQ and UQ are localized in different organelles
of plant cells. PQ is located on the thylakoids of chloroplasts,
while UQ is located on the inner membrane of mitochondria.
The locations of PQ and UQ are consistent with their roles in
photophosphorylation and oxidative phosphorylation. Lifespan
of PQ and UQ is very short in cells. The half-time of PQ and
UQ in spinach cells is about 15 and 30 h, respectively (Wanke
et al., 2000). Therefore, to maintain the concentration stable
and dynamic balance for normal plant photosynthesis and
respiration, PQ and UQ need to be continuously synthesized in
cells. In addition to the significance of PQ and UQ in plants,
UQ10 has also been used in people’s life. Significant progress has
been made recently in PQ and UQ biosynthetic pathways and
genes associated with PQ and UQ production. The biosynthesis
and functions of UQ in Escherichia coli, Saccharomyces cerevisiae
and animals (Clarke, 2000; Meganathan, 2001; Tran and Clarke,
2007; Bentinger et al., 2010; Aussel et al., 2014), UQ10 production
in plants (Parmar et al., 2015) and metabolic engineering of
UQ10 in microbes (de Dieu Ndikubwimana and Lee, 2014)
have been reviewed. Here we mainly summarize and discuss
recent advances in biosynthetic pathways, key enzymes and
their encoding genes, physiological functions, and metabolic
engineering of PQ and UQ in plants.

BIOSYNTHETIC PATHWAYS OF PQ AND
UQ

The biosynthetic pathways of PQ and UQ can be generally
divided into two stages (Figures 2 and 3). The first stage leads
to the biosynthesis of precursors of benzene quinone ring and
prenyl side chain. The second stage includes the condensation of
ring and side chain and subsequent modification. The benzene
quinone ring precursor for UQ is 4-hydroxybenzoic acid (4HB)
synthesized from tyrosine or phenylalanine under the catalysis
of various enzymes known as phenylalanine ammonia-lyase
(PAL), cinnamic acid 4-hydroxylase (C4H), 4-coumarate CoA
ligase (4CL), and other unknown enzymes. The benzene
quinone ring precursor for PQ is homogentisic acid (HGA).
It is synthesized from tyrosine under the catalysis of tyrosine
aminotransferase (TAT) and 4-hydroxyphenylpyruvate reductase
(HPPR). The prenyl side chains of PQ and UQ are derived from
glyceraldehyde 3-phosphate (G3P) and pyruvate through the

FIGURE 1 | The chemical structures of PQ and UQ. PQ, plastoquinone;
UQ, ubiquinone.

2-C-methyl-D-erythritol 4-phosphate (MEP) pathway and/or
acetyl-CoA and acetoacetyl-CoA through the mevalonate
(MVA) pathway. The universal isoprene precursor isopentenyl
diphosphate (IPP, C5) and its isomer dimethylallyl diphosphate
(DMAPP) synthesized through the MEP and MVA pathways
are converted into intermediate diphosphate precursors,
including geranyl diphosphate (GPP, C10), farnesyl diphosphate
(FPP, C15), and geranylgeranyl diphosphate (GGPP, C20).
Enzymes catalyzing this conversion are a group of polyprenyl
diphosphate synthases (PPSs), including geranyl diphosphate
synthase (GPPS), farnesyl diphosphate synthase (FPPS), and
geranylgeranyl diphosphate synthase (GGPPS) (Ma et al., 2012;
Zhang and Lu, 2016). Both PQ and UQ share the prenyl side
chain precursors. Side chain may be elongated to solanesyl
diphosphate (SPP, C45) and decaprenyl diphospate (DPS, C50)
under the catalysis of solanesyl diphosphate synthase (SPS)
and decaprenyl diphosphate synthase (DPS), respectively. In
the second stage, SPP is attached to HGA by homogentisate
solanesyltransferase (HST) to produce intermediate 2-dimethyl-
plastoquinone, which is then catalyzed by a methytransferase
to form the end-product PQ9 in plants. The condensation of
PHB and the corresponding prenyl side chain is catalyzed by
PHB polyprenyltransferase (PPT). It leads to the formation of
3-polyprenyl-4-hydroxybenzoate. After three methylations, three
hydroxylations and one decarboxylation, ubiquinonol-n and
ubiquinone-n are formed eventually. Enzymes catalyzing these
modification steps are currently not well understood.

ENZYMES AND THEIR ENCODING
GENES INVOLVED IN PQ AND UQ
BIOSYNTHESIS

Recently, genes involved in the MEP and MVA pathways
have been intensively studied. Chemical compounds synthesized
through these pathways are precursors for many terpenoids and
their derivatives. They are not specific to PQ and UQ production.
Here, we are not going to summarize the advances in these genes.
Instead, genes involved in side chain elongation and in the second
stage of PQ and UQ biosynthesis are reviewed in detail (Table 1).

Polyprenyl Diphosphate Synthase (PPS)
Polyprenyl diphosphate synthases, also known as
prenyltransferases (PTs) and isoprenyl diphosphate synthases
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FIGURE 2 | Continued
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FIGURE 2 | The biosynthetic pathways of PQ9 and UQ. 4-HBA, 4-hydroxybenzoate acid; 4-HPPA, 4-hydroxyphenylpyruvic acid; AACT, acetoacetyl-CoA
thiolase; AcAc-CoA, acetyloacetyl-coenzyme A; Ac-CoA, acetyl-coenzyme A; APG1, MSBQ/MPBQ methyltransferase; CDP-ME,
4-diphosphocytidyl-2C-methyl-D-erythritol; CDP-MEP, 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate; CMK, 4-diphosphocytidyl-2-C-methyl-D-erythritol
kinase; Coq?, unknown enzymes; Coq3 and Coq5, O-methyltransferase and C-methyltransferase; Coq6, monooxygenase; DMAPP, dimethylallyl pyrophosphate;
DMAPP, dimethylallyl pyrophosphate; DPS, decaprenyl diphosphate synthese; DXP, 1-deoxy-D-xylulose-5 phosphate; DXR, 1-deoxy-D-xylulose 5-phosphate
reductoisomerase; DXS, 1-deoxy-D-xylulose-5-phosphate; FPP, farnesyl diphosphate; FPPS, farnesyl diphosphate synthase; GAP, D-glyceraldehyde 3-phosphate;
GGPP, geranylgeranyl diphosphate; GGPPS, geranylgeranyl diphosphate synthase; GPP, geranyl diphosphate; GPPS, geranyl diphosphate synthase; HDR,
1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase; HDS, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase; HGA, homogentisate acid; HMBPP,
1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase; HMGR,
hydroxymethylglutaryl-CoA reductase; HMGS, 3-hydroxy-3-methylglutaryl-CoA synthase; HMGS, hydroxymethylglutaryl-CoA synthetase; HPPR,
4-hydroxyphenylpyruvate reductase; HST, homogentisate solanesyltransferase; IDI, isopentenyl-diphosphate delta-isomerase; IPP, isopentenyl diphosphate
isomerase; IPP, isopentenyl diphosphate; MCT, 2C-methyl-D-erythritol 4-phosphate cytidyl transferase; MDS, 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase;
ME-cPP, 2C-methyl-D-erythritol 2,4-cyclodiphosphate; MEP, 2C-methyl-D-erythritol-4-phosphate; MSBQ, methyl-solanesyl-benzoquinone; MVA, mevalonic acid;
MVAP, mevalonate-5-phosphate; MVAPP, mevalonate-5-diphosphate; MVK, mevalonate kinase; PMVK, phosphomevalonate kinase; PPMD, diphosphomevalonate
decarboxylase; PPS, diphosphate synthese; PPT/Coq2, 4-hydroxybenzoate polyprenyl transferase; Pyr, pyruvate; SPP, solanesyl diphosphate; SPS, solanesyl
diphosphate synthase; TAT, tyrosine aminotransferase.

