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Since its first description in 1995 and functional characterization 12 years later, plant
MKK3-type MAP2Ks have emerged as important integrators in plant signaling. Although
they have received less attention than the canonical stress-activated mitogen-activated
protein kinases (MAPKs), several recent publications shed light on their important roles in
plant adaptation to environmental conditions. Nevertheless, the MKK3-related literature
is complicated. This review summarizes the current knowledge and discrepancies on
MKK3 MAPK modules in plants and highlights the singular role of MKK3 in green plants.
In the light of the latest data, we hypothesize a general model that all clade-III MAP3Ks
converge on MKK3 and C-group MAPKs, thereby defining a set of novel MAPK modules
which are activated by stresses and internal signals through the transcriptional regulation
of MAP3K genes.

Keywords: viridiplantae, MKK3 module, phosphorylation cascade, stress responses, mitogen-activated protein
kinases

INTRODUCTION

Mitogen-activated protein kinase (MAPK) modules are important signaling actors found in all
eukaryotic cells. They are constituted of the MAPK per se, a serine/threonine kinase which is
phosphorylated and activated by a MAPK Kinase (MAP2K), itself activated by phosphorylation
by a MAP2K Kinase (MAP3K). These modules are encoded in plants by large multigenic kinase
families. For example, the Arabidopsis genome codes for 20 MAPKs, 10 MAP2Ks, and about
80 MAP3Ks (Ichimura et al., 2002). The MAPK and MAP2K families are both organized in
four well-defined sub-clades (denoted as clades A–D). Under the generic name, MAP3Ks gather
several distinct kinase families which were shown in animals to activate MAP2Ks. These include
the MEKK-like kinases (20 members in Arabidopsis) which are unambiguously involved in the
activation of MAP2Ks/MAPKs in plants, the large 48 membered Raf family for which functional
data are scarce and the 11 ZIK kinases which have not been reported to act upstream MAP2Ks in
plants so far.

Three modules defined by the three iconic MAPKs, MPK3, MPK4, and MPK6, were the focus
of the vast majority of MAPK studies (Colcombet and Hirt, 2008; Suarez-Rodriguez et al., 2010).
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Although some reports exist on the majority of MAPKs and
MAP2Ks, plant MKK3s have been the subject of less attention.

MKK3, AN ATYPICAL MAP2K, FOUND IN
ALL PLANT SPECIES

The first MKK3-like MAP2K sequence, NtNPK2, was identified
from a tobacco cell suspension cDNA library twenty years
ago and proved to code for an active kinase (Shibata
et al., 1995). Classical MAP2Ks are usually rather small
(about 350 amino acids) and are globular proteins with
only a single kinase domain. In contrast, NtNPK2 and
all MKK3 homologs are considerably longer (>500 amino
acids) and contain, besides the protein kinase domain, a
NUCLEAR TRANSPORT FACTOR2 (NTF2)-like domain in
their C-terminal regions. The MAP2K N-terminal tail, which
contains a docking site (D-site) for MAPKs, is also well
conserved within MKK3 homologues but divergent from those
of other MAP2Ks. Additionally, MKK3 N-terminal tails have
secondary structure motifs which are usually not found in other
MAP2Ks.

In the Arabidopsis genome, there is a single MKK3 gene
(At5g40440) which defines the B subclade of plant MAP2Ks
(Ichimura et al., 2002). In the published plant genomes, B-type
MAP2Ks are found in almost all dicots and monocots as well
as in the primitive angiosperm Amborella trichopoda as a single
copy gene. The two gymnosperm sequenced genomes (Pinus
taeda and Picea abies) do not seem to contain any MKK3
but the explanation could also be due to their low sequence
coverage. Alternatively, a loss of MKK3 in gymnosperms could
be possible. The moss Physcomitrella patens possesses two well-
defined MKK3-like kinases (PpMKK3-1 and PpMKK3-2). The
unicellular green algae Chlamydomonas reinhardtii codes for
very few genes having homology to MAP2Ks. Singularly, the
best MAP2K candidate [referred as MAP Kinase Kinase 1 in
NCBI (XP_001696437) and CrMKK3 in this article] possesses
an NTF2-like domain in its C-terminus. Overall, the CrMKK3
sequence is not very similar to other MKK3s but the CrMKK3
gene shares with AtMKK3 several conserved introns which
are not found in other Arabidopsis MAP2Ks, suggesting that
CrMKK3 and AtMKK3 have a common ancestor containing
an NTF2 domain and that the primary gene structure is
highly conserved during evolution. This also suggests that the
MKK3-related pathways are conserved among all photosynthetic
eukaryotes.

