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The identification of genes associated with a given biological function in plants remains a

challenge, although network-based gene prioritization algorithms have been developed

for Arabidopsis thaliana and many non-model plant species. Nevertheless, these

network-based gene prioritization algorithms have encountered several problems; one in

particular is that of unsatisfactory prediction accuracy due to limited network coverage,

varying link quality, and/or uncertain network connectivity. Thus, a model that integrates

complementary biological data may be expected to increase the prediction accuracy

of gene prioritization. Toward this goal, we developed a novel gene prioritization

method named RafSee, to rank candidate genes using a random forest algorithm that

integrates sequence, evolutionary, and epigenetic features of plants. Subsequently, we

proposed an integrative approach named RAP (Rank Aggregation-based data fusion

for gene Prioritization), in which an order statistics-based meta-analysis was used to

aggregate the rank of the network-based gene prioritization method and RafSee, for

accurately prioritizing candidate genes involved in a pre-specific biological function.

Finally, we showcased the utility of RAP by prioritizing 380 flowering-time genes in

Arabidopsis. The “leave-one-out” cross-validation experiment showed that RafSee could

work as a complement to a current state-of-art network-based gene prioritization system

(AraNet v2). Moreover, RAP ranked 53.68% (204/380) flowering-time genes higher

than AraNet v2, resulting in an 39.46% improvement in term of the first quartile rank.

Further evaluations also showed that RAP was effective in prioritizing genes-related

to different abiotic stresses. To enhance the usability of RAP for Arabidopsis and

non-model plant species, an R package implementing the method is freely available at

http://bioinfo.nwafu.edu.cn/software.

Keywords: biological network, data fusion, flowering time, gene prioritization, machine learning, meta-analysis,

rank aggregation, systems biology

INTRODUCTION

A major challenge in plant biology is to identify the most promising genes from large lists of
candidate genes (e.g., all genes in the whole genome) to find those which play an important role
in an agricultural trait or a complex biological process (Lee et al., 2010; Li et al., 2015; Sabaghian
et al., 2015). However, an experimental validation of every candidate gene is very time-consuming
and costly. A biologist would have to manually select the promising genes based on their potential
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function, a difficult task considering the paucity and disparity of
functional annotation in plant species (Rhee and Mutwil, 2014).
Computational methods are thus required to help biologists
automatically prioritize candidate genes by integrating large
amounts of functional genomic data that is now publicly
available.

Gene prioritization was first developed to identify disease-
associated human genes within a multigene locus identified by
a positional genetic study (Perez-Iratxeta et al., 2002). This
application was subsequently expanded to studies that generate
candidate genes from the whole genome using genome-wide
association analyses and “–omics” experiments (Moreau and
Tranchevent, 2012). A number of computational approaches and
bioinformatics tools have been developed to prioritize disease-
related human genes with the use of various data sources such
as scientific texts, protein-protein interactions, and functional
annotations or pathways (Tranchevent et al., 2011; Moreau and
Tranchevent, 2012). However, to the best of our knowledge, none
of these approaches and tools designed for human studies can
be directly applied to tackle the gene prioritization problem in
plants.

Although functional genomic data are becoming available for
many plant species, gene prioritization is still nascent in plant
science. Until recently, only a few computational algorithms had
been developed to address the challenge of gene prioritization
for the model plant Arabidopsis thaliana (Lee et al., 2010,
2015b; Ma et al., 2014; Sabaghian et al., 2015). Network-based
gene prioritization is a commonly used strategy because it
is capable of characterizing the complex relationships among
genes. In addition to gene co-expression networks (Ma et al.,
2014), integrated functional association networks have been
recently developed to prioritize genes in plants (Lee et al.,
2010, 2015a,b; Warde-Farley et al., 2010; Sabaghian et al.,
2015). One of the better known functional association networks
is AraNet (http://www.functionalnet.org/aranet), which was
originally built for prioritizing genes for Arabidopsis thaliana
using a modified Bayesian system for integrating 24 distinct
types of gene-gene associations derived from plant and non-
plant species (Lee et al., 2010). The power of AraNet in gene
prioritization has been demonstrated by the identification of
regulators of drought sensitivity and lateral root development
in Arabidopsis (Lee et al., 2010). Given the importance of
network-based gene prioritization in the identification of plant
gene function and in the genetic analysis of plant traits,
the integration of functional associations into the design of
network-based gene prioritization system (e.g., AraNet v2;
http://www.inetbio.org/aranet), has been implemented for 28
non-model plant organisms, including some important crops
like Zea mays (MaizeNet; http://www.inetbio.org/maizenet) and
Oryza sativa (RiceNet v2; http://www.inetbio.org/ricenet; Lee
et al., 2015a).