(IDSs), are a group of enzymes widely distributed in organisms.
They catalyze the formation of polyprenyl diphosphates with
various chain lengths through consecutive condensation of IPP
and are key enzymes involved in the biosynthesis of isoprenoid
compounds, including monoterpenes, diterpenes, triterpenoids,
carotenoids, natural rubber and many derivatives, such as PQ
and UQ, vatamin E, prenylflavonoids, and shikonnin (Kellogg
and Poulter, 1997).

Polyprenyl diphosphate synthases possess seven common
conserved domains, I–VII, of which domain II is characterized
with the first aspartate-rich motif (FARM), DDX2−4D, while
domain VI is characterized with the second aspartate-rich motif
(SARM), DDXXD (Wang and Ohnuma, 1999; Phatthiya et al.,
2007). These aspartate-rich motifs are involved in substrate
binding and catalysis via chelating Mg2+, a cofactor required
for enzyme activity (Wang and Ohnuma, 1999). Based on the
chain length of final products, PPSs can be divided into three
subfamilies: short- (C15–C25), medium- (C30–C35) and long-
chain (C40–C50) PTs (Hemmi et al., 2002). The most common
PQ and UQ in plants have a C45 or C50 prenyl side chain moiety.
For instance, Oryza sativa PQ9 and UQ9 contain a C45 prenyl
side chain (Ohara et al., 2010), while cauliflower and pea UQ10
has a C50 prenyl side chain (Mattila and Kumpulainen, 2001).
Thus, long chain PPSs, such as SPS catalyzing the formation
of solanesyl diphosphate (SPP, C45) and decaprenyl diphosphate
synthase (DPS) involved in decaprenyl diphosphate (DPP, C50)
production, are significant to PQ and UQ biosynthesis in plants.

Database mining of fully sequenced genomes showed that
Chlamydomnas reinhardtii, Cyanidioschyzon merolae, Cucumis
sativus, Vitis vinifera and Hordeum vulgare contained two SPSs,
Physcomitrella patens, Arabidopsis, Glycine max, Oryza sativa and
Zea mays had three, and Brachypodium distachyon contained
four (Block et al., 2013). Among the three Arabidopsis SPS
genes, AtSPS1 (At1g78510) and AtSPS2 (At1g17050) are highly
expressed in leaves with the level of AtSPS1 transcripts higher
than AtSPS2 (Hirooka et al., 2003, 2005), whereas AtSPS3
(At2g34630) is ubiquitously expressed with peaks in seeds and
shoot apical meristems (Ducluzeau et al., 2012). Although
AtSPS1 had been shown previously to be localized in the ER
(Hirooka et al., 2003, 2005; Jun et al., 2004), recent analysis have
clearly demonstrated that both AtSPS1 and AtSPS2 is targeted

exclusively to plastids and contribute to the biosynthesis of
PQ9 (Block et al., 2013). Overexpression of AtSPS1 resulted in
the accumulation of PQ9 and its derivative plastochromanol-8
(PC8) (Ksas et al., 2015). Moreover, the enzymatic activity of
AtSPS1 and AtSPS2 is stimulated by a member of the lipid-
associated fibrillin protein family, fibrillin 5 (FNB5-B), which
physically binds to the hydrophobic solanesyl moiety and helps
to release the moiety from the enzymes in Arabidopsis cells
(Kim et al., 2015). AtSPS3 had been shown previously to be
targeted to plastids and to contribute to gibberellin biosynthesis
(Bouvier et al., 2000). However, recent results suggest that it is
actually dual targeted to mitochondria and plastids and appears
very likely bifunctional (Ducluzeau et al., 2012). AtSPS3 is able
to complement a yeast coq1 knockout lacking mitochondrial
hexaprenyl diphosphate synthase. Silence of AtSPS3 using RNAi
technology led to 75–80% reduction of the UQ pool size. AtSPS3
overexpression resulted in a 40% increase in UQ content. No
significant alternation of PQ levels was observed in AtSPS3
silenced or overexpressing lines. Therefore, AtSPS3 seems to
be the main contributor to SPS activity required for UQ9
biosynthesis in Arabidopsis (Hsieh et al., 2011; Ducluzeau et al.,
2012).

Similarly, three SPS genes exist in O. sativa (Ohara et al.,
2010; Block et al., 2013). OsSPS1 is highly expressed in roots,
whereas OsSPS2 is highly expressed in both leaves and roots.
TargetP prediction and transient expression of GFP fusion
protein showed the localization of OsSPS1 in mitochondria and
OsSPS2 in plastids. Recombinant proteins of both OsSPS1 and
OsSPS2 catalyzed the formation of solanesyl diphosphates. The
enzyme activity of OsSPS1 was stronger than OsSPS2. OsSPS1
complemented the yeast coq1 disruptant and produced UQ9 in
yeast cells, whereas OsSPS2 weakly complemented the growth
defect of the coq1 mutant (Ohara et al., 2010). The results
suggest that OsSPS1 and OsSPS2 are involved in the supply
of solanesyl diphosphate for UQ9 production in mitochondria
and PQ9 biosynthesis in chloroplasts, respectively. OsSPS3 is less
studied compared with OsSPS1 and OsSPS2. Since it shows high
homology with OsSPS2 (Block et al., 2013), OsSPS3 appears to be
also involved in PQ9 formation.

Analysis of the fully sequenced tomato genomes showed
that Solanum lycopersicum contained two long-chain PPSs genes
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FIGURE 3 | The chemical structures of various compounds in PQ and UQ biosynthetic pathways. 4-HBA, 4-hydroxybenzoate acid; 4-HPPA,
4-hydroxyphenylpyruvic acid; AcAc-CoA, acetyloacetyl-coenzyme A; Ac-CoA, acetyl-coenzyme A; CDP-ME, 4-diphosphocytidyl-2C-methyl-D-erythritol; CDP-MEP,
4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate; DMAPP, dimethylallyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; DXP, 1-deoxy-D-xylulose-5
phosphate; DXS, 1-deoxy-D-xylulose-5-phosphate; FPP, farnesyl diphosphate; GAP, D-glyceraldehyde 3-phosphate; GGPP, geranylgeranyl diphosphate; GPP,
geranyl diphosphate; HGA, homogentisate acid; HMBPP, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; IPP,
isopentenyl diphosphate; ME-cPP, 2C-methyl-D-erythritol 2,4-cyclodiphosphate; MEP, 2C-methyl-D-erythritol-4-phosphate; MSBQ, methyl-solanesyl-benzoquinone;
MVA, mevalonic acid; MVAP, mevalonate-5-phosphate; MVAPP, mevalonate-5-diphosphate; Pyr, pyruvate; SPP, solanesyl diphosphate.
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TABLE 1 | Genes involved in side chain elongation and in the second stage of PQ and UQ biosynthesis in photosynthetic organisms.