At present, a role of the NTF2 domain in plant MKK3s
has not been reported. A NUCLEAR TRANSPORT FACTOR2
domain suggests a function in the localization or shuttling of the
protein kinase. In eukaryotes, NTF2s are small proteins which
have indeed been involved in protein import into the nucleus
(Moore and Blobel, 1994) and play an important role in the
β-importin-dependent macromolecular trafficking by loading the
nucleus with RanGTP (Stewart et al., 1998). But other proteins
containing an NTF2-like domain have distinct roles. For example,
metazoan p15, through interaction with NTF2s is an important
actor of nuclear mRNA export (Fribourg et al., 2001; Stutz

and Izaurralde, 2003). These data indeed suggest that MKK3
signaling could require specific shuttling mechanisms between
cellular compartments. However, Ca2+/calmodulin dependent
protein kinase II (CAMKII) also possesses in its C-terminal tail
an NTF2-like domain which has been shown to be involved
in its assembly of dodecamers (Morris and Török, 2001; Rellos
et al., 2010). Therefore, the NTF2 domain might also function in
homo- or oligomerization of MKK3 proteins. But some NTF2-
like domains may also have catalytic activities. For example,
the NTF2-like Streptomyces SnoaL codes for a small polyketide
cyclase involved in antibiotic synthesis and the bacterial δ5-3-
ketosteroid isomerase catalyzes the stereospecific isomerization
of steroids (Kim et al., 1997; Sultana et al., 2004), opening
up the possibility that the NTF2-like domain of plant MKK3s
might also have an enzymatic activity which would be coupled
to MAPK signaling. Structure-function investigations would
be necessary to elucidate the exact role of this mysterious
domain.

IN PLANTS, MKK3 HAS BEEN INVOLVED
IN SEVERAL MAPK MODULES AND
RESPONSES TO ENVIRONMENT

In plants and mainly in Arabidopsis, several functional studies
placed MKK3 within MAPK modules highlighting its function in
several distinct physiological signaling processes. Figure 1 gives
an overview of our actual knowledge about MKK3 modules in
physiological processes.

MKK3 in ROS Signaling and
Homeostasis
MKK3 was first reported to play a role during plant–pathogen
interaction (Dóczi et al., 2007) (Figure 1A): mkk3 knock-
out mutants were shown to be hypersensitive to infection
by Pseudomonas syringae DC3000 whereas Arabidopsis lines
expressing a constitutively active MKK3 (MKK3EE) showed
mild resistance to the pathogen. Using yeast two hybrid and
co-immunoprecipitation assays from protoplasts, this study
also suggested that MKK3 and the four C-group MAPKs
MPK1/2/7/14 interact together to define a functional MAPK
module, that can be activated by H2O2. In support of this notion,
MPK1/2 activation by H2O2 has been confirmed in vivo by an
independent study (Ortiz-Masia et al., 2007).

