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The efficacy of disease resistance genes in plants decreases over time because of
the selection of virulent pathogen genotypes. A key goal of crop protection programs
is to increase the durability of the resistance conferred by these genes. The spatial
and temporal deployment of plant disease resistance genes is considered to be
a major factor determining their durability. In the literature, four principal strategies
combining resistance genes over time and space have been considered to delay the
evolution of virulent pathogen genotypes. We reviewed this literature with the aim of
determining which deployment strategy results in the greatest durability of resistance
genes. Although theoretical and empirical studies comparing deployment strategies of
more than one resistance gene are very scarce, they suggest that the overall durability
of disease resistance genes can be increased by combining their presence in the same
plant (pyramiding). Retrospective analyses of field monitoring data also suggest that
the pyramiding of disease resistance genes within a plant is the most durable strategy.
By extension, we suggest that the combination of disease resistance genes with
other practices for pathogen control (pesticides, farming practices) may be a relevant
management strategy to slow down the evolution of virulent pathogen genotypes.

Keywords: durable disease plant resistance, strategy of resistance gene deployment, pyramids of plant
resistance, gene stacking, mosaic of plant resistance, resistance breakdown, management of plant pathogens,
fungicides

Go back young man and gather up your weary and defeated genes of the past, take your currently successful
genes, find some new ones if you can, and build yourself a genetic pyramid.

(Nelson, 1978, p. 376)

THE NEED FOR CROP PROTECTION

Pathogens and pests, from viruses to insects and weeds, threaten crops (Strange and Scott, 2005;
Fisher et al., 2012; Oerke et al., 2012), human health (Wolfe et al., 2007; Dunn et al., 2010), and
ecosystems (Crowl et al., 2008) to such a point that we go to considerable efforts to control them.
This control is likely to become increasingly important in the future, because it has been predicted
that human population growth and changes in dietary habits will lead to a doubling of food demand
in the next few decades (Chakraborty and Newton, 2011; Tilman et al., 2011). However, this
control is also likely to become more difficult to achieve, because potential crop losses due to pests
and diseases are expected to increase with global changes, including climate change (Chakraborty
and Newton, 2011), human-mediated invasions and disease re-emergence (Anderson et al., 2004).
Pathogens currently cause losses of 10–16% of the global harvest. Decreasing this percentage is a
priority for the achievement of food security (Chakraborty and Newton, 2011).
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Crop pathogens can be controlled by several methods,
including the cultivation of plants bearing resistance genes
(Hammond-Kosack and Jones, 1997), the use of pesticides (Smith
and Pimentel, 1978; Matthews et al., 2014), the conservation or
management of biological control (Tjamos et al., 2013) and the
implementation of prophylactic measures (Gomez et al., 2007).
Unfortunately, pathogen populations can develop resistance in
response to all these control methods (McDonald and Linde,
2002a; REX Consortium, 2007; Gray et al., 2009; Lannou, 2012;
Bardin et al., 2015).

PATHOGEN EVOLUTION IN RESPONSE
TO DISEASE RESISTANCE GENES

Historically, two categories of disease resistance have been
recognized in plants: qualitative and quantitative resistance.
Qualitative resistance is genetically controlled by major genes,
which provide phenotypically complete or incomplete resistance
to the pathogen. It is based on gene-for-gene interactions, in
which the protein encoded by the avirulence gene of the pathogen
is specifically ‘recognized’ by the product of the corresponding
resistance gene of the plant (Flor, 1971). This recognition is
followed by a hypersensitive response in the plant, restricting
the pathogen to the primary infection site. The deployment of
major genes conferring qualitative resistance is generally followed
by the evolution of matching virulence in the pathogen, in so-
called ‘boom-and-bust’ cycles (Johnson, 1961; Parlevliet, 1989).
Quantitative resistance is generally controlled by multiple genetic
factors (minor genes) in the plant providing partial resistance
to the pathogen and leading to a decrease in symptom severity
and/or the progress of epidemics over time (Poland et al., 2009;
St. Clair, 2010). There is also growing evidence for the selection
of pathogen genotypes able to overcome quantitative resistance
(Burdon et al., 2014).