Gene Enzyme Organism Function Reference

AtSPS1, AtSPS2 Solanesyl
diphosphate synthase

Arabidopsis thaliana PQ9 Hirooka et al., 2003, 2005; Jun et al.,
2004; Block et al., 2013; Ksas et al.,
2015

AtSPS3 Solanesyl
diphosphate synthase

Arabidopsis thaliana UQ9 Hsieh et al., 2011; Ducluzeau et al.,
2012; Block et al., 2013

AtPPT1/HRL1 4-hydroxybenzoate
polyprenyltransferase

Arabidopsis thaliana UQ9 Devadas et al., 2002; Okada et al.,
2004; Dutta et al., 2015

AtCoQ3 O-methyltransferase Arabidopsis thaliana UQ9 Avelange-Macherel and Joyard, 1998

AtCoQ5 C-methyltransferase Arabidopsis thaliana UQ9 Hayashi et al., 2014

AtCOQ6 Monooxygenase Arabidopsis thaliana UQ Hayashi et al., 2014

AtHST Homogentisate
solanesyltransferase

Arabidopsis thaliana PQ9 Sadre et al., 2006; Tian et al., 2007;
Chao et al., 2014

APG1/VTE3 MSBQ/MPBQ
methyltransferase

Arabidopsis thaliana PQ9 and tocopherol Cheng et al., 2003; Motohashi et al.,
2003; Naqvi et al., 2011

BoCOQ5 C-methyltransferase Brassica oleracea UQ9 Zhou et al., 2009

BrCoQ3 O-methyltransferase Brassica rapa UQ Wang et al., 2011

CrHST Homogentisate
solanesyltransferase

Chlamydomonas reinhardtii PQ9 and tocochromanol Venkatesh et al., 2006

CrAPG1 MSBQ/MPBQ
methyltransferase

Chlamydomonas reinhardtii PQ and tocopherol Cheng et al., 2003

EsCoQ3 O-methyltransferase Eutrema salsugineum UQ Yang et al., 2013

HbSDS Solanesyl diphosphate
synthase

Hevea brasiliensis PQ9 Phatthiya et al., 2007

LsAPG1 MSBQ/MPBQ
methyltransferase

Lactuca sativa tocopherol Tang et al., 2016

OsSPS1 Solanesyl diphosphate
synthase

Oryza sativa UQ9 Ohara et al., 2010; Block et al., 2013

OsSPS2, OsSPS3 Solanesyl diphosphate
synthase

Oryza sativa PQ9 Ohara et al., 2010; Block et al., 2013

OsPPT1a 4-hydroxybenzoate
Polyprenyltransferase

Oryza sativa UQ9 Ohara et al., 2006

SlSPS Solanesyl diphosphate
synthase

Tomato PQ9 Jones et al., 2013

SlDPS Decaprenyl diphosphate
synthase

Tomato UQ10 Jones et al., 2013

VTE3 MPBQ methyltransferase Peanut methyltransferase Liu et al., 2013

APG1 MSBQ/MPBQ
methyltransferase

Synechocystis PCC6803 PQ and tocopherol Shintani et al., 2002

Slr0926 4-hydroxybenzote
solanesyltransferase

Synechocystis PCC6803 PQ9 Sadre et al., 2012

(Block et al., 2013). Jones et al. (2013) cloned and termed
them SlSPS and SlDPS, respectively. SlSPS is targeted to plastids,
whereas the fluorescence signal of SlDPS-GFP may resemble the
mitochondrial localization reported for rice OsSPS1 (Ohara et al.,
2010; Jones et al., 2013). In E. coli, SlSPS and SlDPS extend the
side chain of endogenous UQ to nine and ten isoprene units,
respectively (Jones et al., 2013). Overexpression of SlSPS elevated
the content of PQ in immature tobacco leaves. Silence of SlSPS
resulted in photobleached phenotype and accumulated phytoene.
SlSPS and SIDPS could not complement silencing of each other.
SlDPS can use GPP, FPP or GGPP in SPP and DPP biosynthesis.
Silence of SlDPS did not affect leaf appearance, but impacted on
primary metabolism (Jones et al., 2013). The roles of SlSPS and
SlDPS in PQ and UQ biosynthesis need to be further investigated.

Although long chain PPSs play significant roles in PQ and UQ
biosynthesis, the corresponding genes have only been identified
from various plants, such as Arabidopsis (Hirooka et al., 2003,

2005; Jun et al., 2004; Ducluzeau et al., 2012; Block et al., 2013),
rice (Ohara et al., 2010), tomato (Jones et al., 2013), and Hevea
brasiliensis (Phatthiya et al., 2007). Greater efforts are required for
molecular cloning and functional characterization of the genes in
other plant species and utilization of plant source long chain PPSs
in PQ and UQ production through biotechnology.

Homogentisate Solanesyltransferase
(HST)
HSTs catalyze the condensation of HGA and SPP to form
2-demethylplastoquinol-9 leading to PQ9 biosynthesis (Sadre
et al., 2010). Although HSTs are members of the homogentisate
PT family, they differ from other homogentisate PT members,
such as the homogentisate phytyltransferases (HPTs) isolated
from Synechocystis (slr1736) and Arabidopsis (VTE2), in enzyme
properties (Collakova and DellaPenna, 2001; Savidge et al.,
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2002). HPTs showed the highest enzyme activities with phytyl
diphosphate, whereas HSTs had the highest activities with
solanesyl diphosphate and were hardly active with phytyl
diphosphate (Sadre et al., 2006).

Compared with other genes involved in the upstream of
PQ biosynthesis, HSTs are less studied, although they play an
important role in the biosynthesis of PQ9, GAs and carotenoids,
of which carotenoids are precursors of ABA and strigolactones.
Genes encoding HSTs have only reported in C. reinhardtii and
Arabidopsis (Sadre et al., 2006; Venkatesh et al., 2006; Tian
et al., 2007; Sadre et al., 2010; Chao et al., 2014). The deduced
C. reinhardtii CrHST and Arabidopsis AtHST proteins contain
a chloroplast targeting sequence (Sadre et al., 2006; Tian et al.,
2007). Confocal images of the AtHST-GFP fusion protein showed
that AtHST protein was located in the chloroplast, most likely
on the envelope membrane (Tian et al., 2007). Overexpression
of AtHST caused modest elevation of PQ9 levels (Sadre et al.,
2006). The pds2 mutant with an in-frame 6 bp deletion in
AtHST showed an albino phenotype and the mutation can be
functionally complemented by constitutive expression of AtHST
(Norris et al., 1995; Tian et al., 2007). Similarly, T-DNA insertion
mutant of HST gene displayed albino, dwarf and early flowering
phenotypes with chloroplast development arrested, chlorophyll
(Chl) absent and stomata closure defected (Chao et al., 2014).
The GA and ABA levels were very low in the mutant. Exogenous
GA could partially rescue the dwarf phenotype and the root
development defects. Exogenous ABA could rescue the stomata
closure defects (Chao et al., 2014). The expression levels of
many genes involved in flowering time regulation and PQ, Chl,
GA, ABA and carotenoid biosynthesis were changed in the
mutant, suggesting the key roles of AtHST played in chloroplast
development and plant hormone biosynthesis (Chao et al., 2014).
HST genes in other plant species remain to be isolated and
characterized.

4-Hydroxybenzoate Polyprenyl
Diphosphate Transferase (PPT)
PPT is a rate-limiting enzyme in UQ biosynthesis. It catalyzes
the condensation of benzoquinone ring and polyisoprenoid
side chain to form the intermediate, 3-polyprenyl-4-
hydroxybenzoate. All of the reported eukaryotic PPTs contain
a mitochondrial targeting signal at N-terminal sequence. Most
PPTs have a broad specificity for prenyl diphosphates, accepting
substrates of different chain lengths, but show a high specificity
for 4HB (Forsgren et al., 2004; Okada et al., 2004; Ohara
et al., 2006). PPT genes have been identified from various
organisms, such as E. coli (Siebert et al., 1992), S. cerevisiae
(Ashby et al., 1992), Schizosaccharomyces pombe (Uchida et al.,
2000), human (Forsgren et al., 2004), and two plant species,
including Arabidopsis (Okada et al., 2004) and rice (Ohara et al.,
2006).