The rapid increase of functional association networks could
accelerate the discovery of genes that are involved in a specific
biological process or associated with plant traits of interest.
However, the performance of network-based gene prioritization
is still unsatisfied, due to limited network coverage, varying
link quality, and/or uncertain network connectivity (Lee et al.,

2010, 2011). Hence, novel gene prioritization algorithms that
integrate sequence, evolutionary, and epigenetic features would
complement and strengthen network-based gene prioritization
algorithms; this is because some sequence-based features are
capable of predicting protein functions (Lee et al., 2009; Libbrecht
and Noble, 2015; Lloyd et al., 2015). To summarize, there
is a recognized need for developing novel gene prioritization
algorithms capable of integrating different type of features,
and for investigating how these integrative algorithms may
complement the conventional network-based gene prioritization
algorithms (e.g., AraNet v2).

In this study, we first develop a novel gene prioritization
method named RafSee: it applies a random forest algorithm
to integrate features from protein sequences, evolutionary
conservation, and epigenetic methylation marks. We then
propose an integrative approach named RAP: it prioritizes the
most promising genes by aggregating the prediction results from
the network-based gene prioritization algorithm and RafSee
using an order statistics-based meta-analysis strategy (Kolde
et al., 2012). We go on to evaluate the prioritization ability of
RafSee, of RAP, and of one state-of-the-art network-based gene
prioritization system (AraNet v2), using 449 known flowering-
time-related Arabidopsis genes manually compiled from different
sources. We show that RafSee could be used as a robust
complement to AraNet v2 for the prioritization of flowering-
time genes inArabidopsis. Moreover, we show that RAP performs
better than either AraNet v2 or RafSee in most cases. The RAP
method has been implemented as an R package available for
public use.

MATERIALS AND METHODS

Workflow of RAP
The workflow of RAP is shown in Figure 1. Starting from
a set of seed genes, RAP first builds an integrative random
forest-based gene prioritization method (RafSee) using sequence,
evolutionary, and epigenetic features. Then, using an order
statistics-based meta-analysis approach, RAP aggregates
prediction results from RafSee and one network-based gene
prioritization system (AraNet v2) to deliver the top-ranked
candidate genes for further experimental validation.

Compilation of Seed Genes
To identify candidate flowering-time genes we used seed genes.
The latter are a set of genes with a known function in flowering-
time control which were collected from four different sources:
(1) 293 flowering-time genes annotated in WikiPathways,
which is an open, collaborative platform for the curation of
pathways by researchers in the entire biology community
(http://www.wikipathways.org/index.php/Pathway:WP2312;
Kutmon et al., 2016); (2) 293 flowering-time genes
collected by Zhu et al. (2011), according to the annotation
related to flowering-related traits in The Arabidopsis
Information Resource (TAIR) database (TAIR10; version
10; https://www.arabidopsis.org); (3) 406 flowering-
time genes manually collected from literatures by Chen
et al. (2012); (4) 174 flowering-time genes collected
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FIGURE 1 | Schematic of the RAP-based gene prioritization.

by the research group of Professor George Coupland
at Max Planck Institute for Plant Breeding Research
(http://www.mpipz.mpg.de/14637/Arabidopsis_flowering_genes).
After eliminating 14 microRNA genes, we finally obtained a
total of 449 protein-coding genes related to flowering time in
Arabidopsis (Table S1).

RafSee, an Integrative Random
Forest-Based Gene Prioritization Method
The main process for developing an integrative random forest-
based gene prioritization method RafSee had four steps.

Step 1: Sample labeling. A total of 27 416 Arabidopsis genes
annotated in the TAIR10 database were partitioned into three
sample sets—positive, negative, and undocumented—of which
the first two were required for training the random forest-based
machine learning system. The positive sample set consisted of
449 known flowering-time genes (i.e., seed genes). The negative
sample set consisted of 8503 protein-coding Arabidopsis genes,
which had weak or no functional associations with the 449
flowering-time genes as annotated in the Arabidopsis protein
interaction network from the STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins) database (version 10.0;
http://string-db.org; 10 637 352 Arabidopsis protein interactions
from 24 283 Arabidopsis proteins; downloaded on Feb. 25th,
2016). The STRING network was built based on the estimation
of an association of confidence score for each protein pair
using a Bayesian method that integrated various sources of
interactions such as yeast two-hybrid experiments, text mining,

co-expression, protein homology, etc. (Jensen et al., 2009). Two
proteins were unlinked in the network when their association of
confidence was weak (i.e., score < 0.15). Note that some of the
positive samples may be erroneously annotated as flowering-time
genes, while some of the negative samples may in fact be true
flowering-time genes not yet discovered. The remaining 18,464
protein-coding genes annotated for the Arabidopsis genome in
the TAIR10 database were labeled as undocumented samples.

