
fpls-07-01939 December 19, 2016 Time: 16:14 # 1

ORIGINAL RESEARCH
published: 21 December 2016
doi: 10.3389/fpls.2016.01939

Edited by:
Karl H. Muehling,

University of Kiel, Germany

Reviewed by:
Uwe Ludewig,

University of Hohenheim, Germany
Caixian Tang,

La Trobe University, Australia

*Correspondence:
Jianbo Shen

jbshen@cau.edu.cn

Specialty section:
This article was submitted to

Plant Nutrition,
a section of the journal

Frontiers in Plant Science

Received: 06 October 2016
Accepted: 07 December 2016
Published: 21 December 2016

Citation:
Lyu Y, Tang H, Li H, Zhang F,

Rengel Z, Whalley WR and Shen J
(2016) Major Crop Species Show
Differential Balance between Root

Morphological and Physiological
Responses to Variable Phosphorus

Supply. Front. Plant Sci. 7:1939.
doi: 10.3389/fpls.2016.01939

Major Crop Species Show
Differential Balance between Root
Morphological and Physiological
Responses to Variable Phosphorus
Supply
Yang Lyu1, Hongliang Tang1,2, Haigang Li1, Fusuo Zhang1, Zed Rengel3,
William R. Whalley4 and Jianbo Shen1*

1 Centre for Resources, Environment and Food Security, Department of Plant Nutrition, Key Laboratory of Plant-Soil
Interactions, Ministry of Education, China Agricultural University, Beijing, China, 2 College of Life Science, Hebei University,
Baoding, China, 3 Soil Science and Plant Nutrition, School of Earth and Environment, The UWA Institute of Agriculture, The
University of Western Australia, Crawley, WA, Australia, 4 Rothamsted Research, Harpenden, UK

The relationship between root morphological and physiological responses to variable P
supply in different plant species is poorly understood. We compared root morphological
and physiological responses to P supply in seven crop species (Zea mays, Triticum
aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum)
treated with or without 100 mg P kg−1 in two soils (acidic and calcareous). Phosphorus
deficiency decreased root length more in fibrous root species (Zea mays, Triticum
aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher
root/shoot biomass ratio and Brassica napus had higher specific root length compared
to legumes, whereas legumes (except soybean) had higher carboxylate exudation
than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency
due to high exudation of carboxylates and acid phosphatases. Lupinus albus and
Cicer arietinum depended mostly on root exudation (i.e., physiological response) to
enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had
higher root morphology dependence, with Glycine max and Vicia faba in between.
Principal component analysis using six morphological and six physiological responses
identified root size and diameter as the most important morphological traits, whereas
important physiological responses included carboxylate exudation, and P-acquisition
and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity.
In conclusion, plant species can be grouped on the basis of their response to soil
P being primarily via root architectural or exudation plasticity, suggesting a potential
benefit of crop-specific root-trait-based management to cope with variable soil P supply
in sustainable grain production.

Keywords: phosphorus uptake, fibrous root species, legume species, root morphological traits, root exudation,
phosphorus supply
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INTRODUCTION

Phosphorus (P) is an essential macronutrient for plant growth
and metabolism. It is a structural element in nucleic acids
and membrane phospholipids. However, P nutrition is a major
limiting factor for crop production in many soils due to relatively
low P availability because P can be readily adsorbed or fixed by
free lime present in some calcareous soils (CS) and by aluminium
(Al) and iron (Fe) in acid soils (AS) (Hinsinger, 2001; Shen et al.,
2011). Around 70–90% of P applied as fertilizer may become
unavailable to plants (Holford, 1997), exacerbating economic
losses from fertilizer-P overuse in intensive agriculture (Shen
et al., 2011). On the other hand, P is a limited and non-renewable
resource; current estimates suggest that economic P supply may
be severely depleted over the next 300 years, although some
research indicates that estimates of P reserves have increased
by more than threefold recently (Oelkers and Valsami-Jones,
2008; Cordell et al., 2011; Elser and Bennett, 2011; Cordell
and White, 2013). Improvement of P-acquisition efficiency
through mobilizing the residual P accumulated in soil, as well as
enhancing root absorbing surface and acquisition capacity for P
applied to soil, is critical for sustainable P management and food
production (Shen et al., 2011, 2013; Li et al., 2014).

In response to low concentration of available P in the
rhizosphere, plants have developed highly specialized root
morphological (e.g., increases in root growth rate, specific root
length (SRL), lateral density and elongation, and density and
length of root hairs) and physiological (e.g., carboxylate
exudation, proton release, and phosphatase secretion)
adaptations to increase P acquisition from soil (Neumann et al.,
1999; Hinsinger, 2001; Lambers et al., 2006; Shen et al., 2011).
The ultimate consequence of these modifications is increased
P availability and acquisition via (1) increasing a rhizosphere
soil volume exploited by an enlarged root length/surface area
to improve soil P spatial availability, and (2) enhancing P
availability by mobilizing P in the rhizosphere via root exudation
(Raghothama, 1999; Rengel and Marschner, 2005; Richardson
et al., 2009; Shen et al., 2011).