PPTs are members of the polyprenyl diphosphate transferase
family. Although proteins in this family have sequence homology
and relatively close phylogenetic relationship, only a small
subset catalyzing the condensation of 4HB and prenyl chain are
involved in UQ biosynthesis (Ohara et al., 2006). Other members

may be involved in other metabolic pathways. For instance,
Cyanobacteria hydroxybenzoate solanesyltransferase, Slr0926,
which exhibits highly specific for 4-hybroxybenzoate and a broad
specificity with regard to the prenyl donor substrate, including
SPP and a number of shorter-chain prenyl diphosphates, is
actually involved in PQ9 biosynthesis (Sadre et al., 2012).
Lithospermum erythrorhizon 4HB geranyltransferases (LePGT1
and LePGT2) with a strict specificity for GPP as a prenyl substrate
are involved in shikonin biosynthesis and not relevant to UQ
formation (Heide and Berger, 1989; Yazaki et al., 2002; Ohara
et al., 2006, 2009).

Arabidopsis AtPPT1 is the first PPT gene identified in plants
(Okada et al., 2004). It is predominantly expressed in the flower
cluster. The deduced AtPPT1 protein is localized in mitochondria
and can complement the yeast coq2 disruptant. AtPPT1 has broad
substrate specificity in terms of the prenyl donor. The T-DNA
insertion mutant of AtPPT1 shows arrest of embryo development
at an early stage of zygotic embryogenesis (Okada et al., 2004).
The other mutant, known as hypersensitive response-like lesions
1 (hrl1), was identified in an ethyl methanesulfonate (EMS)-
mutagenesis screen (Devadas et al., 2002). The hrl1 mutant
spontaneously develops HR-like lesions and shows enhanced
resistance against bacterial pathogens (Devadas et al., 2002).
Positional cloning and subsequent DNA sequencing showed that
the mutant had a single base change in an exon of AtPPT1.
The mutation results in a leucine to phenylalanine substitution
at position 228. Leucine 228 is not a part of the active site
of the enzyme but is conserved across PPT sequences from
various organisms (Dutta et al., 2015). Overexpression of HRL1 in
A. thaliana leads to elevated UQ and decreased ubiquinol levels
(Dutta et al., 2015).

The O. sativa genome contains three PPT genes, including
OsPPT1a, OsPPT1b and OsPPT1c. However, only OsPPT1a was
found to be expressed (Ohara et al., 2006). The deduced OsPPT1a
proteins contain a putative mitochondrial sorting signal at the
N-terminus. Consistently, GFP-PPT fusion proteins are mainly
localized in mitochondria (Ohara et al., 2006). Same as AtPPT1
and other PPT proteins, OsPPT1a can complement the yeast coq2
mutant, accepts prenyl diphosphates of various chain lengths
as prenyl donors, and shows strict substrate specificity for the
aromatic substrate 4HB as a prenyl acceptor (Ohara et al., 2006).

The Modification Enzyme of PQ Benzene
Quinone Ring
2-demethylplastoquinol formed through the condensation of
HGA and SPP by HSTs is a key intermediate in PQ synthesis. This
intermediate can be converted to the final product PQ under the
catalyzing of a modification enzyme, termed albino or pale green
1 (APG1) or methy-phytyl-benzoquinone (MPBQ)/methyl-
solanesyl-benzoquinone (MSBQ) methyltransferase (Shintani
et al., 2002; Motohashi et al., 2003; Cheng et al., 2003).

Arabidopsis APG1 was identified through characterization of
the Ds-tagged albino or pale green mutant 1 (apg1) (Motohashi
et al., 2003). This mutant lacks PQ, cannot survive beyond
the seedling stage when germinated on soil, and contains
decreased numbers of lamellae with reduced levels of chlorophyll
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(Motohashi et al., 2003). The insertion of Ds transposon
disrupts a gene encoding a 37 kDa polypeptide precursor of
the chloroplast inner envelope membrane. The 37 kDa protein
had partial sequence similarity to the S-adenosylmethionine-
dependent methyltransferase (Motohashi et al., 2003). Because of
the lack of PQ in apg1 mutant and the putative methyltrasferase
activity of the 37 kDa protein, APG1 appears to be involved
in the methylation step of PQ biosynthesis (Motohashi et al.,
2003). Almost at the same time, using a combined genomic,
genetic and biochemical approach, Cheng et al. (2003) isolated
and characterized the Arabidopsis VTE3 (vitamin E defective)
locus. This locus is actually identical to APG1. In vitro enzyme
assays showed that VTE3 was the plant functional equivalent of
MPBQ/MSBQ methyltransferase from Synechocystis sp PCC6803
(Shintani et al., 2002).

In cyanobacterium, various genes involved in the PQ
biosynthetic pathway and the vitamin E biosynthetic pathway
are highly conserved. The biosynthesis of PQ and vitamin
E share common precursor, HGA, which is prenylated with
different substrates in the biosynthesis of different products.
HGA is prenylated with phytyl diphosphate (PDP) or GGPP
in tocochromanol formation, whereas it is prenylated with SPP
in PQ9 biosynthesis. Thus, the MPBQ/MSBQ methyltransferase
identified from Synechocystis sp PCC6803 has a dual function
in the final methylation step of PQ and vitamin E biosynthesis
(Shintani et al., 2002). Most genes involved in PQ and vitamin E
synthesis are homologous, but MPBQ/MSBQ methyltransferase
from Synechocystis sp PCC6803 and VTE3 from Arabidopsis
are highly divergent in primary sequence (Cheng et al., 2003).
The orthologs of Synechocystis MPBQ/MSBQ methyltransferase
exist in C. reinhardtii and Thalassiosira pseudonana but absent
from vascular and non-vascular plants. VTE3 orthologs exist
in C. reinhardtii and vascular and non-vascular plants but
absent from cyanobacteria (Cheng et al., 2003). It suggests
that VTE3 is evolutionarily originated from archea rather than
cyanobacteria. Interestingly, two mutants of VTE3, vte3-1 and
vte3-2, which show partial or total disruption of MPBQ/MSBQ
methyltransferase activity, respectively, have different effects
on PQ and vitamin E biosynthesis. vte3-1 mainly impairs the
methylation of tocopherol substrates. It has little effect on the
methylation of MSBQ to PQ. On the contrary, vte3-2 completely
disrupts MPBQ/MSBQ methyltransferase (Shintani et al., 2002).
The underlying mechanism remains to be elucidated.

Although genes encoding MPBQ/MSBQ methyltransferase
are largely unknown in plant species other than Arabidopsis,
engineering of VTE3 has been tested (Van Eenennaam et al.,
2003; Naqvi et al., 2011). Seed-specific expression of Arabidopsis
VTE3 in transgenic soybean reduced seed delta-tocopherol from
20 to 2%. Coexpression of Arabidopsis VTE3 and VTE4 (gamma-
tocopherol methyltransferase gene) resulted in a greater than
eightfold increase of alpha-tocopherol and an up to fivefold
increase in vitamin E activity in transgenic soybean seeds (Van
Eenennaam et al., 2003). Simultaneous expression of Arabidopsis
ρ-hydroxyphenylpyruvate dioxygenase and VTE3 in transgenic
corn kernels triples the tocopherol content (Naqvi et al., 2011).
It is currently unknown whether it is possible to increase the
content of PQ in plants through VTE3 overexpression.

Modification Enzymes of UQ Benzene
Quinone Ring
Compared with PQ benzene quinine ring modification, the
process of UQ aromatic ring modification is complex. It includes
three methylations (two O-methylations and one C-methylation),
three hydroxylations, and one decarboxylation. UQ biosyntheses
in prokaryotes and eukaryotes are similar. The difference
lies in the reaction order of modifications. In eukaryotes,
proposed modifications start with hydroxylation, followed by
O-methylation, decarboxylation, two additional hydroxylations,
C-methylation and one additional O-methylation (Tran and
Clarke, 2007), whereas the reaction order of modifications
in prokaryotes is decarboxylation, three hydroxylations,
O-methylation, C-methylation and then an additional
O-methylation (Meganathan, 2001).