Step 2: Feature encoding. To be recognized by the random
forest-based machine learning system, each protein sequence
of 27,416 Arabidopsis genes was characterized by sequence,
evolutionary, and epigenetic features, resulting in the generation
of a 1012-dimensional feature vector with seven encoding
schemes. The sequence-based features were generated with four
encoding schemes, which are described in detail below.

• Amino acid composition (AAC): The AAC was a 420-
dimensional numeric vector, which measured the occurrence
frequency of 20 amino acids and 400 amino acid pairs in a
protein sequence.

• Pseudo amino acid composition (PAAC): The PAAC
incorporates both the composition of amino acids and
their sequence-order information in a protein (Chou,
2001). There were 25 PAAC-related numeric features
generated using the R package “protr” (version 1.1-1;
https://cran.r-project.org/web/packages/protr; Zhang et al.,
2013) with the parameters λ = 5, ω = 0.05. The first 20
features are associated with the occurrence frequency of the
20 amino acids, whereas the next five features (21–25) reflect
the effect of sequence order (see Supplementary Data 1 for
full details).

• Amphiphilic pseudo amino acid composition (APAAC): A
total of 30 APAAC-related numeric features were generated
using the R package “protr” with the parameters λ = 5,
ω = 0.05. The first 20 features reflect the components of 20
amino acids, whereas the additional 10 features are a set of
correlation factors that represent different hydrophobicity and
hydrophilicity distribution patterns along a protein sequence
(see Supplementary Data 1 for full details).

• Physicochemical properties (PCPs): For each amino acid,
533 PCPs were generated to describe various physicochemical
properties using the R package “Interpol” (version 1.3.1;
https://cran.r-project.org/web/packages/Interpol). The score
matrix of PCPs (533 PCPs in rows, 20 amino acids in columns)
is given in Table S2. As described in Jeong et al. (2009), for
a given protein with a sequence length L, the normalized
value for a specific physicochemical property j was calculated

using the formula: P(j) =
1
L

∑L
i= 1

p
j
i−p

j
min

p
j
max−p

j
min

, where p
j
i is

the score of property j for the residue at position i, p
j
max

and p
j
min are the maximum and minimum values of the

property j, respectively. The PCP-based encoding scheme
generated a total of 533 numeric features for the corresponding
physicochemical properties.

The evolutionary-based features included a sequence
conservation (SC)-related feature and two whole genome
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duplication (WGD)-related features. The SC-related feature
compares the sequence identity of Arabidopsis protein sequences
to protein sequences from other 34 plant species—26
dicotyledonous, six monocotyledonous, and two other
embryophyte species. For a given Arabidopsis gene, the
BLASTP (basic local alignment search tool for proteins;
http://blast.ncbi.nlm.nih.gov/Blast.cgi) similarity search was first
performed to compare the protein sequence with those from 34
other plant species. Then, the 34 identities of the best BLASTP
matches in the corresponding plant species were selected.
Finally, a SC value was assigned as the median value of these
34 identities. For the two WGD-related features, two binary
values were used to indicate either the presence (1) or absence
(0) of a paralog produced in α and βγ WGD events. Genes with
paralogs derived from α and/or βγ WGD events were identified
by Bowers et al. (2003). These three evolutionary-based features
have recently been encoded for the identification of essential
genes in Arabidopsis (Lloyd et al., 2015).

The epigenetic feature is a binary value indicating whether
the gene body is methylated or not. Body-methylated genes were
identified by Takuno and Gaut (2012), and the status of body-
methylation for 27 416 Arabidopsis genes was obtained from
Lloyd et al. (2015).

Step 3: Feature selection. Two feature selection methods, the
Student’s t-test and the chi-square test, were, respectively, used
to select numeric and binary features that have the capability
of distinguishing positive samples and negative samples. The
difference in the distribution of a given feature between positive
and negative samples was deemed significant when the P-value
was < 0.05. In this way, a total of 766 statistically significant
features were identified (Table S3).

Step 4: Random forest-based prediction model

construction. To implement the integrative random forest-
based gene prioritization method RafSee, a prediction model
was constructed using the random forest-based machine
learning algorithm (Touw et al., 2013). This algorithm
generated hundreds of decision trees built using a subset of
samples and features randomly selected from a user-input
feature matrix (positive and negative samples for training in
rows, 766 selected features in columns). Using the trained
prediction model, RafSee ranked candidate genes based on
their probability to be a true flowering-time gene as estimated
from votes from all the trees. The random forest algorithm
was implemented using the R package “randomforest” (version
4.6-12; https://cran.r-project.org/web/packages/randomForest).
The number of decision trees was set to ntree = 500 (all other
parameters used default values).