Many studies showed a range of adaptive strategies (especially
in terms of root growth and rhizosphere processes) evolved to
cope with limited P availability and allow efficient P acquisition
by different plant species (Lambers et al., 2006; Zhang et al., 2010;
Shen et al., 2011, 2013). For example, P-deficient Brassica napus
had high P influx rates, whereas P-deficient Triticum aestivum
had high root/shoot ratios to enhance P-acquisition efficiency
(Föhse et al., 1988). Under low P supply, the root/shoot ratio
increased in Zea mays and Triticum aestivum significantly, and
Triticum aestivum had increased SRL (Nuruzzaman et al., 2005;
Pearse et al., 2006a, 2007; Calderón-Vázquez et al., 2009). In
contrast, there was no difference in root carboxylate exudation
by Zea mays or Triticum aestivum between P-sufficient and
P-deficient plants (Pearse et al., 2006b, 2007; Carvalhais et al.,
2011). However, for Brassica napus, P deficiency increased
the root hair density and length and enhanced exudation of
protons and carboxylates (Foehse and Jungk, 1983; Moorby
et al., 1988; Hoffland et al., 1989a,b). The exudation of acid
phosphatase by Brassica napus increased with increasing P supply

(Marschner et al., 2006, 2007; Solaiman et al., 2007; Zhang et al.,
2009).

Legume plants enhance rhizosphere chemical processes more
than cereal crops to mobilize sparingly soluble soil P by
rhizosphere acidification and enhanced exudation of carboxylates
and phosphatases (Houlton et al., 2008; Shen et al., 2013; Li
et al., 2014). For example, Lupinus albus could respond to P
deficiency stress by forming cluster roots (Gardner et al., 1982)
accompanied by high exudation of carboxylates, protons and
acid phosphatase from such roots, which greatly enhanced P
acquisition from soil (Tadano et al., 1993; Neumann et al., 1999;
Yan et al., 2002; Shen et al., 2003; Vance et al., 2003; Lambers
et al., 2006; Wang et al., 2007; Cheng et al., 2014). In addition,
P uptake by Cicer arietinum exhibited a positive correlation with
rate of carboxylate exudation into the rhizosphere (Veneklaas
et al., 2003; Wouterlood et al., 2004; Rose et al., 2010) as well
as with the activity of acid phosphatase (APase) extruded by
roots (Li et al., 2004; Pearse et al., 2006b, 2007). Phosphorus
deficiency strongly increased proton release from roots of tomato,
chickpea, and white lupin, but only small effects were observed
in wheat (Neumann and Römheld, 1999). Compared with white
lupin, root exudation of carboxylates under P deficiency was
lower in tomato, wheat and chickpea (Neumann and Römheld,
1999).

Soil acid phosphatase activity was higher in the rhizosphere
of Cicer arietinum than Zea mays regardless of P sources (Li
et al., 2004). While root morphological traits in Cicer arietinum
had a minor contribution to potentially enhancing P uptake
in the low-P environments, the concentration of carboxylates
in the rhizosphere increased 10-fold (Veneklaas et al., 2003).
Under P-deficient conditions, roots of Glycine max exuded more
carboxylates than Zea mays, but much less than Cicer arietinum,
Vicia faba, and Lupinus albus (Ohwaki and Hirata, 1992; Watt
and Evans, 2003; Li et al., 2007). Vicia faba released smaller
amounts of protons and carboxylates into rhizosphere than Cicer
arietinum, but much greater than Triticum aestivum and Zea
mays (Zhou et al., 2009; Li et al., 2010; Rose et al., 2010). In
Maltais-Landry’s (2015) study, legumes (Vicia faba and Pisum
sativum) had higher organic acid concentration and phosphatase
activity in the rhizosphere compared with cereals crops (Secale
cereale, Avena sativa, and Triticum aestivum).

To reiterate, plants can enhance phosphorus (P) acquisition
from soil via modifying root morphological and physiological
traits. We assumed that some plant species were mainly
dependent on the enhanced root growth and spatial distribution
of roots, whereas others could dominantly rely on increased root
exudation to mobilize soil P; a strategy combining both types
of responses is also possible. Understanding the complexity of
the relationships between root morphological and physiological
responses across different plant species is critical for improved
manipulation of the root and rhizosphere processes to increase
P-acquisition efficiency for a given plant species.

In this study, we hypothesized an existence of different
combinations of strategies related to root morphological and
physiological adaptations to cope with variable P supply in seven
plant species with contrasting root systems. We intended to
determine if plant species could be grouped based on their
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response to soil P being predominantly via root architectural
plasticity (morphological response) or exudation (physiological
response). We chose seven plant species widely grown in
agriculture, having either fibrous (Zea mays, Triticum aestivum,
and Brassica napus) or tap-rooted root systems (Lupinus albus,
Glycine max, Vicia faba, and Cicer arietinum) to test the above
hypothesis. Our objective was to characterize the relationship
between root morphological and physiological responses to P
supply in different plant species with contrasting root systems in
AS or CS.

MATERIALS AND METHODS

Plant and Soil Materials
Seven plant species were tested in the study, including those with
fibrous roots (Zea mays L. cv. NE15 (Zm), Triticum aestivum
L. cv. KN9204 (Ta), Brassica napus L. cv. LY5 (Bn)) and tap-
rooted legumes (Lupinus albus L. Kiev mutant (La), Glycine max
(L.) Merr. cv. HX1 (Gm), Vicia faba L. cv. LC5 (Vf) and Cicer
arietinum L. cv. LY1 (Ca)). In this study, Brassica napus was
factitiously regarded as a fibrous root species due to its fine root
system based on our previous study (Solaiman et al., 2007).

Acid soil and CS with low P availability were collected from
the top 20 cm of unfertilized native vegetation sites: AS in
Guangdong, South China (23◦ 27′ 21′′ N, 114◦ 31′ 39′′ E), and CS
in Beijing area, North China (40◦ 8’ 5? N, 116◦ 11’ 3? E). AS had
the following properties (in parentheses: CS): pH 5.5 (8.2) in 1:5
soil:CaCl2, organic carbon 14.6 (11.5) g kg−1, total N 0.37 (0.72)
g kg−1, Olsen-P 7.1 (2.6) mg kg−1, and NH4Ac-extractable K 44
(32) mg kg−1. The soils were air-dried and sieved to 2 mm prior
to potting. Field capacity moisture contents were determined to
be 35% w/w for AS and 32% w/w for CS according to Rose et al.
(2010).