Hydroxylation
The modification of UQ aromatic ring requires a total of
three hydroxylations. The first hydroxylation of 3-polyprenyl-
4-hydroxybenzoate in eukaryotes occurs before decarboxylation
(Goewert et al., 1977). Two additional hydroxylations occur
after decarboxylation in eukaryotes. Enzymes involved in
hydroxylation are cytochrome P450 monooxygenases, known as
COQ6 and COQ7 in yeast (Olson and Rudney, 1983). Genes
encoding these enzymes have been identified from various
organisms, such as S. cerevisiae (Marbois and Clarke, 1996;
Kawamukai, 2000; Ozeir et al., 2011), rat (Jonassen et al.,
1996), Caenorhabditis elegans (Ewbank et al., 1997), human
(Vajo et al., 1999; Lu T.T. et al., 2013), and E. coli (Hajj
Chehade et al., 2013). Homologs of the enzymes involved in UQ
aromatic ring hydroxylations have also been found in various
plants, such as Arabidopsis (Lange and Ghassemian, 2003) and
alga (Blanc et al., 2010, 2012). Arabidopsis contains a COQ6
homolog, but lacks COQ7 (Hayashi et al., 2014). Although
AtCOQ6 cannot complement the yeast coq6 disruptant, addition
of a mitochondrial targeting signal to AtCOQ6 will enable the
production of UQ10 (Hayashi et al., 2014). Except AtCOQ6,
other plant COQ6 and COQ7 homologs were identified based
on genome sequence search and computational annotation, their
roles in UQ biosynthesis need to be further confirmed using
experimental approaches.

Methylation
The three methylations of UQ aromatic ring include two
O-methylations and one C-methylation. The two O-methylation
steps are catalyzed by COQ3, whereas the C-methylation step
is catalyzed by COQ5 in yeast (Clarke et al., 1991; Barkovich
et al., 1997; Poon et al., 1999; Hsu et al., 2000; Baba et al., 2004).
COQ3 homologs have been identified in various organisms, such
as E. coli (Hsu et al., 1996), yeast (Clarke et al., 1991; Poon et al.,
1999; Hsu et al., 2000), rat (Marbois et al., 1994a,b) and human
(Jonassen and Clarke, 2000). The gene encoding plant COQ3 was
first identified in Arabidopsis (Avelange-Macherel and Joyard,
1998). AtCOQ3 gene product is localized within mitochondrial
membranes and can complement Saccharomyces cerevisiae or
Schizosaccharomyces pombe coq3 disruptant (Avelange-Macherel
and Joyard, 1998; Hayashi et al., 2014). With the decoding of
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plant genomes, COQ3 has also been found in other plant species,
such as Brassica rapa (Wang et al., 2011), Eutrema salsugineum
(Yang et al., 2013). Similar to COQ3, COQ5 is associated with
other COQ proteins on the inner mitochondrial membrane at
the matrix side (Baba et al., 2004; Nguyen et al., 2014). COQ5
genes have been identified in yeast (Barkovich et al., 1997; Baba
et al., 2004), human (Chen et al., 2013; Nguyen et al., 2014),
broccoli (Zhou et al., 2009) and Arabidopsis (Hayashi et al.,
2014). S. cerevisiae COQ5 displays a typical class I S-adenosyl
methionine-dependent methyltransferase crystal structure (Dai
et al., 2014). The broccoli BoCOQ5 can complement a yeast
coq5 mutant and increases cellular UQ levels in bacteria
(Zhou et al., 2009). Similarly, AtCOQ5 can complement the
Schizosaccharomyces pombe coq5 disruptant (Hayashi et al.,
2014).

Decarboxylation
The proposed modifications of UQ aromatic ring include a
decarboxylation step. It occurs before the three hydroxylation
steps in prokaryotes, whereas in eukaryotes, decarboxylation
occurs after a hydroxylation step and an O-methylation step. It
has been shown that ubiX and ubiD genes are involved in the
decarboxylation of UQ aromatic ring in bacteria (Meganathan,
2001; Gulmezian et al., 2007; Aussel et al., 2014). ubiX
encodes a flavin mononucleotide (FMN)-binding protein with no
decarboxylase activity detected in vitro (Gulmezian et al., 2007;
Aussel et al., 2014), and UbiX proteins are metal-independent
and require dimethylallyl-monophosphate as substrate (White
et al., 2015). During the biosynthesis of UQ, UbiX acts as
a flavin PT, producing a flavin-derived cofactor required for
the decarboxylase activity of UbiD (Payne et al., 2015; White
et al., 2015). pad1 and fdc1 are two fungal genes related
to bacterial ubiX and ubiD (Mukai et al., 2010; Lin et al.,
2015; Payne et al., 2015). Although Pad1 and Fdc1 proteins
are homologous with UbiX and UbiD, respectively, and UbiX
can activate Fdc1, they are not essential for UQ synthesis
in yeast (Mukai et al., 2010; Lin et al., 2015). Thus, the
decarboxylation step is largely unknown in eukaryotes. Feeding
the isolated mitochondria from potato tubers with 14C-labeled
IPP, 4HB and S-adenosylmethionine shows the accumulation
of methoxy-4-hydroxy-5-decaprenylbenzoate. It indicates the
occurrence of decarboxylation after the first hydroxylation and
subsequent O-methylation in plants; however, the immediate
methoxy-4-hydroxy-5-decaprenylbenzoate cannot be detected in
potato tubers (Lütke-Brinkhaus et al., 1984; Lütke-Brinkhaus
and Kleinig, 1987), and no plant genes and enzymes involved
in the decarboxylation of UQ aromatic ring have been
identified.

In addition to the enzymes mentioned above, various
other enzymes, such as yeast COQ4, COQ8, and COQ9,
are potentially involved in UQ benzene quinone ring
modification, although their actual functions are currently
unknown (Tran and Clarke, 2007). Moreover, it seems
that modification enzymes involved in modification of UQ
benzene quinone ring form a multi-subunit complex. The
interaction among subunits guarantees the normal function of
enzymes.

PHYSIOLOGICAL FUNCTIONS OF PQ
AND UQ IN PLANTS

Both PQ and UQ are functionally important electron transporters
in plants. PQ is involved in the electron transport chain of
oxygenic photosynthesis, whereas UQ works exclusively as an
electron carrier in the aerobic respiratory chain (Cramer et al.,
2011; de Dieu Ndikubwimana and Lee, 2014; Parmar et al., 2015).
In addition to their basal functions in photophosphorylation and
oxidative phosphorylation, PQ and UQ also play indispensable
roles in plant growth and development through participating in
the biosynthesis or metabolism of various important chemical
compounds, acting as antioxidants, being involved in plant
response to stress, and regulating gene expression and cell signal
transduction.

Involved in Biosynthesis or Catabolism
of Chemical Compounds
It has been shown that PQ and UQ are involved in the
biosynthesis or metabolism of various important chemical
compounds in plants. For instance, PQ participates in the
biosynthesis of carotenoids (Norris et al., 1995), abscisic
acid (ABA) (Rock and Zeevaart, 1991) and gibberellin (GA)
(Nievelstein et al., 1995), whereas UQ is involved in branch-chain
amino acid metabolism (Ishizaki et al., 2006; Araújo et al., 2010).