Network-Based Gene Prioritization
The network-based gene prioritization was performed using
the functional association network AraNet v2 web server
(http://www.inetbio.org/aranet/), which was developed for
identifying candidate genes of interests from Arabidopsis and
28 non-model plant species (Lee et al., 2015b). The functional
associations between gene pairs (links) in AraNet v2 are
inferred using a Bayesian statistics framework that integrates
19 distinct types of data: namely protein-protein interactions,

co-expression, genomic context, domain co-occurrence, and
phylogenetic profile similarity (Lee et al., 2015b). The integration
of diverse biological data greatly improves network coverage and
accuracy. Currently AraNet v2 consists of 895 000 co-functional
links, covering 83.5% (22,894 out of 27,416) of all Arabidopsis
protein-coding genes annotated in the TAIR10 database. The
input of AraNet v2 is a set of seed genes of interest; the output
is the rank of other genes in the network as determined by the
co-functional prediction score of a Bayesian statistics framework.

Order Statistics-Based Meta-Analysis
In RAP, an order statistics algorithm, known as robust rank
aggregation, was applied to aggregate the prediction results
from different gene prioritization methods (i.e., AraNet v2 and
RafSeq). The robust rank aggregation is a powerful meta-analysis
algorithm that uses a rank-order statistic for not only taking
into account the positional information of input genes, but
also for assigning a significance score (P-value) for each gene
within a theoretical model (Aerts et al., 2006; Kolde et al.,
2012). M is the number of candidate genes, and Ri = (ri,1,
ri,2, ..., ri,n) is the vector of ranks for candidate gene i from
different gene prioritization methods (here n = 2 for RafSee
and AraNet v2). We first normalized gene ranks into percentiles
Ui = (ui,1, ui,2, ..., ui,n) with the formula: ui,j = ri,j/M (j =
1, 2, ..., n). The kth smallest percentiles among ui,1, ui,2, ...
and ui,n is an order-statistic which follows a beta distribution
B(k, n + 1 − k), under the assumption that the percentiles
are uniformly distributed from 0 to 1. Based on the beta
distribution, we then assigned a P-value to each percentile in
Ui indicating how much better it is ranked compared with
a null model expecting random ordering. The significance
score of the candidate gene i is defined as the minimum
value of all P-values. The robust rank aggregation method was
implemented using the R package “RobustRankAggreg” (version
1.1; https://cran.r-project.org/web/packages/RobustRankAggreg;
Kolde et al., 2012).

Implementation of RAP Method
The RAP method has been implemented as an R package,
which provides functions for generating sequence-based features
(AAC, PAAC, APAAC, and PCP), and for extracting informative
features with feature selection methods such as the student’s t-
test and chi-square test feature selection methods. Additionally,
RAP provides functions to implement the integrative random
forest-based gene prioritization method RafSee and to evaluate
the prediction performance of gene prioritization methods
with the cross-validation approach. To perform the gene
prioritization in Arabidopsis, the user is only required to
provide a set of genes of interest and the network-based gene
prioritization results from the AraNet v2 system. With this data,
RAP first ranks undocumented genes using the automatically
built random forest-based gene prioritization method RafSee,
and then it ranks the undocumented genes using the order
statistics-based meta-analysis approach. The source code, sample
data, and user manual of this R package are available at
http://bioinfo.nwafu.edu.cn/software.
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Performance Evaluation Using a
Cross-Validation Algorithm
Cross-validation is a widely used evaluation method in machine
learning for assessing the performance of prediction models. To
evaluate the predictive performance of RafSee in distinguishing
positives and negatives, we used the 10-fold cross validation
algorithm and receiver operating characteristic (ROC) curve
analysis. In a 10-fold cross-validation algorithm, positive and
negative samples are randomly partitioned into 10 groups
having an approximately equal number of genes; each group is
successively used for testing the performance of RafSee trained
with the other nine groups of positive and negative samples. For
each round of cross-validation, the prediction accuracy of RafSee
was assessed using the ROC-curve analysis, which measures
how true positive rate (y axis) changes as function of the false
positive rate (x axis) at all possible thresholds. The area under
the ROC curve (i.e., AUC) was used to quantitatively score the
prediction accuracy of RafSee. An AUC value can range from
0 to 1; a higher AUC value indicates better prediction accuracy
for RafSee. After testing with each of the 10 groups, the mean
value of the 10 AUCs represented the overall performance of
RafSee.

The “leave-one-out” cross-validation technique was used to
assess the prediction performance of different gene prioritization
methods (i.e., AraNet v2, RafSee, and RAP) in ranking
the flowering-time genes. In this technique, each flowering-
time gene in the positive sample set was retained in turn
as the testing sample while the remaining positive samples
were used as the seed genes for three gene prioritization
methods. The undocumented samples, negative samples, and the
retained flowering-time gene were used as candidate genes for
testing. A higher ranking of the retained flowering-time gene
indicated a greater prediction accuracy of the gene prioritization
method(s).