DURABILITY OF DISEASE RESISTANCE
GENES

Disease resistance genes are a limited resource and their
introduction into new varieties is costly. The preservation of their
efficacy over time (i.e., their durability) is, thus, a tremendous
challenge. Johnson (1981) defined durable disease resistance
in plants as a resistance that remain effective while a cultivar
possessing it is widely cultivated. The durability of a disease
resistance gene can be measured by the time required for the
selection of pathogen genotypes overcoming the resistance and
thereby rendering the resistance gene ineffective. The pathogen
genotype frequency that must be reached for the resistance to
be considered broken down is clearly arbitrary and depends on
the socio-economic context. Durability is dependent on intrinsic
properties of the pathosystem, such as the mechanism and
genetics of the molecular interaction and the biology of the
targeted pathogen (e.g., ploidy, reproduction mode, mutation
rate) (Brown, 2015). However, it also depends on external factors
(environmental conditions and agronomic practices) affecting

the fitness of the organisms targeted (Brown, 2015). Once the
resistance genes have been introduced into plant varieties, their
efficacy can be preserved only by manipulating these external
factors.

STRATEGIES FOR THE DEPLOYMENT
OF DISEASE RESISTANCE GENES

The deployment of disease resistance genes in the field is a major
external factor affecting their durability. The availability of more
than one source of resistance genes at a given time provides
opportunities for strategies based on the pattern of deployment
of these genes over space and time. Such strategies can be
classified into four categories (Table 1): (1) the incorporation of
several resistance genes into the same plant (pyramiding), (2)
the use of several different resistance genes in different plants
within (multiline and variety mixtures) or between (regional
or landscape deployment) fields, (3) the periodic alternation of
different resistance genes at the same site (rotation) and (4)
the use of each resistance gene until the breakdown of the
resistance conferred and its replacement with a new resistance
gene (sequential release).

TOWARD A THEORETICAL RANKING OF
THE STRATEGIES COMBINING DISEASE
RESISTANCE GENES

From an evolutionary point of view, for the targeted organisms,
genes conferring plant resistance are not conceptually different
from pesticides. First, pathogens and pests are confronted
with the same basic evolutionary forces (mutation, selection,
migration, genetic drift, and recombination). Second, plant
disease resistance genes and pesticides may both reduce the
fitness of the targeted organisms. They exert a selection pressure
on populations, triggering the evolution of virulence in the case
of disease resistance genes (Sacristan and Garcia-Arenal, 2008;
Brown, 2015) and the evolution of resistance in the case of
pesticides (REX Consortium, 2013). Transgenic crops producing
Bacillus thuringiensis (Bt) toxins, which are now widely cultivated
(James, 2007), or RNAi carefully chosen to silence crucial genes
in target pests, which are currently being developed and tested
in field trials (Debat and Ducasse, 2014), provide a perfect
illustration of the similarity between pesticides and plant disease
resistance genes. They bridge the gap between these two control
methods as they can be seen both as plants bearing disease
resistance genes and as plants directly synthesizing pesticides
in their tissues. As already reported for pesticides and disease
resistance genes, resistance to B. thuringiensis crops has been
found in many targeted pest populations (Tabashnik et al., 2013).

For pesticide management, four different strategies
(combination, mosaic, periodic application, and responsive
alternation, see Table 1) for increasing the durability of the
molecules have already been compared theoretically and, to a
lesser extent, empirically (REX Consortium, 2013). Provided that
molecules have non-redundant modes of action, that they are

Frontiers in Plant Science | www.frontiersin.org 2 December 2016 | Volume 7 | Article 1916

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01916 December 23, 2016 Time: 12:9 # 3

REX Consortium Durable Plant Resistance

TABLE 1 | Description of the different strategies for disease resistance gene deployment over space and time, with the names used to define them and
the names of the analogous strategies used to manage the evolution of resistance to both antibiotics in human and animal diseases and pesticides in
agricultural pests and pathogens.