Carotenoids are C40 tetraterpenoids functioned as accessory
light-harvesting pigments in photosynthetic tissues. In non-
photosynthetic tissues, such as fruits and flowers, high levels
of carotenoids often bring intense orange, yellow and red
colors (Pfander, 1992). During carotenoid biosynthesis, the
phytoene desaturation reaction is a rate-limiting step. A certain
quinone/hydroquinone balance is necessary for optimal
phytoene desaturation (Mayer et al., 1990). In an anaerobic
environment, the oxidized quinones rather than reduced
quinones are involved in the desaturation of phytoene (Mayer
et al., 1990). pds1 and pds2 are two Arabidopsis mutants showing
albino phenotype (Norris et al., 1995). The mutations affect
phytoene desaturation and cause accumulation of phytoene,
but they are not occurred in the phytoene desaturation
enzyme. Analysis of pds1 and pds2 shows that pds1 is 4-
hydroxypheylpyruvate dioxygenase deficient (Norris et al., 1998),
whereas pds2 is deficient in HST, a critical enzyme involved in
PQ biosynthesis (Tian et al., 2007). Both of the mutations lead
to plastoquionone/tocopherol absence from different aspects
in Arabidopsis, providing conclusive evidence that PQ is an
essential component in phytoene desaturation (Nievelstein et al.,
1995; Norris et al., 1995).

Since the plant hormone ABA is synthesized by oxidative
cleavage of epoxy-carotenoids (Rock and Zeevaart, 1991), it is
reasonable that PQ is also important for ABA biosynthesis. In
a T-DNA insertion mutant of HST gene (pds2-1), not only
PQ but also carotenoids, ABA and GA3 levels are dramatically
reduced (Chao et al., 2014). PQ works as the co-factor of
phytoene desaturase and ζ-carotene desaturase and is the
immediate electron acceptor in carotenoid and ABA biosynthesis
(Chao et al., 2014). Disruption of HST gene results in PQ
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content decrease, which subsequently affects carotenoid and
ABA biosynthesis. On the other hand, the biosynthesis of PQ,
carotenoid, ABA and GA shares the common precursor, GGPP
(Ma et al., 2012; Chao et al., 2014; Du et al., 2015; Zhang and
Lu, 2016). In the pds2-1 mutant, expression of GA biosynthesis
genes, such as GA1, GA2, and GA3, is significantly down-
regulated (Chao et al., 2014). Consistently, in the Arabidopsis
phytoene desaturase gene mutant (pds3), gibberellin biosynthesis
is impaired (Qin et al., 2007). It indicates that PQ may affect
the biosynthesis of other chemical compounds through negative
feedback regulation or other indirect mechanisms.

The relationship between UQ and amino acids lies in two
aspects: (1) The precursors of UQ biosynthesis are derived
from amino acids, including phenylalanine and tyrosine; and (2)
UQ is involved in catabolism of some branched-chain amino
acids in mitochondria. It is well known that mitochondrion
is an integration point of cellular metabolism and signaling.
Amino acids are not only metabolized in peroxisomes but
also broken down in mitochondria, which provide carbon
skeletons for biosynthesis of many important compounds, such
as vitamins, amino acids, and lipids (Sweetlove et al., 2007).
In Arabidopsis, leucine is catabolized to form isovaleryl-CoA
in mitochondrial matrix, and then the intermediate of the
leucine catabolic pathway, isovaleryl-CoA, is dehydrogenated to
3-methylcrotonyl-CoA by isovaleryl-CoA dehydrogenase (IVD).
This process occurs on the matrix face of the inner mitochondrial
membrane and an electron is transferred through the electron-
transfer flavoprotein/electron-transfer falvoprotein:ubiquinone
oxidoreductase (ETF/ETFQO) system, first to flavoprotein and
then to flavoprotein:ubiquione oxidoreductase (Ishizaki et al.,
2006; Araújo et al., 2010). UQ is the final acceptor of electrons
in the decomposition of leucine. Similarly, electrons produced
during the catabolism of lysine can also be channeled to the
mitochondrial electron transport chain (Araújo et al., 2010).

Act as Antioxidants and Involved in Plant
Response to Stress
Plastoquinone and ubiquinone can scavenge free radicals
to prevent lipid peroxidation, protein oxidation and DNA
damage in plant response to biotic and abiotic stresses. They
exert antioxidant activity in the reduced forms, plastoquinol
and uibiquinol, located in chloroplast thylakoid membrane
and mitochondrial membrane, respectively. Analysis of the
antioxidant effect of reduced PQ in isolated spinach thylakoid
membranes showed that the reduced PQ acted as a scavenger
of toxic oxygen species generated in the thylakoid membranes
under strong illumination stress (Hundal et al., 1995). Reduced
PQ inhibits lipid peroxidation and pigment bleaching, whereas
oxidized PQ plays an opposite role (Hundal et al., 1995).
In PQ-depleted spinach PSII membranes, exogenously added
plastoquinol serves as an efficient scavenger of singlet oxygen
(Yadav et al., 2010). Similarly, in C. reinhardtii cells, the level of
reduced PQ markedly increased under high-light stress. When
pyrazolate, an inhibitor of PQ and tocopherol biosynthesis,
was added, the content of reduced PQ quickly decreases (Kruk
et al., 2005). Further analyzing the turnover of plastoquinol
showed that, due to scavenging of singlet oxygen, the reduced

PQ underwent high turnover rate under high-light conditions
(Kruk and Trebst, 2008). Moreover, the redox state of PQ pool
was found to be an upstream master switch associated with
programmed cell death in Arabidopsis leaves in response to excess
excitation energy and may be play a central role in the light
acclimation of diatoms (Mühlenbock et al., 2008; Lepetit et al.,
2013). PSII photoinhibition occurred as a consequence of more
reduced PQ pool (Darwish et al., 2015).

In addition to abiotic stress, PQ is also involved in plant
response to biotic stress. When Solanum nigrum was treated with
the pathogen Phytophthora infestans-derived elicitor, reactive
oxygen species (ROS) production, lipid peroxidation and
lipoxygenase activity were elevated (Maciejewska et al., 2002).
These events were accompanied by a significant increase in PQ
level. The increase of PQ level was more significant in plants
growing in darkness than under continuous light. It suggests that
PQ may be involved in maintaining a tightly controlled balance
between the accumulation of ROS and antioxidant activity
(Maciejewska et al., 2002). Mesembryanthemum crystalinum
performs C3 and CAM carbon metabolism. Analysis of
M. crystalinum plants infected with pathogen Botrytis cinere
showed that the redox state of PQ pool modifies plant response to
biotic stress and hypersensitive-like response is accelerated when
PQ pool is in the reduced state (Nosek et al., 2015).

Ubiquinone is an obligatory element of mitochondrial
functions in both animals and plants. The antioxidant activity of
UQ has been extensively characterized in animals (Littarru and
Tiano, 2007, 2010). It prevents DNA damage and cell membrane
lipid peroxidation through the elimination of ROS. Same as
PQ, UQ also has two forms: the reduced type (ubiquinol) and
the oxidized one (ubiquinone), of which ubiquinol is the form
exerting antioxidant activity. Overexpression of yeast coq2 (p-
hydroxybenzoate poliprenyltransferase) in tobacco resulted in
the increase of UQ in transgenic lines (Ohara et al., 2004).
Transgenics with the higher UQ level showed the greater
tolerance to oxidative stresses caused by methyl viologen or high
salinity (Ohara et al., 2004). Analysis of the suspension-cultured
Chorispora bungeana cells showed that the redox transition of
UQ played key roles in adaptation of cellular regulations under
chilling stress (Chang et al., 2006). In addition, the redox state of
UQ determines the levels of ROS and plays a key regulatory role
in Arabidopsis basal resistance against bacterial pathogens and
in response to high oxidative stress environments (Dutta et al.,
2015).