RESULTS

Sequence, Evolutionary, and Epigenetic
Characteristics of Flowering-Time Genes
We first generated 1012 features for each protein sequence of
27,416 Arabidopsis genes (449 positive samples, 8503 negative
samples, and 18,464 undocumented samples), and then identified
766 features that differed between the positive and negative
samples at a significance level of 0.05 (Table S3). Among these
766 features there were 255 ACC-related features, including
the occurrence frequency of 18 amino acids and 237 amino
acid pairs (Figures 2A,B). Besides the occurrence frequency of
amino acids, we also noticed that the order of amino acids in
flowering-time genes was not completely random. For example,
seven of 20 amino acid pairs starting with histidine (H) were
significantly different in their occurrence frequency between
positive and negative samples, while five of 20 amino acid
pairs ending with histidine (H) showed significant differences
(Figure 2B).

We also detected significant differences for hydrophilicity
and hydrophobicity patterns of protein sequences corresponding

to six APAAC-related features; these included the third-order
factor in term of hydrophilicity of amino acids, the first-
order correlation factor, the second-order correlation factor,
up to the fifth-order factor in term of hydrophobicity of
amino acids.

The PCPs are a group of essential features for characterizing
physicochemical properties of protein sequences. For this reason
PCPs have been widely used in the prediction of protein
structure, functional sites, and biological functions because
of their interpretability (Mallick et al., 2007; Li et al., 2013;
Chaudhary et al., 2015). Here, 462 out of 533 PCP-related
features were significantly different between positive and negative
samples (Table S3). Among the top 10 PCP-related features
ranked by level of statistical significance, five were related to
the hydrophobicity of amino acids as calculated with different
measures (top 3, 4, 6–8; Table 1). Another three of the top
10 PCP-related features were energy-related features, including
that for the free energy of transfer of amino acids from
organic solvent to water (top 1; Nozaki and Tanford, 1971),
the contribution of amino acids to the stability of proteins (top
2; Zhou and Zhou, 2004), and the energy required to transfer
amino acid side chains from water to less polar environments
(top 9; Guy, 1985). There were also two PCP-related features
involved in the retention coefficients of different amino acids
in both NaH2PO4 and NaClO4 (top 5, 10; Meek and Rossetti,
1981).

Altered flowering time has been suggested as an evolutionary
strategy adopted by plants to quickly adapt to different
environments (Kazan and Lyons, 2016). Therefore, we suspect
that differences may exist in the evolutionary patterns between
positive and negative samples. The SC measures the identity
of an Arabidopsis protein against protein sequences from
34 other plant species (see Section Materials and Methods).
As shown in Figure 2C, flowering-time genes have, on
average, a 65% shared identity with those of the other 34
species, while the negative samples have just about a 40%
identity.

During the evolutionary process, the Arabidopsis genome
has experienced at least two ancient whole-genome duplication
(WGD) events (α WGD and βγ WGD; Yun et al., 2012). With
the sequenced genome, 6830 and 2896 Arabidopsis genes with
paralogs derived from α and βγ WGD events were identified,
respectively (Yun et al., 2012). We found that over 15 and 30%
flowering-time genes have a paralog derived from α and βγWGD
events, respectively (Figure 2D). Nevertheless, as for the negative
samples, this amounted to<10 and 20% of those that occurred in
these two WGD events.

Following the hypothesis that body-methylated genes would
be more functionally important than non-methylated genes
(Coleman-Derr and Zilberman, 2012), we examined the
percentage of body-methylated genes in the positive and negative
sample sets. We found 27.17% (122/449) flowering-time genes
that were body-methylated, whereas only 8.49% (722/8503) genes
were body-methylated in the negative sample set (Figure 2E).
This result supports the view that changes in the epigenome are
important in regulating the flowering time of plants (Yaish et al.,
2011).
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FIGURE 2 | Distribution of sequence, evolutionary, and epigenetic features in the positive and negative sample sets. (A) Boxplot distributions for the

occurrence frequency of 20 amino acids in the positive and negative sample sets. Asterisks (*) indicate that the differences between positive and negative samples are

statistically significant at the level of 0.05. (B) Differences in the occurrence frequency of 400 amino acid pairs between positive and negative samples. “Sig”

represents a significant difference and “NS” represents a non-significant difference at the level of 0.05. (C) Density distributions of the median percentage of identity of

positive and negative samples to the top BLASTP matches in 34 plant species. (D) Percentage of positive and negative samples that have a paralog derived from α

and βγ whole genome duplicates. (E) Percentage of genes with methylation in the positive and negative sample sets.