Interestingly, an MKK3-based MAPK module has also been
reported to act upstream of reactive oxygen species (ROS)
production in response to wounding (Takahashi et al., 2011)
(Figure 1B). In this study, the authors showed that plants
mutated in MPK8, which codes for a MAPK of the poorly
characterized D-clade, fail to locally restrict ROS production in
response to leaf wounding. Coherently, MPK8 over-expressing
plants do not produce ROS anymore in response to wounding as
revealed by DAB staining. The authors also showed that MPK8
activation upon wounding depends on calcium/calmodulin as
well as on MKK3. This indirectly suggests that MKK3, which
is activated by H2O2, is also involved in ROS production upon
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FIGURE 1 | Overview of MKK3 implication in MAPK modules in Arabidopsis thaliana. MKK3 functions upstream of MPK1/2/7/17 in response to H2O2 (A)
and ABA (E), of MPK8 in response to wounding (B) and with MPK6 in response to jasmonic acid (JA) (C) and red light (D).

stress conditions such as wounding. To test whether MKK3-
MPK8 forms a functional module, it could be relevant to test
whether mkk3 plants are impaired in wound-induced ROS
production.

MAP3K17/18-MKK3-MPK1/2/7/14 in
Response to ABA, Senescence, and
Dormancy
In Arabidopsis, MPK1 and MPK2 were shown to be activated
by abscisic acid (ABA) (Ortiz-Masia et al., 2007; Umezawa
et al., 2013; Danquah et al., 2015). Recently, two independent
studies demonstrated that MKK3, together with MAP3K17 and
MAP3K18, functions upstream of MPK1, MPK2, MPK7, and
MPK14 in an ABA-activated MAPK module (Danquah et al.,
2015; Matsuoka et al., 2015) (Figure 1E). Apparent discrepancies
between these studies also suggest a dual mode of activation of
the ABA-related MKK3 module. Indeed, Danquah et al. (2015)
showed that, under their experimental conditions, activation of

C-group MAPKs depends on MAP3K18 synthesis, explaining
their activation with a rather slow kinetics. Other studies have
shown a more rapid activation of the C-group MAPKs which
is compatible with a post-translational activation of MAP3Ks
(Ortiz-Masia et al., 2007; Umezawa et al., 2013). Interestingly,
using lines constitutively expressing tagged MAP3K18, Matsuoka
et al. (2015) showed that ABA is also able to directly activate
the kinase within 15 min and that MAP3K18 activity peaks at
30 min. Taken together, this suggests that the pathway has two
modes of functioning, which may be dependent on unidentified
experimental differences between the laboratories working on
this ABA-dependent MAPK pathway. Finally, a direct interaction
between MAP3K18 and the PP2C phosphatase ABI1, but not
with ABI2, has been described (Mitula et al., 2015). The authors
hypothesized that besides being one of the main actors of the
ABA core signaling module, ABI1 is also able to dephosphorylate
MAP3K18 in the absence of ABA, resulting in the degradation
of MAP3K18 by the proteasome. When ABA is perceived by
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FIGURE 2 | Are MAP3K of clade III building a functional module with MKK3-MPK1/2/7/14? (A) MEKK-like MAP3Ks are organized in three subclades with
distinct locus organization (adapted from Danquah et al., 2015). Only members of clade III are interacting with MKK3 (determined using yeast 2 hybrid assay). n.d.,
not determined. (B) Number of conditions reported in Genevestigator as able to transcriptionally regulate MAP3K genes (fold-change > 3, P-value < 0.001).
MAP3Ks of clade-III are shown in gray. (C) General working model for the activation of MKK3-MPK1/2/7/14 module by the stress-dependent transcriptional
regulation of MAP3Ks of clade-III.

PYR/PYL receptors, ABI1 is dissociated from MAP3K18 and
MAP3K18 is stabilized and able to activate downstream factors
of the signaling module.