Actually, the PQ and UQ pools play a dual role: (1) reducing
O2 to superoxide by semiquinone; and (2) reducing superoxide
to hydrogen peroxide by hydroquinone. In plant cells, the
predominant ROS involved in plant defense includes superoxide
and hydrogen peroxide, which are distributed in different pools.
Moreover, ROS are generated in two ways. One is elicited
by external stresses, such as environmental stresses and biotic
stresses. The other way is produced through metabolic processes
in the cells, such as the electron transport chains in mitochondria
and chloroplasts (Mubarakshina and Ivanov, 2010; Tripathy
and Oelmuller, 2012). An unknown interaction may be existed
between different pools in modulation of ROS generation and
plant response to stress.
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Regulate Cell Signal Transduction and
Gene Expression
Plastoquinone and ubiquinone may regulate cell signaling and
gene expression indirectly through the generation of hydrogen
peroxide, an important signaling molecule in plant resistance
and cell metabolism. They can also directly regulate the
expression of genes involved in cell metabolism. For instance,
UQ10 influences the expression of hundreds of human genes
involved in different cellular pathways. Among them, seventeen
are functionally connected by signaling pathways of G-protein
coupled receptor, JAK/STAT, integrin and β-arrestin (Schmelzer
et al., 2007). These UQ10-inducible genes possess a common
promoter framework with binding domains of transcription
factor families EVII, HOXF, HOXC and CLOX (Schmelzer
et al., 2007). Moreover, UQ10–mediated gene-gene network are
involved in inflammation, cell differentiation, and peroxisome
proliferator-activated receptor signaling (Schmelzer et al., 2011).

In plants, Chla/b-binding protein complex II (LHC II) and
NADPH dehydrogenase complex are two important protein
complexes in photosynthesis. The cytochrome b6f deficient
mutant of lemna perpusilla maintains a low level of the light-
harvesting chl a/b-binding protein complex II (LHC II) at low-
light intensities (Yang et al., 2001). Inhibiting the reduction
of PQ pool increases the level of LHC II in the mutant
at both low- and high-light intensities, whereas the level of
LHC II is increased in wild-type plants only under high-
light conditions (Yang et al., 2001). It suggests that the redox
state of PQ is an important signal-transducing component in
plant photoacclimation process (Yang et al., 2001). Analysis of
gene expression using DNA microarray technology showed that
663 genes were differentially expressed in A. thaliana under
low, medium, high and excessive irradiances, of which 50
genes were reverted by 3-(3,4-dichlorophenyl)-1,1-dimethylurea
(DCMU), an inhibitor of the photosynthetic electron transport
chain (Adamiec et al., 2008). It indicates that the expression
of the 50 genes is regulated by the redox state of PQ pool.
Hierarchical clustering and promoter motif analysis showed that
the promoter regions of PQ-regulated genes contain conserved
cis-acting elements involved in signal transduction from the
redox state of the PQ pool (Adamiec et al., 2008). Active
NADPH dehydrogenase complex is necessary for cyclic electron
transport in photosystem I (PSI) and respiration. In glucose-
treated cyanobacteria Synechocystis sp. strain PCC 6803 cells,
NADPH dehydrogenase complex activity was inhibited and the
cyclic PSI rate was decreased. In contrast, when the cells were
treated with DCMU, the activity of NADPH dehydrogenase was
significantly stimulated (Ma et al., 2008). Glucose treatment
causes partial reduction of the PQ pool, whereas DCMU results
in overoxidation. Differential responses of enzyme activity and
cyclic PSI rate to glucose and DCMU treatments indicate that
the redox state of PQ pool controls the NADPH dehydrogenase
complex activity and further influences on cyclic PSI (Ma et al.,
2008).

In addition to PQ, UQ is also involved in signal transduction
in plants. Comparative analysis of hypersensitive tobacco
Nicotiana tabacum L. variety Samsun NN treated with UQ10

and TMV and those treated with TMV only showed that UQ10
and TMV-treated tobbaco had less number of lesions and
TMV and greater change of plant hormone levels, including
the decrease of ABA and increase of IAA level (Rozhnova
and Gerashchenkov, 2006). It indicates that UQ10 has a
protective antiviral effect through controlling plant hormonal
status (Rozhnova and Gerashchenkov, 2008). On the other
hand, it has been reported that the ROS level generated by
UQ redox state is a threshold for successful basal resistance
response in plants (Dutta et al., 2015). In plant defenses, ROS
acts as signaling molecules directly or mediates the generation
of phytoalexins or serves as a source for activation of further
defenses indirectly (Kovtun et al., 2000; Thoma et al., 2003; Mur
et al., 2008). Plants employ both pathogen-associated molecular
pattern (PAMP)-triggered immunity (PTI) and effector-triggered
immunity (ETI) in basal and R gene-mediated defense response.
ROS is induced rapidly and transiently and then mediates
signaling during PTI and ETI (Frederickson Matika and Loake,
2013). The induction of ROS is considered as a defining hallmark
of identification and subsequent defense activation against
pathogens (Torres et al., 2006; Dutta et al., 2015). Moreover, UQ
is involved in the mitochondrial glycerol-3-phosphate shuttle for
redox homeostasis in plants (Shen et al., 2007) and serves as
mitochondrial permeability transition pore in cell metabolism
(Amirsadeghi et al., 2007; Reape et al., 2007).

UTILIZATION AND METABOLIC
ENGINEERING OF PQ AND UQ

Utilization of PQ and UQ
Plastoquinone is specific to plants. It has not been directly
utilized for human. However, various synthesized PQ derivatives,
such as SkQ1 (plastoquinonyl-decyl-triphenylphosphonium),
SkQR1 (the rhodamine- containing analog of SkQ1) and
SkQ3 (methylplastoquinonyl-decyl-triphenylphosphonium),
were reported to show antioxidant and protonophore activity
(Skulachev et al., 2011). They are able to penetrate cell
membranes and potentially used in anti-aging treatment
(Anisimov et al., 2008, 2011; Obukhova et al., 2009). SkQ1
is currently under clinical trials for glaucoma treatment in
Russia (Iomdina et al., 2015). The phase 2 clinical trial indicates
that SkQ1 is safe and efficacious in treating dry eye signs and
symptoms (Petrov et al., 2016). In plants, SkQ1 and SkQ3
can retard the senescence of Arabidopsis rosette leaves and
their death, increase the vegetative period, and improve crop
structure of wheat (Dzyubinskaya et al., 2013). In addition, SkQ1
effectively suppresses the development of p50-induced PCD in
tobacco plants through inhibiting ROS production (Solovieva
et al., 2013; Samuilov and Kiselevsky, 2015). The role of SkQ1
and SkQ3 played in cells is mainly based on its antioxidant
activity.

Compared with PQ, the practical application of UQ,
particularly UQ10, has attracted more attention. UQ10 is effective
in treating cardiovascular diseases, particularly in preventing and
treating hypertension, hyperlipidemia, coronary artery disease
and heart failure (Tran et al., 2001; Moludi et al., 2015). In the
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past decades, many studies have reported the remarkable clinical
benefits of UQ10 and illuminated its antioxidant activity as the
basis of pathology (Lee et al., 2012). Moreover, UQ10 controls
energy metabolism and regulates cell death via redox signaling,
indicating its potential in cancer treatment (Chai et al., 2010).
Moderate UQ10 levels have favorable impact on breast cancer
(Folkers et al., 1993; Lockwood et al., 1994; Premkumar et al.,
2008). In addition, UQ10 can enhance viral immunity and affect
the development of AIDS (Folkers et al., 1988, 1991). UQ10
is also closely related to human reproductive health. Moderate
UQ10 supplement can effectively reduce the risk of spontaneous
abortion and develop pre-eclampsia in pregnant women (Palan
et al., 2004; Teran et al., 2009). Exogenous administration of
UQ10 can increase sperm cell motility and the mean pregnancy
rate. Its positive role in the treatment of male infertility also relies
on the antioxidant properties and bioenergetics (Balercia et al.,
2004; Mancini et al., 2005; Balercia et al., 2009; Mancini and
Balercia, 2011; Safarinejad, 2012). As a good immunomdulator,
UQ10 has been used to treat chronic gingivitis and periodontitis
(Chatterjee et al., 2012; Hans et al., 2012). A series of toothpaste
containing UQ10 are developed and sold in the market. Other
UQ10-containing chemical products include cleanser, cosmetic
products, and healthy foods. Similar to PQ derivatives, the role
of UQ played in cells relied on the antioxidant activity. As an
antioxidant, UQ effectively scavenge ROS and prevent ROS-
induced damage to membrane lipids, DNA, and proteins.