Plant Growth
The experiment was conducted in a glasshouse at China
Agricultural University, Beijing (40◦ 1′ 46′′ N, 116◦ 17′ 11′′
E). Plants were grown in 240-mm-wide and 190-mm-deep
plastic pots containing 3 kg soil each. Phosphorus was added
to soils as KH2PO4 at a rate of 100 (P-sufficient) or 0 (P-
deficient) mg P kg−1 soil. All other basal nutrients were
provided as follows (mg per pot): Ca(NO3)2·4H2O 5060;
K2SO4 400; CaCl2 377; MgSO4·7H2O 130; EDTA-Fe 16.5;
MnSO4·H2O 20; ZnSO4·7H2O 30; CuSO4·5H2O 6; H3BO3 2;
and (NH4)6Mo7O24·4H2O 0.365. There were four replicates in
each treatment. Soils were irrigated to approximately 80% field
capacity with deionized water prior to sowing.

Seeds of all species were surface-sterilized by 10% v/v H2O2 for
30 min, rinsed with water and placed in a dish containing aerated
saturated solution of CaSO4 at 26◦C in the dark until a radicle
emerged. Six germinated seeds of uniform size were sown in each
pot. Seedlings were thinned to four plants per pot 5 days after
germination. Each pot was watered daily to 80% field capacity as
measured by weight. Temperature ranged from a minimum of
22◦C at night to a maximum of 30◦C during the day.

Plant Harvest and Root Sampling
Plants were harvested 40 days after germination; at this time
visual differences in growth between P treatments or soil types
could be observed (Figure 1). The method for rhizosphere
exudate collection was modified from Pearse et al. (2007). The
pots were squeezed gently to allow dislodgement of the soil
column and loosening of soil around roots. Plants were then
gently lifted from soil and shaken lightly to remove bulk soil from
the root systems. The root system was then transferred into a
200-mL vial containing 50 mL of 0.2 mmol L−1 CaCl2. Roots
were gently dunked for 60 s to remove as much rhizosphere
soil as possible; care was taken to minimize root damage and
thus leakage of solutes from damaged cells. After removing
roots, the containers were shaken by hand, and 0.5 mL of soil
suspension was transferred into a 2-mL centrifuge tube for
measurement of acid phosphatase (APase) activity (Alvey et al.,
2001), representing secretory acid phosphatase (Neumann et al.,
1999; Shen et al., 2005). A sub-sample of 10 mL supernatant from
soil suspension was kept in a vial [with addition of microbial
inhibitor Micropur (Sicheres Trinkwasser, Germany) at 0.01 g
L−1 and also three drops of concentrated phosphoric acid] at –
20◦C until analysis of carboxylates by HPLC that was done after
passing the supernatant through a 0.22-µm filter according to the
method developed in our lab (Shen et al., 2003; Wang et al., 2007).

Root Parameter Measurement
The roots from each pot were washed out of soil with water and
evenly spread apart on a transparent tray (25 cm × 19 cm) to
get images at a resolution of 600 dpi (dots per inch) with an
Epson Perfection V700 dual lens scanning system. Root images
were analyzed for total root length and total root surface area
using WinRHIZO software (Pro 2009b, Regent Instruments Inc.,
Quebec, QC, Canada).

Plant Biomass and Phosphorus Uptake
Shoots and roots were oven-dried at 70◦C for 3 days until
constant weight to measure biomass. Shoots and roots were
ground into powder, and then weighed and digested with a
mixture of concentrated H2SO4 and H2O2 (modified from
Thomas et al., 1967). Phosphorus content was determined using
the vanado-molybdate method (Westerman, 1990).

Phosphorus-acquisition efficiency refers to the ability of plants
to acquire P from soils, and P-utilization efficiency is the capacity
to produce biomass or yield using the P taken up (Hammond
et al., 2009; Wang X.R. et al., 2010). In this study, P-acquisition
efficiency was calculated by dividing the P content of whole plant
(shoots + roots) by total root length; P-utilization efficiency was
calculated by dividing the total plant biomass by whole-plant P
content.

Acid Phosphatase Activity and
Carboxylate Analysis
Acid phosphatase activity in the rhizosphere was measured
using a spectrophotometric method based on the measurement
of p-nitrophenol (PNP) absorbance at 405 nm (Alvey et al.,
2001). Carboxylates in the rhizosphere soil were analyzed
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FIGURE 1 | Shoot growth of seven species after 40 days (just before harvest). For each species, the treatments are (from left to right): acid soil (AS) with P
addition (100 mg P kg−1 soil) (AS+P), AS without P addition (AS-P), calcareous soil (CS) with P addition (100 mg P kg−1 soil) (CS+P) and CS without P addition
(CS-P).

using a reversed phase high-performance liquid chromatography
(HPLC) system according to a previous report (modified from
Shen et al., 2003; Wang et al., 2007; Wang B.L. et al.,
2010). The chromatographic separation was conducted on a
250 mm× 4.6 mm reversed-phase column (Alltima C18, 5 µm;
Alltech Associates, Inc., Deerfield, IL, USA). The mobile phase
was 25 mmol L−1 KH2PO4 (pH 2.25) with a flow rate of 1 mL
min−1 at 31◦C, and detection of carboxylates was carried out at
214 nm.