Performance Evaluation of RafSee in
Distinguishing Positives and Negatives
Using 766 statistically significant features with P < 0.05,
we presented a novel integrative random forest-based gene
prioritizationmethod named RafSee, the prediction performance
of which was evaluated with 10-fold cross validation and
ROC analysis. In Figure 3A are shown the ROC curves of
RafSee trained with 766 features, while Figure 3B presents the
distribution of 10 AUC values generated from the 10-fold cross
validation for RafSee that was trained with different sets of

statistically significant features. We found that RafSee trained

with 461 PCP-related statistically significant features had a mean

AUC value of 0.84 (Figure 3B). In contrast, RafSee trained

with 26 APAAC-, 20 PAAC-, or 255 AAC-related statistically

significant features could more accurately distinguish positive

and negative samples, as suggested by a higher mean AUC value
of ∼0.87 (Figure 3B). The mean AUC value reached 0.89 when
all these statistically significant features extracted from protein
sequences were considered (Figure 3A). The mean AUC value
can be further improved from 0.89 to 0.91 by integrating these
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TABLE 1 | List of the top 10 PCP-related features.

Rank AA index ID Description P-value References

1 NOZY710101 Transfer energy, organic solvent/water 1.16E-86 Nozaki and Tanford, 1971

2 ZHOH040101 The stability scale from the knowledge-based atom-atom potential 7.16E-86 Zhou and Zhou, 2004

3 SWER830101 Optimal matching hydrophobicity 5.04E-83 Sweet and Eisenberg, 1983

4 CORJ870102 SWEIG index 6.67E-83 Cornette et al., 1987

5 MEEJ810102 Retention coefficient in NaH2PO4 9.77E-82 Meek and Rossetti, 1981

6 CIDH920104 Normalized hydrophobicity scales for alpha/beta-proteins 5.62E-81 Cid et al., 1992

7 CIDH920103 Normalized hydrophobicity scales for alpha + beta-proteins 5.74E-80 Cid et al., 1992

8 CIDH920105 Normalized average hydrophobicity scales 8.34E-80 Cid et al., 1992

9 GUYH850102 Apparent partition energies calculated from Wertz-Scheraga index 1.82E-79 Guy, 1985

10 MEEJ810101 Retention coefficient in NaClO4 2.20E-79 Meek and Rossetti, 1981

protein sequence-based features with four additional features
(one SC-related feature, two WGD-related features plus one
methylation-related feature; Figure 3A).

Taken together, these results suggest that RafSee significantly
outperformed the random selection (i.e., AUC = 0.5) in the
identification of flowering-time genes.

Performance Comparison of AraNet v2,
RafSee, and RAP in the Prioritization of
Flowering-Time Genes
The “leave-one-out” cross-validation experiment was first
employed to evaluate the performance of the network-based gene
prioritization system (AraNet v2). We found that 380 of 449
(84.63%) flowering-time genes can be prioritized by the AraNet
v2 system (Table S4). For a fair comparison, these 380 flowering-
time genes were also used to perform the “leave-one-out” cross-
validation experiment for the other two gene prioritization
methods (RafSee and RAP). We observed that genes tend to
be ranked higher by AraNet v2 when they are connected to
more known flowering-time genes in the network (Figure 4A).
However, this trend was not observed for RafSee (Figure 4B).
This is expected, as the AraNet v2 system uses the edge-based
network properties for gene prioritization, while RafSee not. The
agreement between the ranks of these 380 flowering-time genes
prioritized by AraNet v2 and RafSee was very low, with the
Spearman correlation coefficient of 0.31(Figure 4C; Table S4),
and 33.94% (129/380) of the genes prioritized by RafSee had a
higher rank than given by AraNet v2 (Figure 4C).

These results indicate that the integrative random forest-
based gene prioritization method (RafSee) could be used as a
complement to the network-based gene prioritization method
(AraNet v2). As such, it provided an opportunity for us to
present a novel integrative approach (RAP) for improving gene
prioritization by aggregating gene ranks produced by these
two different gene prioritization methods. We found that RAP
improved the rank of 53.68% (204 of 380) flowering-time genes
(Figure 4D). We further evaluated the performance of three
gene prioritization methods using different ranking statistics:
namely the minimum, first quartile, median, third quartile, and
maximum rank (Table 2). For all these statistics, AraNet v2 had

TABLE 2 | Performance statistics for ranking flowering-time genes using

different gene prioritization methods.