Phenotypical characterization in plants with impaired MKK3
module function confirmed the role of MKK3 in ABA
signaling and/or ABA-dependent processes. Danquah et al.
(2015) characterized mutant plants in a drought and abiotic stress
context and showed that plants impaired in the MKK3 module
are less able to restrict water loss when submitted to a long-term
mild drought experiment. More directly, the stomata of map3K18
plants are compromised to close in response to ABA (Mitula
et al., 2015) whereas MAP3K18 over-expressors show accelerated
leaf senescence (Matsuoka et al., 2015), a process known to
be under control of ABA (Song et al., 2016). A very recent

study similarly reported that Nicotiana benthamiana plants over-
expressing the cotton (Gossypium hirsutum) GhMKK3 were
more resistant to drought and closed more efficiently their
stomata in response to ABA (Wang et al., 2016). Additionally,
by QTL mapping for seed dormancy, two recessive mutations
in MKK3 orthologs have been identified in both wheat and
barley (Nakamura et al., 2016; Torada et al., 2016). In plants,
dormancy is under control of seed hormonal content during
maturation and desiccation, with one of the main hormones
being ABA (Shu et al., 2016). In the case of the barley mutant
cultivar “Azumamugi,” the recessive mutation decreases MKK3
activity and thereby increases seed dormancy, suggesting that
the activation of the MKK3 module releases seed dormancy
(Nakamura et al., 2016).
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MKK3-MPK6-MYC2 Is Involved in JA and
BL Signaling
MKK3 has also been reported to work upstream of MPK6 in the
context of two pathways (Figures 1C,D). A first study showed
that the MKK3-MPK6 module plays a central role in jasmonic
acid (JA)-induced root growth inhibition (Takahashi et al., 2007).
MPK6 is activated by JA within 10 min and this activation is
impaired in mkk3 but not in mkk2 mutant plants. Since MPK6
is very efficiently activated by many stresses, including touch,
it is unfortunate that mock samples were not tested in these
JA-dependent MPK6 activation assays. Coherently, the authors
showed that both mkk3 and mpk6 mutants are slightly more
sensitive to exogenous JA at the root elongation level as well as
show reduced activation of the JA-marker gene PDF1.

MKK3-MPK6 has also been implicated in blue light (BL)
signaling. MPK6 is activated specifically by BL but not red light.
Using knock-out mutants, the authors showed that this activation
is MKK3- and MYC2-dependent. Lee also reported that an mkk3
KO mutant shows insensitivity to red light and hypersensitivity
to gibberellin (Lee, 2015). Interestingly, it has also recently been
shown that MPK6 was able to both interact with the MYC2
promoter to induce its transcription and to phosphorylate MYC2
(Sethi et al., 2014). Interestingly, this module was shown to also
negatively regulate the expression of the MYC2 transcription
factor which is a well-known actor of JA signaling.

How to Conciliate Apparently Opposite
Data
Taking advantage of the yeast 2 hybrid interaction assay, several
groups reported on the interactions between MKK3 and the
MAPKs encoded by the Arabidopsis genome (Dóczi et al., 2007;
Lee et al., 2008; Matsuoka et al., 2015). In these studies, MKK3
interacted with C-group MAPKs but not with MPK6 or MPK8.
The absence of an MKK3-MPK6 interaction was not due to
technical problems as MPK6 was otherwise able to interact
with its native MAP2Ks MKK4, and MKK5 (Lee et al., 2008).
In protoplast activation assays, a constitutively active MKK3
was also not able to activate MPK6 or MPK8 (Danquah et al.,
2015) and no direct interaction between MKK3 and MPK6
could be shown in the studies reporting that MKK3 and MPK6
constitute a functional MAPK module (Takahashi et al., 2007;
Sethi et al., 2014). The only suggestion that MKK3 could activate
directly MPK6 came from an in vitro kinase assay in which a
constitutively active MKK3 was able to trigger MPK6-dependent
phosphorylation of MBP (Takahashi et al., 2007).

From these results, it is tempting to hypothesize that MKK3
does not interact with MPK6 or MPK8, suggesting that the
MKK3-dependent activation of MPK6 may be indirect. The fact
that MPK1/2, which have been shown to function downstream
of MKK3 in response to ROS and ABA, are also activated by
JA (Ortiz-Masia et al., 2007) would promote a model in which
the MKK3-MPK1/2/7/14 module is necessary for the proper
functioning of the upstream players of JA- or BL-dependent
MPK6 activation. The investigation of JA-dependent MPK6
activation in mutants impaired in MAPK genes of the C-clade
would help to resolve this issue.