Statistical Analyses
Analysis of variance was conducted using the SAS statistical
software (SAS 2001, Version 6.1, SAS Institute Inc., USA). The

LSD multiple range comparisons were performed at the 5, 1, and
0.1% probability level (0.01 < P ≤ 0.05, 0.001 < P ≤ 0.01, and
P ≤ 0.001).

Principal component analysis (PCA) was used to evaluate
the relative responses of root morphological and physiological
traits to P deficiency in two soil types based on our
previous method (Tang et al., 2013b). Six root morphological
variables (total root surface area, root biomass, total root
length, root/shoot ratio, SRL, and specific root surface area)
and six root physiological variables (malate exudation, citrate
exudation, P-acquisition efficiency, acid phosphatase activity,
rhizosphere pH, P-utilization efficiency) were analyzed. We
did not use the root clusters as a morphological parameter
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FIGURE 2 | Shoot dry weight (A,B) and root/shoot ratio (C,D) of Zea mays (Zm), Triticum aestivum (Ta), Brassica napus (Bn), Lupinus albus (La), Glycine max
(Gm), Vicia faba (Vf), and Cicer arietinum (Ca) supplied with 0 (open bars) or 100 mg P kg−1 soil (closed bars) in AS (A,C) or CS (B,D). Each value is the mean (+SE)
of four replicates. Different letters denote significant differences among seven plant species (P ≤ 0.05). For a given species, asterisks indicate significant difference
between the P treatments: ns (non-significant), ∗(0.01 < P ≤ 0.05),∗∗(0.001 < P ≤ 0.01), and ∗∗∗(P ≤ 0.001).

in this PCA analysis because only one (Lupinus albus) out
of seven species tested had these special root structures
(Supplementary Figure S1). The first three principal components
were used to describe the relative responses of seven plant
species to P deficiency in two soil types and to calculate the
total scores for root morphological or physiological response
variables.

RESULTS

Biomass Accumulation and Distribution
The ANOVA analysis showed that shoot dry weight varied
among species depending on differential P supply and
soil types (Supplementary Table S1). Phosphorus supply
significantly stimulated shoot growth of all species, except
Lupinus albus in CS (Figures 2A,B). The magnitude of shoot
dry weight response to P application in AS followed the order
Brassica napus (+598%) > Triticum aestivum (+410%) > Zea
mays (+325%) > Cicer arietinum (+63%) > Glycine max
(+44%) > Lupinus albus (+17%) > Vicia faba (+11%), and
the order in the CS was Brassica napus (+1093%) > Zea
mays (+749%) > Triticum aestivum (+704%) > Glycine
max (+155%) > Cicer arietinum (+131%) > Vicia faba
(+27%) > Lupinus albus (+2%). The fibrous root species
Zea mays, Triticum aestivum, and Brassica napus exhibited

greater shoot growth responses to P supply than the tap-rooted
legumes Lupinus albus, Glycine max, Vicia faba, and Cicer
arietinum regardless of soil type. However, the general response
of shoot dry weight to P application was greater in CS than AS
(P < 0.01), despite a variation among different plant species.
In AS, the species accumulated shoot biomass in the order
Vicia faba > Zea mays > Glycine max > Lupinus albus > Cicer
arietinum > Brassica napus > Triticum aestivum. In CS, the
order was Zea mays > Vicia faba > Glycine max > Cicer
arietinum > Brassica napus > Triticum aestivum > Lupinus
albus.

Zea mays and Triticum aestivum had higher root/shoot
ratio relative to other species in both soils (Figures 2C,D).
Lupinus albus had the lowest root/shoot ratio among all the
species, with a relatively weak response to differential P supply
in both soils. In CS, P deficiency significantly enhanced the
root/shoot ratio of plant species, except in Lupinus albus
(Figures 2C,D). The fibrous root species Zea mays, Triticum
aestivum, and Brassica napus growing in CS exhibited more
evident effects of P deficiency on increasing root/shoot ratio
compared with the tap-rooted legume species Vicia faba, Glycine
max, Lupinus albus, and Cicer arietinum. In contrast, in AS, the
low-P conditions significantly enhanced root/shoot ratio only in
Triticum aestivum and Brassica napus. Nevertheless, there were
no significant differences in root/shoot ratio due to the soil factor
(Supplementary Table S1).
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FIGURE 3 | Total root length (A,B) and specific root length (SRL) (C,D) of Zea mays (Zm), Triticum aestivum (Ta), Brassica napus (Bn), Lupinus albus (La), Glycine
max (Gm), Vicia faba (Vf), and Cicer arietinum (Ca) supplied with 0 (open bars) or 100 mg P kg−1 soil (closed bars) in AS (A,C) or CS (B,D). Each value is the mean
(+SE) of four replicates. Different letters denote significant differences among seven plant species (P ≤ 0.05). For a given species, asterisks indicate significant
difference between the P treatments: ns (non-significant), ∗(0.01 < P ≤ 0.05),∗∗(0.001 < P ≤ 0.01), and ∗∗∗(P ≤ 0.001).

Root Morphology
The fibrous root species Zea mays, Triticum aestivum, and
Brassica napus exhibited greater responses of total root
length to P supply compared with the tap-rooted legumes
Lupinus albus, Glycine max, Vicia faba, and Cicer arietinum
in both soils (Figures 3A,B). In AS, total root length
per plant was in the order of Zea mays > Triticum
aestivum > Vicia faba > Glycine max > Brassica napus > Cicer
arietinum > Lupinus albus. In CS, the order was Triticum
aestivum > Vicia faba > Zea mays = Brassica napus > Glycine
max= Cicer arietinum > Lupinus albus. Phosphorus application
significantly enhanced total root length of Zea mays, Triticum
aestivum, Brassica napus, Glycine max and Cicer arietinum,
but not of Lupinus albus and Vicia faba in the two soil
types.