Description of the strategy Spatial variation of
resistance genes

Temporal variation of
resistance genes

Names of the strategy
and references∗

Names of the analogous strategies
for antibiotics and pesticides∗∗

Combination of two or more resistance
genes in one plant

No No Pyramiding (1), Multigene
varieties (1), Stacking (2)

Combination

Mixture of several lines bearing different
resistance genes within one field

Yes No Multilines (3), Multiline
cultivars (4), Composite
varieties (5)

Mosaic

Mixture of several cultivars with different
resistance genes within one field

Yes No Cultivar mixtures (6), Multi blend
varieties (7), Mass reservoirs
(8), Variety mixtures (9)

Mosaic

Plants bearing different resistance genes
grown at the same time in different fields (at
farm level or at landscape scale)

Yes No Regional or landscape
deployment (10)

Mosaic

Periodic use of different resistance genes No Yes Rotation (10), Alternation (11) Periodic application
Sequential use of different resistance genes
but without a cycle. In this approach, a
gene is used continuously until the
evolution of virulence, after which a new
gene is introduced, and so on.

No Yes Sequential release (7),
Plug-Plant-Pray (10)

Responsive alternation

The strategy names used in the text are reported in bold. ∗ (1) (Watson and Singh, 1952), (2) (Halpin, 2005), (3) (Jensen, 1952; Jensen, 1965), (4) (Borlaug, 1958;
Browning and Frey, 1969), (5) (Borlaug, 1953), (6) (Wolfe and Barrett, 1980), (7) (Adugna, 2004), (8) (Allard and Hansche, 1964), (9) (Wolfe, 1985), (10) (McDonald and
Linde, 2002b), (11) (Djian-Caporalino et al., 2014). ∗∗ The names of the strategies are those proposed by the REX Consortium (2013).

used at full dose and that resistance has not yet evolved, these
studies suggest the following hierarchy of strategies, in terms of
the durability of the molecules: combination > mosaic= periodic
application > responsive alternation (REX Consortium, 2013).
This hierarchy has been explained by the probability of a
given pest and its offspring being exposed to several pesticides.
The durability of a given pesticide is expected to increase
monotonously with this probability, which depends on the
strategy used and has been referred to as the ‘degree of treatment
heterogeneity’ (DTH) (see Suppelementary Material; REX
Consortium, 2013).

The four strategies used in pesticide management fully
mirror those used for plant resistance management (Table 1).
Consequently, based on the results of the REX Consortium
(2013), we hypothesize that the strategies can be ranked
as follows, in terms of disease resistance gene durability:
pyramiding > (multilines, variety mixtures, and landscape
deployment)= rotation > sequential release. We would therefore
expect pyramiding to be the most durable strategy given the
low probability of virulence emerging with this system. This
probability is low because it is the product of the probabilities of
breaking down simultaneously each of the resistance genes.

COMPARISONS OF STRATEGIES FOR
THE SHORT-TERM CONTROL OF
PATHOGENS RATHER THAN
DURABILITY

Many studies have compared strategies of disease resistance
gene deployment. However, most focused on pathogen control
over short periods of time (one or a few crop seasons or a
limited number of pathogen generations) and did not take

into account that the pathogen population might evolve (e.g.,
Brown et al., 1996; Porter et al., 2000; Maqbool et al., 2001;
Jahier et al., 2009; Tan et al., 2010; Brunner et al., 2012;
Obala et al., 2012; Zeller et al., 2012; Cingel et al., 2014;
McCarville et al., 2014; Rule et al., 2014; Vu et al., 2014;
Fukuoka et al., 2015). These comparative studies did not actually
compare the durability of resistance genes. Along the same lines,
Burdon et al. (2014) pointed that “what is lacking are careful
assessments (both empirical and theoretical), using ecological and
evolutionary principles, of the most effective disease resistance
deployment strategies (including spatial considerations) that will
maximize both the short-term epidemiological and the longer-
term evolutionary benefits of different combination strategies.”
However, assessing the durability of a given plant–pathogen
interaction ultimately requires long-term experiments performed
at the regional scale or over an even larger scale, which is
notoriously difficult.