Methods Minimum First quartile Median Third quartile Maximum

RafSee 7 415.5 1908.5 5419.5 18678

AraNet v2 1 149.5 830 3019.25 9817

RAP 1 90.5 743 2508.25 12099

Bold denotes the best method for the corresponding ranking criteria.

higher ranks than RafSee for identifying flowering-time genes.
However, by utilizing the complement between these two gene
prioritizationmethods, RAP obtained the best results for all these
ranking statistics (except the maximum rank). For example, RAP
obtained the first quartile rank of 90.5, whereas AraNet v2 and
RafSee had corresponding values of 149.5 and 415.5, respectively.
We note that feature selection is an important factor to affect
the performance of RafSee and RAP. For example, using the
fairly strict feature selection criteria of P < 0.01, RafSee and RAP
showed a slightly decreased performance, corresponding to the
first quartile rank of 419.75 and 116.5, respectively (Table S5).
Even so, RAP still obtained the best results for the minimum, first
quartile, and third quartile rank.

These results demonstrate that the integrative analysis further
improved the performance of single gene prioritization methods
(i.e., AraNet v2 and RafSee).

Validation of the RAP-Based Gene
Prioritization with Network Analysis and
Evidence from the Literature
With the input of 449 flowering-time genes, RAP was
applied to rank the remaining 26 968 genes annotated
in the TAIR10 database (Table S5). Further, network
analysis revealed that the top 20 ranked genes connect
with 150 known flowering-time genes in the AraNet
v2 system, resulting in the generation of a hierarchical
network that contains three modules and 418 functional
associations (Figure 5; Table S6). This result indicates
that the top 20 candidates identified by RAP might be
functionally associated with flowering time in Arabidopsis.
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FIGURE 3 | Performance of RafSee in distinguishing positives and negatives using 10-fold cross validation. (A) The ROC curves of 10-fold cross validation

for RafSee trained with 766 statistically significant features. The dashed curves denote the ROC curves from the testing dataset in each round of 10-fold

cross-validation. The solid curves represent the average curve of the 10 ROC curves. (B) Boxplot distribution of 10 AUC values of the 10-fold cross validation for

RafSee trained with different sets of features. The APAAC, PAAC, AAC, and PCP, respectively indicated 26 APAAC-, 20 PAAC-, 255 AAC-, and 461 PCP-related

statistically significant features extracted from protein sequences.

To validate the new candidate genes identified by the
RAP method, we performed the linkage disequilibrium
analysis of a flowering-time-related genome-wide association
study dataset (Atwell et al., 2010) using the TASSEL
software (http://www.maizegenetics.net/tassel). The linkage
disequilibrium plots also showed potentially functional
associations of the top 20 ranked genes with flowering
time in Arabidopsis (Figure S1). In addition, through
a literature review, we found that nine of the top 20
candidates (AT2G25170, AT2G23760, AT1G21700, AT1G19220,
AT4G36870, AT4G38130, AT1G28420, AT5G18620, and
AT1G48410) have been recently demonstrated to have roles
in the control of flowering time with phenotype experiments
(Table S7). From these results, we conclude that RAP should be
reliable and effective to prioritize large numbers of candidate
genes in Arabidopsis.

Evaluating the Accuracy of RafSee, AraNet
v2, and RAP with Stress-Related Genes
We further performed the “leave-one-out” cross-validation
experiment to evaluate the performance of AraNet v2,
RafSee, and RAP in prioritizing Arabidopsis genes related
to different abiotic stresses (salt, water, cold, and temperature).
Stress-related genes were obtained from Gene Ontology
(GO) database (http://geneontology.org) by exacting terms
(i.e., response to salt/water/cold/temperature) annotated
with an experimental evidence code IDA (inferred from
direct assay), IEP (inferred from expression pattern), IGI
(inferred from genetic interaction), IPI (inferred from physical
interaction), and/or IMP (inferred from mutant phenotype).

The six positive sample sets contained 388, 373, 289, and
238 genes that were mostly experimentally validated to
be related to salt, temperature, cold, and water stresses,
respectively.

Table 3 lists the evaluation results of AraNet v2, RafSee,
and RAP in terms of five ranking criteria (the minimum,
first quartile, median, third quartile, and maximum rank). In
the prioritization of salt- and temperature-related genes, RAP
outperformed RafSee and AraNet v2 for all these ranking
statistics (except the maximum rank). While prioritizing cold-
related genes, RafSee had the best result only for the first
quartile rank, AraNet v2 had the best results for the third
quartile and maximum rank, RAP had the best results for
the minimum and first quartile rank. Tests on the water
stress-related gene set showed that RAP outperformed RafSee
and AraNet v2 in terms of both first quartile and median
rank.