Specific root length (ratio of total root length to root biomass)
showed significant differences among species, but not between
soil types, or P levels (Supplementary Table S1). In both soils,
Brassica napus had the highest SRL, followed by Triticum
aestivum (Figures 3C,D). Phosphorus deficiency significantly
increased SRL of Brassica napus in AS, but a reverse occurred in
CS. In contrast, P deficiency significantly increased SRL of Zea
mays in CS, but decreased it in AS. Cicer arietinum exhibited a

higher SRL in the +P than –P treatments in both soils. There
was no significant difference in SRL between the P treatments
in Triticum aestivum, Lupinus albus, Glycine max, and Vicia faba
regardless of the soil.

Acid Phosphatase Activity
Lupinus albus had the highest APase activity among plant
species (on average 3.5 and 7.6 times higher in AS and CS,
respectively), but there was no evident response of Lupinus albus
to P application (Figures 4A,B). In AS, P deficiency did not
change the activity of APase in the rhizosphere of any of the
species except Glycine max in which an increase occurred with
P application. In CS, Triticum aestivum, Glycine max, Vicia faba,
and Cicer arietinum exhibited significantly higher activity of
APase under P deficiency relative to the P-sufficient treatment,
but Zea mays showed an opposite response.

Carboxylate Exudation into the
Rhizosphere
Significantly higher amounts of carboxylates were measured in
the rhizosphere of Lupinus albus and Cicer arietinum relative
to the other five species in AS (Figures 4C,D). A similar trend
was found in CS, with the tap-rooted legumes Lupinus albus,
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FIGURE 4 | Acid phosphatase activity (A,B) and total carboxylate concentration (C,D) in the rhizosphere of Zea mays (Zm), Triticum aestivum (Ta), Brassica
napus (Bn), Lupinus albus (La), Glycine max (Gm), Vicia faba (Vf), and Cicer arietinum (Ca) supplied with 0 (open bars) or 100 mg P kg−1 soil (closed bars) in AS
(A,C) or CS (B,D). Each value is the mean (+SE) of four replicates. Different letters denote significant differences among seven plant species (P ≤ 0.05). For a given
species, asterisks indicate significant difference between the P treatments: ns (non-significant), ∗(0.01 < P ≤ 0.05),∗∗(0.001 < P ≤ 0.01), and ∗∗∗(P ≤ 0.001).

Vicia faba, and Cicer arietinum releasing a larger amount of
carboxylates to the rhizosphere than the fibrous-root species Zea
mays, Triticum aestivum, and Brassica napus.

Compared to the P-sufficiency treatment, P-deficiency stress
did not increase carboxylate exudation into the rhizosphere
in either soil type. On the contrary, P application stimulated
carboxylate exudation in Zea mays and Glycine max in
both soils and in Triticum aestivum and Cicer arietinum
in CS.

Carboxylate composition varied among species. Malate and
citrate were the two major carboxylates in the rhizosphere of
all the species except Zea mays (Figure 5). In CS, Zea mays
was the only species that not just exuded trans-aconitate, but
exuded it as the major carboxylate (on average, 88% of total).
When Zea mays was grown in AS, trans-aconitate was not found
in the -P treatment, but represented 33% of all carboxylates in
the +P treatment, whereas fumarate was 83% of all carboxylates
in the P-deficient treatment and almost 50% in the P-sufficient
treatment. Triticum aestivum, Brassica napus, Lupinus albus,
Glycine max, and Vicia faba increased the percentage of
citrate in root exudates under P deficiency compared with
the +P treatment in both soil types. On the contrary, in AS,
Cicer arietinum decreased the proportion of citrate exuded
under P deficiency, but increased malate exudation compared
with CS.

Shoot P Concentration and Content
Phosphorus application significantly increased shoot P
concentration in all species × soil combinations, except Zea
mays, Lupinus albus, and Cicer arietinum in AS (Figures 6A,B).
The effect of P supply on increased shoot P concentration
became more evident in calcareous than AS. Similar to shoot P
concentration, the +P treatment significantly increased shoot
P content in all species in two soils, except Lupinus albus in
AS (Figures 6C,D). In particular, huge differences in shoot P
content were noted in CS, with 23–24 times greater P content
in shoots of Zea mays and Triticum aestivum in the +P than –P
treatments.

P-Acquisition and P-Utilization Efficiency
Plant species and P supply had the significant effects on
P-acquisition and P-utilization efficiency (Supplementary Table
S1). Lupinus albus had the highest P-acquisition efficiency among
all species in both soil types (Figures 7A,B). In general, all
species had a significant increase in P-acquisition efficiency in
the +P relative to P-deficiency treatment, except Lupinus albus
and Cicer arietinum in AS and Brassica napus in CS. In contrast,
P deficiency significantly increased P-utilization efficiency in
all species compared with the +P treatment, except Zea mays,
Lupinus albus, and Cicer arietinum in AS.

Frontiers in Plant Science | www.frontiersin.org 7 December 2016 | Volume 7 | Article 1939

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01939 December 19, 2016 Time: 16:14 # 8

Lyu et al. Root Responses to Phosphorus Supply

FIGURE 5 | Proportion of various carboxylates in the rhizosphere soil of Zea mays (Zm), Triticum aestivum (Ta), Brassica napus (Bn), Lupinus albus
(La), Glycine max (Gm), Vicia faba (Vf), and Cicer arietinum (Ca) supplied with 0 (–P) or 100 mg P kg−1 soil (+P) in AS or CS. Each value is the mean
(+SE) of four replicates.