ARE MAP3Ks OF SUBCLADE III
ACTIVATORS OF MKK3 MODULES?

MAP3K13-20 Define a Subclade of
MEKK-Like Kinases Which Are Strongly
Transcribed in Response to Stresses
ZIK-, Raf-, and MEKK-like kinases have been shown to
act as MAP2K Kinases in animal cells. In plants, ZIK-
like kinases (11 members in Arabidopsis) have not been
connected to MAPK signaling so far and Raf-like kinases
(about 50 members), such as CTR1 and EDR1, seem to
act rather as negative regulators of MAPK modules (Yoo
et al., 2008; Zhao et al., 2014). In contrast, several MEKK1-
like kinases have been shown to be activators of MAP2Ks
(Colcombet and Hirt, 2008). The 20 members of this family
are organized in three subclades (Figure 2A). Genes of
subclades I and II have many introns and code for kinases
carrying an additional long C- and N-terminus, respectively.
Interestingly, MEKK-like kinases of subclade III do not
have any introns and code for kinases with rather short
tails.

MAP3Ks of subclade III are largely uncharacterized, with
the notable exception of MAP3K18 which has been shown
to be an important player of ABA signaling (Danquah
et al., 2015). This work also showed that in contrary to
other MAP3Ks which are thought to be mainly regulated
by phosphorylation, MAP3K18 is strongly transcriptionally
regulated in response to ABA and the consequent kinase
production triggers the phosphorylation cascade, explaining
the delayed activation kinetics of its downstream target
MAPKs MPK1, 2, 7, and 14 (Boudsocq et al., 2015; Danquah
et al., 2015). Interestingly, we noticed that other members
of subclade III are also transcriptionally regulated (Danquah
et al., 2015). For example, MAP3K13 and MAP3K14 have
been shown to be induced upon nitrate feeding after a
starvation period (Marchive et al., 2013). Analysis of the
Genevestigator database, which integrates many Affymetrix-
based transcriptome experiments, confirms that MAP3K genes
from clade III are under transcriptional regulation by various
stresses (Figure 2B). This suggests that a transcriptional
regulation, as shown in the case of ABA regulation of MAP3K18,
might be a general feature of the regulation of clade III
MAP3Ks.

Toward a General Model for a Slow
Activation of MKK3 Modules by Stresses
In yeast 2 hybrid assays, MKK3 was shown to interact
with six of the eight MAP3Ks belonging to clade III but
none of the MAP3Ks of clades I and II (Figure 2A)
(Danquah, 2013; Danquah et al., 2015). Interestingly, clade-
III MAP3Ks as well as type-C MAPKs were found in
all species containing MKK3. In Arabidopsis, MPK1 and
MPK2 have been shown to be activated by several stresses,
such as wounding, ABA, JA, and H2O2.. We propose
a general model in which clade-III MAP3Ks, MKK3,
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and C-type MAPKs define functional modules activated by many
stresses, one of the main mechanisms of activation being the
transcriptional regulation of the upstream MAP3Ks (Figure 2C).
This obviously does not exclude the possibility that these modules
are also directly activated through phosphorylation of these
MAP3Ks in response to various stresses.

CONCLUSION

Recent evidence suggests that MKK3 modules integrate many
signals and represent a new landscape of phosphorylation
cascades which deserve further attention as they were recently
suggested to be important crop traits in various crops. In the
future, besides a functional characterization of these modules,
a major challenge will be the identification of the downstream
responses controlled by the modules. Similar to the iconic stress-
activated MAPKs which are also involved in development, we
will have to clarify how MAPKs choose their proper targets
when activated by different input signals. A seducing hypothesis
is that the MKK3 modules regulate a set of responses which
are shared by several signals. Transcriptome experiments using
mutants of the different MAP3Ks or the MKK3 hub kinase in

response to specific stresses will help to clarify this point and
will be of particular interest in the context of the integration of
environmental cues.
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