Metabolic Engineering of UQ
Plastoquinone plays significant roles in plants; however, it
is not directly used in human life. Moreover, PQ derivatives
are mainly synthesized by chemical methods. Metabolic
engineering of PQ and its derivatives is rarely reported.
Differing from PQ, metabolic engineering of UQ, particularly
UQ10, has been conducted in prokaryotes and eukaryotes,
including bacterial, yeast and plants. Currently, the majority of
commercially available UQ10 comes from yeast fermentation
and chemical synthesis. Compared with microbial fermentation,
chemical synthesis of UQ10 is more expensive and produces
environmentally harmful waste products. Additionally, the
scalability of both yeast fermentation and chemical synthesis is
limited. Thus, plants are thought to be an attractive alternative
source of UQ10.

The natural UQ producers, such as Agrobacterium
tumefaciens, Paracoccus denitrificans, Rhodobacter sphaeroides,
and their chemical mutants have been successfully used
for commercial production of UQ; while, with the increase
of knowledge about enzymes involved in UQ biosynthesis
and regulatory mechanisms modulating UQ production,
opportunities have arisen for UQ metabolic engineering in other
organisms. For instance, overexpression of some key genes, such
as ubiA encoding p-hydroxybenzoate-polyprenyl pyrophosphate
transferase, ispB encoding polyprenyl pyrophosphate synthetase
and ubiCA, in E. coli may achieve the level of UQ content 3-4
times to that of wild-type cells (Zhu et al., 1995; Jiang et al.,
2006). Even though, UQ production using these methods does
not meet industrial needs, which require a yield of higher than
500 mg/L (Cluis et al., 2007). Therefore, in addition to the

highly efficient microbial system, growth condition optimization
and alteration of cellular regulatory mechanisms are important
for UQ production (Sakato et al., 1992; Zhang et al., 2007a,b).
Recently, multiple strategies have been employed in improving
UQ production. One hundred and eighty percent increase
of UQ8 content is achieved in E. coli (1menA) through a
comprehensive approach, including blocking menaquinone
pathway, coexpressing dxs-ubiA, and supplementing PYR and
pHBA (Xu et al., 2014). The highest UQ10 titer and yield,
433 mg/L, is obtained in engineered E. coli through integrating
dps into chromosome of E. coli ATCC8739, modulating
dxs and idi genes of the MEP pathway and ubiCA genes,
and recruiting the glucose facilitator protein of Zymomonas
mobiliswas to replace native phosphoenolpyruvate: carbohydrate
phosphotransferase systems (PTS) (Dai et al., 2015).

Metabolic engineering of UQ in plants mainly concentrated
on UQ10 production. Although UQ widely exists in plant
cells, most cereal crops produce mainly UQ9. Tomato, Datura
tatula and tobacco BY-2 cells can produce UQ10 naturally;
however, its yield is very limited (Ikeda and Kagei, 1979;
Ikeda et al., 1981; Matsumoto et al., 1981). It has been shown
that overexpression of rate-limiting genes and increase of UQ
precursors can improve UQ production in plants. Expression of
ddsA from Gluconobacter suboxydans in rice leads to efficient
production of UQ10 in rice seeds (Sakiko et al., 2006, 2010).
Since PPT plays the catalyzing role in a rate-limiting step of
the UQ biosynthesis pathway, it is a significant target for UQ
metabolic engineering in plants (Ohara et al., 2004; Stiff, 2010;
Parmar et al., 2015). For instance, expression of yeast coq2
gene resulted in a sixfold increase of UQ10 levels in transgenic
tobacco plants (Ohara et al., 2004). Compared with wild type
plants, coq2 transgenic tobacco with high UQ10 level are more
resistant to oxidative stresses caused by methyl viologen or
high salinity (Ohara et al., 2004). Similarly, overexpression
of AtPPT1 in tobacco increases UQ10 content and enhances
oxidative stress tolerance caused by high NaCl (Stiff, 2010).
Increase of UQ precursors, such as 4HB and/or PPS, may
potentially improve UQ production in plants (Sommer and
Heide, 1998; Viitanen et al., 2004). However, due to the complex
relationship among precursors, UQ production and many other
intersecting metabolic pathways, the expected goal of improving
UQ production is difficult to achieve. Further improvement of
UQ content in plant cells may be expected using comprehensive
approaches (Kumar et al., 2012), such as improving the amount
of UQ precursors combined with overexpression of rate-limiting
genes.

CONCLUSION AND PERSPECTIVES

Plastoquinone and ubiquinone are two important compounds
in plants. They function as electron transporters in the electron
transport chain of oxygenic photosynthesis and the aerobic
respiratory chain, respectively, and play indispensable roles in
plant growth and development. UQ, particularly UQ10, has also
been widely used in people’s life. Great efforts have been done to
elucidate their biosynthetic pathways and genes associated with
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PQ and UQ production. As shown in Figure 2 and Table 1,
significant achievements have been made. However, there are
still several issues related to the biosynthetic pathways, regulatory
mechanisms and metabolic engineering need to be addressed.

Although a great amount of studies have been done to the
MEP and MVA pathways and various enzymes, such as PPT
and HST, involved in the attachment of isoprenoid side chain
to the benzoquinone ring, pathways and enzymes involved
in isoprenoid side chain elongation, UQ benzoquinone ring
biosynthesis, and PQ and UQ benoquinone ring modification
are largely unknown. The key enzyme responsible for 4HB
production has not been identified (Block et al., 2014). PPSs are a
group of enzymes converting IPP and DMAPP to diphosphate
precursors. Each PPS may play different role in isoprenoid
side chain elongation, which needs to be clarified. Although
various enzymes involved in benoqunone ring modifications have
been identified in bacteria and yeast, few achievements have
been made in plants. With more and more transcriptome and
whole genome sequence available, gene network reconstruction
becomes possible and can be used to address these problems.

Non-coding RNAs, including small RNAs and long non-
coding RNAs, play significant regulatory roles in many aspects
of plants (Lu et al., 2005, 2007, 2008; Lu S. et al., 2013; Li D.
et al., 2015; Wang et al., 2015). Various microRNAs have been
identified to be associated with secondary metabolism (Wu et al.,
2012; Lu S. et al., 2013; Fan et al., 2015; Wei et al., 2015).
However, the regulatory roles of non-coding RNAs in PQ and
UQ biosynthesis have not been revealed. In addition to non-
coding RNAs, transcription factors, such as MYB, WRKY and
SPL, potentially play significant regulatory roles in PQ and UQ
biosynthesis (Li and Lu, 2014a,b; Zhang et al., 2014; Li C. et al.,

2015), which needs to be further demonstrated. Understanding
the regulatory mechanisms of PQ and UQ are important for
manipulating the content of PQ and UQ in plants.

Metabolic engineering of UQ10 has been successfully
performed in bacteria and yeast. However, they were found to be
low yield and high production cost. UQ10 metabolic engineering
in plants has various advantages and great perspectives, whereas
current efforts are limited to a few plant species (Parmar et al.,
2015). Increasing UQ10 content in UQ10-producing plant species
and engineering UQ10 in non-UQ10-producing plant species are
two routes for UQ10 metabolic engineering in plants. With more
and more genes involved in UQ10 biosynthesis and regulation
to be identified, great achievements may be expected for UQ10
production in plants.
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