FIGURE 6 | Phosphorus concentration (A,B) and content (C,D) in the shoot tissues of Zea mays (Zm), Triticum aestivum (Ta), Brassica napus (Bn), Lupinus albus
(La), Glycine max (Gm), Vicia faba (Vf), and Cicer arietinum (Ca) supplied with 0 (open bars) or 100 mg P kg−1 soil (closed bars) in AS (A,C) or CS (B,D). Each value
is the mean (+SE) of four replicates. Different letters denote significant differences among seven plant species (P ≤ 0.05). For a given species, asterisks indicate
significant difference between the P treatments: ns (non-significant), ∗(0.01 < P ≤ 0.05),∗∗(0.001 < P ≤ 0.01), and ∗∗∗(P ≤ 0.001).

Root Morphological and Physiological
Responses
For the root morphological responses, the first principal
component (PC1) was related to root size and accounted

for 45% of the total variance. Principal component 2
was root diameter (root fineness), explaining 33% of the
total variance. Principal component 3 was root/shoot
ratio, accounting for 15% of total variance. For the root
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FIGURE 7 | Phosphorus-acquisition efficiency (A,B) and P-utilization efficiency (C,D) of Zea mays (Zm), Triticum aestivum (Ta), Brassica napus (Bn), Lupinus
albus (La), Glycine max (Gm), Vicia faba (Vf), and Cicer arietinum (Ca) supplied with 0 (open bars) or 100 mg P kg−1 soil (closed bars) in AS (A,C) or CS (B,D). Each
value is the mean (+SE) of four replicates. Different letters denote significant differences among seven plant species(P ≤ 0.05). For a given species, asterisks indicate
significant difference between the P treatments: ns (non-significant), ∗(0.01 < P ≤ 0.05),∗∗(0.001 < P ≤ 0.01), and ∗∗∗ (P ≤ 0.001).

physiological responses, the PC 1 was related to carboxylate
exudation into the rhizosphere, explaining 35% of the total
variance. The PC 2 represented P-acquisition and P-utilization
efficiency, accounting for 28% of the total variance. The PC 3
comprised rhizosphere soil pH and acid phosphatase activity,
accounting for 22% of total variance (Supplementary Table
S2).

All plant species showed a wide variation in morphological
and physiological responses to variable soil P supply (Figure 8).
Zea mays grown in both soils had the root morphology scores
significantly increased with P addition, whereas root physiology
scores did not show differences. A similar trend was also found in
Triticum aestivum and Brassica napus. In contrast to the fibrous-
root species, Lupinus albus and Cicer arietinum had significant
differences in root physiology scores and nearly no differences
in root morphology scores with differential P supply. Glycine
max and Vicia faba did not show significant differences in
either morphological or physiological scores with differential P
supply.

There were large differences in average root morphology
and physiology scores among the plant species. Zea mays had
the highest root morphology scores, followed by Triticum
aestivum = Vicia faba > Brassica napus = Glycine max = Cicer
arietinum > Lupinus albus. In contrast, Lupinus albus
had the highest root physiology scores, followed by Cicer
arietinum > Vicia faba = Glycine max > Zea mays > Triticum
aestivum= Brassica napus (Figure 9).

DISCUSSION

Plant Growth, Biomass Distribution and
Root Morphological Responses to
Variable P Supply
This study revealed that the plant growth responses to P supply
under variable soil conditions (AS vs. CS) varied among plant
species with contrasting root properties (Figure 1). The fibrous-
root species Zea mays, Triticum aestivum and Brassica napus
had greater shoot growth responses to P supply than the tap-
rooted legumes Lupinus albus, Glycine max, Vicia faba, and Cicer
arietinum in both soil types (Figure 2). The results suggested
that the fibrous-root species had strong dependence on external
P application, but low dependence on inherent soil residual
P with relatively low availability; in contrast, the tap-rooted
legumes could acquire substantial amounts of residual P from
soil, relying relatively little on fertilizer P application. A similar
pattern was also found for shoot P content in the present
study: the fibrous-root species Zea mays, Triticum aestivum, and
Brassica napus had greater responses to P supply than the tap-
rooted legumes Lupinus albus, Glycine max, Vicia faba, and Cicer
arietinum in both soil types. Clearly, the responses of shoot
dry weight, root/shoot ratio (except Zea mays in AS, Figure 2),
and shoot P content (Figure 6) to P supply showed consistent
results, compared with plant growth performance (Figure 1,
Supplementary Table S1). Hence, plant growth responses to P
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FIGURE 8 | Principal components analysis of root morphological and physiological responses to variable phosphorus supply and soil types in Zea
mays (Zm), Triticum aestivum (Ta), Brassica napus (Bn), Lupinus albus (La), Glycine max (Gm), Vicia faba (Vf), and Cicer arietinum (Ca). Each symbol
represents one replicate.

supply under given soil conditions vary among plant species
with contrasting root traits, indicating a potential strategy for
modification of specific root traits to improve access to different P
resources and thus enhance P acquisition by a given species (Shen
et al., 2011, 2013).