COMPARISON OF STRATEGIES FOR
COMBINING DISEASE RESISTANCE
GENES

There are many studies that compared the benefits of pyramiding
resistance genes with those of the deployment of a single
resistance gene; they found that the pyramiding strategy was
more durable than the use of a single resistance gene (e.g., Vu
et al., 2014). In particular, it has been shown that the addition
of quantitative resistances can greatly increases the durability of
major resistance genes (Palloix et al., 2009; Brun et al., 2010;
Delourme et al., 2014). However, as pointed out by Mundt (2014),
“given constant crop area, it is logical that a resistance gene will
last longer in mixture than in pure stand simply owing to reduced
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exposure to the pathogen (. . .). A more relevant question may
be whether a given number of genes will last longer in mixtures
than by sequential use in pure stand.” Actually, there are very few
studies that have addressed this issue. Sapoukhina et al. (2009)
modeled scenario of spatial deployment of resistance genes and
found that the evolutionary dynamics of the pathogen was not
different for the pyramid of two resistance genes than for the
random mixture of single-gene resistant plant genotypes. Djian-
Caporalino et al. (2014) compared experimentally three strategies
of disease resistance gene deployment — pyramiding, variety
mixtures, and rotation — over a 3-year period. They found that
the genes conferring resistance to root-knot nematodes in pepper
and lettuce were more durable if deployed in a pyramiding system
than if used in cultivar mixtures and rotations.

In addition to these comparisons of strategies, retrospective
analyses have suggested that DTH maximization, via pyramiding,
increases the durability of disease resistance genes. For example,
in wheat, the deployment of single major genes conferring
resistance to yellow rust was found to have been effective for
relatively short periods of time in most places (Bayles et al., 2000).
However, several wheat cultivars grown in Western Europe
remained resistant for more than 15 years, and some of these
varieties are still resistant to this rust. This was attributed to
the pyramiding of several resistance genes in these cultivars.
Subsequent genetic analysis of these cultivars revealed that
they indeed contained combinations of resistance genes/QTL
expressed in both seedlings and adult plants (de Vallavieille-Pope
et al., 1990; Chen and Wang, 1996; Mallard et al., 2005; Jagger
et al., 2011; Agenbag et al., 2012; Powell et al., 2013; Basnet et al.,
2014). Similarly, in winter wheat it is believed that the durable
resistance to stem rust and powdery mildew have been achieved
by the combination of multiple minor resistance genes (Singh
et al., 2011; Ellis et al., 2014; Brown, 2015).

Extensive practical experience has clearly demonstrated that,
on average, genetically quantitative resistance is more durable
(Parlevliet, 1989) probably because quantitative resistance is
polygenic, involving many genes, whereas qualitative resistance
is dependent on a single major resistance gene (Mundt, 2014).
As Mundt (2014) explained, “the accumulated wisdom of plant
breeders has often been underestimated. Genes that contribute to
durable pyramids /. . ./ were uncovered through the experience of
breeders working in the field, and many more such combinations
are sure to be found.” It is equally plausible that quantitative
resistance is more durable because it decreases selection intensity
on the pathogen compared to major gene bringing total
resistance.

PYRAMIDING DISEASE RESISTANCE
GENES TO ENHANCE THEIR
DURABILITY AND RELATED ISSUES

Taken together, these theoretical considerations, empirical results
and retrospective analyses converge in that pyramiding is likely
the most powerful approach to provide durable resistance to
plant pathogens. However, the efficacy of pyramiding could

be compromise if several key assumptions are not met: (i)
mutations to virulences are independent, (ii) virulences do not
pre-exist in the pathogen population, (iii) resistance conferred
by each pyramided genes have not been broken down before
their deployement, (iv) combines different sources of genetic
resistance with non-redundant modes of action. Furthermore,
the advantage of pyramiding may also be reduced when
the pathogen undergoes efficient sexual reproduction so that
virulence genes can be resorted by recombination (Mundt, 1991;
Burdon et al., 2014; Mundt, 2014; Brown, 2015).

Until recently, one of the major restrictions to pyramiding
for seed companies and breeders was the time required to
obtain a successful marketed variety. However, new approaches,
including marker-assisted selection, genetic transformation, new
sequencing technologies and genomic editing, have opened up
new possibilities for breeders (Gupta et al., 2010; Lusser et al.,
2012; Michelmore et al., 2013; Wang et al., 2014). They have
promoted the discovery of new resistance genes and strongly
facilitate their combination in single variety, by genomic selection
(e.g., Heffner et al., 2009; Tester and Langridge, 2010). In the
future, biotechnologies will allow creating genetically modified
new variety with resistance alleles to which the pathogen has
never been exposed (McDonald, 2014; Wulff and Moscou,