DISCUSSION

The number of available genome sequences and gene networks
is steadily increasing in the field of plant biology. Network-
based gene prioritization approaches has been widely applied to
identify new genes involved in biological processes of interests
(Li et al., 2015), such as abiotic stress responses (Ma et al., 2014;
Sircar and Parekh, 2015), secondary wall formation (Ruprecht
et al., 2011), glucosinolate secondary metabolism (Chan et al.,
2011), and plant growth (Sabaghian et al., 2015). In this study,
we presented an integrative random forest method called RafSee
and a meta-analysis based approach called RAP to prioritize
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FIGURE 4 | Performance of three different gene prioritization methods for identifying flowering-time genes. (A) Relationships between gene rank and their

connectivity with known flowering-time genes for AraNet v2. (B) Relationships between gene rank and their connectivity with known flowering-time genes for RafSee.

(C) Pairwise comparison between gene ranks predicted by AraNet v2 and RafSee. Each symbol denotes a flowering-time gene, and its coordinates represent the

ranks assigned by the corresponding two gene prioritization methods. The dashed diagonal line denotes a 1:1 correspondence. (D) Pairwise comparison between

gene ranks predicted by AraNet v2 and RAP.

genes from a large set of candidates. We validated the predictive
power through the “leave-one-out” cross-validation approach
in five different case studies including flowering time and four
stress-related studies (salt, cold, water, and temperature). All
these studies showed that RafSee can be used as a complement to
a current state-of-art network-based gene prioritization system
(AraNet v2). Moreover, RAP can be used to improve the
performance of the network-based gene prioritization system.
We anticipate that RAP will accelerate the discovery of genes
involved in many biological processes and plant traits of
interest.

RAP has several inherent advantages compared with the
network-based gene prioritization methods. First, instead
of using edge-based network properties, RafSee builds
gene prioritization models using features exacted from
protein sequences, evolutionary conservation, and epigenetic
methylation marks. This allowed RafSee to rank 69 flowering-
time genes that failed to be ranked by the AraNet v2 system
(Table S4). Second, the order statistics-based meta-analysis
approach can be used to effectively aggregate the rank of
RafSee and the network-based gene prioritization system
AraNet v2. While prioritizing flowering-time genes, RAP
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FIGURE 5 | A hierarchical network of functional associations between the top 20 ranked genes and 449 known flowering-time genes.

TABLE 3 | Performance statistics for ranking stress-responsive genes using different gene prioritization methods.

Stress-responsive genes Methods Minimum First quartile Median Third quartile Maximum

Response to salt (388 genes) RafSee 6 1035.5 8928.75 8928.75 19202

AraNet v2 11 1088 6131.5 6131.5 11539

RAP 4 1011.5 6103 6103 13130

Response to temperature (373 genes) RafSee 1 1270 3520 8623 19550

AraNet v2 1 1025 2668 5810 11319

RAP 1 933 2532 5667 13029

Response to cold (289 genes) RafSee 10 870 3423 9165 21571

AraNet v2 9 1282 2832 5217 10416

RAP 4 916 2414 5542 12355

Response to water (238 genes) RafSee 1 1026.25 3712.5 8260.25 22045

AraNet v2 18 754 2155 4569 9908

RAP 8 626.25 1783 5070.25 12007

Bold denotes the best method for the corresponding ranking criteria.

improved the performance of AraNet v2 from 149.5 to 90.5,
resulting in an 39.46% improvement in term of the first quartile
rank. Last, the RAP method has been implemented as an R

package, providing a flexible framework for aggregating gene
prioritizations from different types of biological networks.
Besides the functional association networks (e.g., AraNet v2
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and STRING), co-expression networks capture the functional
relationships between genes solely from gene expression datasets,
which can also be integrated in RAP for gene functional analysis
in several crop species, including maize, rice, soybean and wheat
(Mutwil et al., 2011; Aoki et al., 2016; Ruprecht et al., 2016; Serin
et al., 2016).

Nonetheless, we are also aware of several limitations to our
proposed method. First, feature selection is applied to select a
set of informative features, which may affect the performance of
RafSee and RAP (Table 2, Table S5). Second, the power of RafSee
and RAP is affected by the size of seed genes. We performed
140 simulation experiments to examine the performance of three
gene prioritization methods trained with a varied size of seed
genes (350, 300, 250, 200, 150, 100, and 50 randomly selected
flowering genes; 10 replications per gene size). We found that
RAP improved the performance of AraNet v2 in term of the
third quartile rank in the majority of simulation experiments
(73%; 73/100), when the size of seed genes was equal to or
higher than 150. However, for the same statistic criteria, RAP
improved the performance of AraNet v2 in only 35% (14/40)
simulation experiments, when the size of seed genes is <150
(Supplementary Data 2).

In the future, we plan to investigate the effectiveness
of RAP in gene prioritization using different biological
networks and machine learning algorithms. Finally, we want
to expand the application of RAP from model species to crop
species.
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