The general response of shoot dry weight to P application was
greater in CS than AS (P < 0.01), despite a variation among
different plant species (Table S1). Phosphorus supply increased
shoot biomass of all plant species except Lupinus albus in CS
because this species is sensitive to CS as shown by leaf chlorosis
(Figure 1, see also Kerley, 2000; Kerley and Huyghe, 2001). All
other species (especially Zea mays, Triticum aestivum, Brassica
napus, and Cicer arietinum) accumulated more shoot biomass in
calcareous than AS (Figures 2A,B; see also Nuruzzaman et al.,
2005; Pearse et al., 2007; Li et al., 2010; Rose et al., 2010) because
plants could take up P from Ca complexes easier than from
Fe and Al oxide complexes (Hinsinger, 2001; Veneklaas et al.,
2003; Pearse et al., 2007). These effects could partially account

for the increased biomass of plants (Zea mays, Triticum aestivum,
Brassica napus, and Cicer arietinum) in CS compared with AS.

Many species distributed a greater proportion of total dry
matter to root growth under P deficiency (Hill et al., 2006;
Richardson et al., 2009). In the present study, cereals (Zea
mays and Triticum aestivum) had higher root/shoot ratio than
the legume species (Lupinus albus, Glycine max, Vicia faba,
and Cicer arietinum), suggesting the former species allocated
proportionally more biomass to roots in P-deficient soil. Also,
the species with fibrous roots (particularly Triticum aestivum
and Brassica napus) had relatively higher SRL compared with
legume species (Figures 3C,D), indicating a smaller root
diameter for fibrous root species. This means the fibrous-
root species (Zea mays, Triticum aestivum, and Brassica
napus, root diameter = 0.12 ± 0.04 mm, n = 48) have
significantly thinner roots compared with the legume species
(especially Lupinus albus, Vicia faba, and Cicer arietinum, root
diameter= 0.24± 0.01 mm, n= 48) (data not shown).
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FIGURE 9 | Principal components analysis of root morphological and
physiological responses to variable phosphorus supply by Zea mays
(Zm), Triticum aestivum (Ta), Brassica napus (Bn), Lupinus albus (La),
Glycine max (Gm), Vicia faba (Vf), and Cicer arietinum (Ca) supplied
with 0 or 100 mg P kg−1 soil in AS or CS. Each value is the mean (±SE in
each direction) of 16 replicates for each plant species. A dashed line
represents root morphology scores equal to root physiology scores.

Phosphorus deficiency significantly increased the SRL of Zea
mays in CS and Brassica napus (but not of legume species) in
AS (Figure 3). Even though an increase in SRL is not always a
universal response to low P supply (Schroeder and Janos, 2005;
Pang et al., 2010), increased production of relatively fine roots
to create a large surface area of contact between roots and soil
would be expected to enhance acquisition of P (see also Barber
et al., 1963; Nuruzzaman et al., 2005; Pearse et al., 2006a, 2007;
Calderón-Vázquez et al., 2009; Shen et al., 2011; Liu et al., 2016).
The roots with small diameter were considered an efficient and
economical means of increasing P acquisition (Eissenstat, 1992;
Lynch, 2011, 2013). The reason for the increased SRL of Zea
mays in AS and of Brassica napus in CS under P addition could
be mainly due to low available P in soil, which appeared to
have been quite severe in P-deficiency stress with low shoot
P concentrations in this study (Figure 6). Hence, adding P
alleviated the P stress, allowing plants to respond by increasing
total root length and SRL.

Root/shoot ratio of legume species did not show a significant
variation in response to P application, especially in AS, and
quite a similar pattern was found for total root length and
SRL. In particular, Lupinus albus had the smallest root/shoot
ratio and total root length among all the species (Figures 2 and
3). These relatively small morphological responses of Lupinus
albus to P application suggested that effective mobilization
of rhizosphere P (physiological response) is more resource-
efficient than extending roots (morphological response) to get
P from far away (Shen et al., 2011). Indeed, cluster roots
(Supplementary Figure S1) enhanced root exudation, thus
enhancing the root physiological responses (Shen et al., 2005;
Tang et al., 2013b).

In conclusion, the fibrous-root species (Zea mays, Triticum
aestivum, and Brassica napus) showed larger root morphological
plasticity as a way of increasing P acquisition to cope with variable
P supply than the tap-rooted legumes (Lupinus albus, Glycine
max, Vicia faba, and Cicer arietinum).

Root Physiological Responses
The physiological and biochemical responses involved decreased
shoot P concentration and content (Figure 6), enhanced internal
P utilization and increased root exudation into the rhizosphere.
Root exudation of acid phosphatase (APase) and carboxylates
are considered important for P mobilization and acquisition
(Raghothama, 1999; Vance et al., 2003; Lambers et al., 2006;
Richardson et al., 2009). In the present study, APase activity
and carboxylate content in the rhizosphere of Lupinus albus
were significantly higher than in the other plant species, but
Lupinus albus showed no significant difference between the
P treatments in either soil (Figure 4). The reason could
be related to cluster root formation in both P treatments,
and there was no difference in the proportion of cluster
root dry weight with respect to the whole root system (data
not shown) in either P treatment, possibly because of a
relatively small soil volume restricting the total amount of P
present.

In the present study, the Lupinus albus shoot P concentration
was <2.5 mg g−1 in AS and <1.5 mg g−1 in CS regardless of
P treatments, which is lower than the critical level at or below
which cluster root formation and citrate exudation would be
significantly up-regulated according to our previous study (Li
et al., 2008). This could partly account for the strong cluster
root formation, citrate exudation and APase activity in the
rhizosphere, which are regulated by low shoot P status as an
internal systemic signal (Shen et al., 2005; Li et al., 2008; Shen
et al., 2013; Tang et al., 2013a). Indeed, in the present study
Lupinus albus efficiently acquired soil P through high exudation
of carboxylates and acid phosphatases that modified rhizosphere
chemistry, but this species exhibited a relatively low response
to the applied fertilizer P; in contrast, the fibrous-root species
with low capacity for root exudation of carboxylates and acid
phosphatases showed a strong response to the applied P through
altering the root morphological traits.