FIGURE 1 | How to combine the various methods available to control
plant pathogens to maximize durability. The three main categories of
methods are presented by different symbols: a plant for plant resistance
genes, a sprayer for pesticides, a tractor for farming methods. Strategies are
obtained by combining these methods of pathogen management. The figure
is constructed as a target, whose center maximizes the ‘Degree of treatment
heterogeneity’ (DTH, see Supplementary material 1). (i) Only one method
(either a plant resistance gene, an antifungal mode of action or a prophylaxis
method) is used to control a plant pathogen species. (ii) Several methods of
the same type (several plant resistance genes, or several antifungal modes of
actions, or several prophylaxis methods) are combined. (iii) Two methods of
different types are combined. (iv) All possible methods are combined. This
strategy maximizes DTH, and maximizes the durability of plant resistance
genes and antifungals.
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2014; Figueroa et al., 2016). We could therefore imagine that
the deployment of resistance genes into new cultivars will
be informed by the knowledge of population genetics of the
corresponding avirulence genes and by the dynamics of these
virulences in field pathogen populations (Wulff and Moscou,
2014; Figueroa et al., 2016).

However, breeders are still faced with several other difficulties
(Burdon et al., 2014), including genes masking the expression of
resistance conferred by another gene, genotype x environment
interactions affecting resistance expression and the resulting
phenotypes, and physiological costs associated with resistance
genes that might impair agronomic performance.

It should be borne in mind that increasing the durability
of disease resistance genes might not necessarily minimize the
risk of resistance breakdown, which is calculated as the product
of the probability of breakdown and its economic impact.
The probability of breakdown is the probability of a “multi-
virulent” strain, also referred as “super race,” of the pathogen
emerging. The economic impact is the financial cost due to
disease development following the breakdown of resistance plus
the cost of developing a new effective strategy for keeping
the disease under control. Maximizing DTH minimizes the
probability of breakdown, but it may also increase the economic
impact of resistance breakdown, which would be associated with
the simultaneous loss of several disease resistance genes. The
economic impact would be even greater if no other disease
resistance genes were available in commercial varieties for use at
a time of multi-virulent strain emergence.

COMBINING DISEASE RESISTANCE
GENES WITH OTHER MEANS OF
DISEASE CONTROL TO INCREASE
THEIR DURABILITY

The durability of disease resistance genes could also be
enhanced by combining them with other means of disease
control, because the simultaneous use of several ‘weapons’
maximizes DTH (see Supplementary Material). For instance, the
durability of a resistance gene targeting a pathogenic fungus
may be increased by applying fungicides targeting the same
pathogen. Unfortunately, very few models or empirical studies
have considered such combinations of heterogeneous selective
pressures to delay virulence emergence. Iacono et al. (2013)
showed, with a theoretical approach, that the durability of
a resistant cultivar is increased by superimposing a source
of demographic stochasticity, such as intermittent applications
of a fungicide. Similarly, Onstad et al. (2013) developed
a theoretical model integrating pesticides, parasitoids, and
transgenic insecticidal crops to control the diamond back moth,
Plutella xylostella. They showed that the various means of pest
control synergistically increased each other’s durability. There
is a crucial need for additional studies to explore the power
and limitations of such combinations in more detail. One of
the limitations could be the use of pesticides. Indeed, despite
their benefits in term of plant protection, their impact on human

health and the environment (Bourguet and Guillemaud, 2016)
might be, in some cases, too high to be acceptable by stakeholders.

More generally, agricultural practices designed to control a
given pathogen (such as prophylactic methods, disease resistance
genes, pesticides, biological control or the use of beneficial
organisms) should, theoretically, be combined to increase their
respective and overall durability (Ratnadass et al., 2012, Figure 1).
In practice, such combinations are constrained by financial,
organizational, human health and environmental factors that
should be assessed on a case-by-case basis (Vanloqueren and
Baret, 2008). Finally, it would be a good time to update the
advice provided by Nelson in 1978 as follows: Go back once more
young man and gather up not only your most efficient genes, but
also molecules, natural enemies and practices, and build a highly
durable strategy . . . and be wise enough to make this strategy
economically and ecologically sustainable.
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