Other legume species (Glycine max, Vicia faba, and Cicer
arietinum) showed higher or slightly higher activity of APase
in the rhizosphere soil compared with the cereal species in the
present study (Figures 4A,B) as well as in other studies (Tadano
et al., 1993; Duff et al., 1994; Li et al., 2004; Nuruzzaman et al.,
2006; Wang et al., 2008). Similarly, exudation of carboxylates
was greater in the legume species, especially Lupinus albus
and Cicer arietinum, compared with the fibrous-root species
(Figures 4C,D; see also Ryan et al., 2001; Veneklaas et al., 2003;
Li et al., 2007, 2010; Rose et al., 2010).

Phosphorus-utilization efficiency of different plant species was
directly related to P concentration in plant tissues (Barker and
Pilbeam, 2007); P starvation increased P-utilization efficiency as
reported before (Rose et al., 2011). Therefore, the fibrous-root
species (Zea mays, Triticum aestivum) coped with variable P
supply through expanding the root absorption surface area to
enhance spatial availability of P, but were less dependent on root
exudation, compared with the legume species with intensive root
exudation (Eissenstat, 1992; Ryan et al., 2001; Veneklaas et al.,
2003; Pearse et al., 2006a, 2007; Rose et al., 2010). The results
indicated a strategic variation in how different plant species
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enhance P acquisition by changing the coordination between root
morphological and physiological traits.

Root Morphological and Physiological
Responses to Variable P Supply
Numerous studies compared the responses of plant species to
various external P supply conditions. However, the conclusions
of all these studies mainly focused on independent changes in
either root morphological or physiological parameters, such as
shoot biomass or carboxylate exudation (Hoffland et al., 1989a,b;
Tadano et al., 1993; Neumann and Römheld, 1999; Nuruzzaman
et al., 2005; Li et al., 2010; Rose et al., 2010; Vu et al., 2010; Maltais-
Landry, 2015), or some correlation between these parameters
(Shen et al., 2003; Watt and Evans, 2003; George et al., 2006;
Pearse et al., 2007; Zhang et al., 2009). In this study, the PCA
method was used as reported before (Tang et al., 2013b) to
calculate the relative contribution of the root morphological
or physiological response parameter scores to P acquisition,
and then quantitatively evaluate the relationship between root
morphological and physiological traits in response to P supply
and soil types (Figures 8 and 9). Zea mays and Triticum
aestivum had higher root morphology scores (strong response in
root/shoot ratio, total root length and SRL; Figures 2 and 3) and
low physiology scores (low exudation of APase and carboxylates
and consequently low P-acquisition efficiency; Figures 4 and
7), exhibiting greater changes in the root morphology scores
to P supply in the two soil types compared with the legume
species.

Brassica napus had the lowest physiology scores, but exhibited
large changes in the root morphology scores. Previous studies
indicated that Brassica napus had a strong physiological response
to acquiring P (Foehse and Jungk, 1983; Moorby et al., 1988;
Hoffland et al., 1989a,b), but most of these studies were
conducted at an early growth stage of Brassica napus. In the
present study, plants were harvested at relatively mature stage,
and the results showed Brassica napus mainly relied on the root
morphological changes in response to variable P supply; indeed,
at this growth stage some previous studies also reported low root
exudation and high SRL in Brassica napus (Marschner et al.,
2007; Pearse et al., 2007; Solaiman et al., 2007; Zhang et al.,
2009).

Lupinus albus and Cicer arietinum showed the highest root
physiology scores and the lowest root morphology scores among
all plant species, probably related to strong root exudation and
low root length despite formation of cluster roots in Lupinus
albus (Figures 3 and 4). Furthermore, these two species also
had strong variation in the root physiological scores to cope
with P deficiency under different soil conditions. Lupinus albus
had higher physiology scores in the –P compared with the
+P treatment; Cicer arietinum had the opposite result. These
patterns were related to higher exudation of carboxylates and
acid phosphatase from cluster roots of Lupinus albus in the
P-deficient treatment, and higher exudation of carboxylates by
Cicer arietinum in the P-sufficient conditions (Figure 4, see also
Tadano et al., 1993; Neumann et al., 1999; Yan et al., 2002; Shen
et al., 2003; Vance et al., 2003; Veneklaas et al., 2003; Wouterlood
et al., 2004; Lambers et al., 2006; Wang et al., 2007; Rose et al.,

2010; Cheng et al., 2014). These results indicated that Lupinus
albus and Cicer arietinum depended mainly on the physiological
responses to variable P supply in AS and CS, emphasizing an
exudation component of cluster roots. In contrast, Glycine max
and Vicia faba roots showed changes in neither morphological
nor physiological response to P supply. Taken together, the
Lupinus albus and Cicer arietinum response to P deficiency
mainly depended on the root physiological traits, whereas Zea
mays, Triticum aestivum, and Brassica napus had the strong root
morphological responses. Glycine max and Vicia faba showed a
combination of root morphological and physiological responses.
This knowledge is critical for manipulating root morphology and
rhizosphere processes in a given species to enhance plant growth
and P-acquisition efficiency.

CONCLUSION

This study provided novel evidence of variable coordination
and balance between root morphological and physiological
responses to cope with P supply changes in different plant
species, suggesting that the specific strategy could be developed
to modify root morphological or physiological traits for a given
plant species to increase P-acquisition and P-utilization efficiency.
Further work on other morphological and physiological traits
(e.g., root angles, root hairs, mycorrhizal colonization, P uptake)
as well as on other plant species to underpin phylogenetic
extrapolation is needed.
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