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Alternaria brown spot (ABS) is a serious disease affecting susceptible citrus genotypes,

which is a strong concern regarding citrus breeding programs. Resistance is conferred

by a recessive locus (ABSr) previously located by our group within a 3.3 Mb genome

region near the centromere in chromosome III. This work addresses fine-linkage mapping

of this region for identifying candidate resistance genes and develops new molecular

markers for ABS-resistance effective marker-assisted selection (MAS). Markers closely

linked to ABSr locus were used for fine mapping using a 268-segregating diploid progeny

derived from a heterozygous susceptible × resistant cross. Fine mapping limited the

genomic region containing the ABSr resistance gene to 366 kb, flanked by markers

at 0.4 and 0.7 cM. This region contains nine genes related to pathogen resistance.

Among them, eight are resistance (R) gene homologs, with two of them harboring a

serine/threonine protein kinase domain. These two genes along with a gene encoding a

S-adenosyl-L-methionine-dependent-methyltransferase protein, should be considered

as strong candidates for ABS-resistance. Moreover, the closest SNP was genotyped

in 40 citrus varieties, revealing very high association with the resistant/susceptible

phenotype. This new marker is currently used in our citrus breeding program for

ABS-resistant parent and cultivar selection, at diploid, triploid and tetraploid level.

Keywords: mandarin, fungal disease resistance, gene mapping, molecular markers, Alternaria alternata

INTRODUCTION

Alternaria brown spot (ABS) is a fungal disease caused by the tangerine pathotype of Alternaria
alternata (Fr.) Keissl., that induces necrotic lesions on fruits and young leaves, defoliation and
fruit drop in susceptible citrus genotypes (Akimitsu et al., 2003). The disease was first observed
in Australia in 1903 on “Emperor” mandarin (Pegg, 1966) and was subsequently detected in citrus-
growing regions all over the world (Vicent et al., 2000; Timmer et al., 2003; Golmohammadi et al.,
2006; Wang et al., 2010). Currently, ABS control is primarily based on fungicide application.
Depending on the climate of the region and the susceptibility of the cultivar, between four and
ten fungicide sprays per year are needed to produce quality fruit for the fresh market. Even with
this large number of sprays, damage reduction is not always satisfactory. These constraints force
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growers to remove susceptible cultivars such as “Fortune” or
“Nova” mandarins (Cuenca et al., 2013). Thus, genetic resistance
remains as the best option for disease control (Bhatia et al., 2003;
Peres and Timmer, 2006; Vicent et al., 2007).

The tangerine pathotype of A. alternata is a necrotrophic
pathogen, and carries a gene cluster (ACTT) located in a small
chromosome responsible for ACT-toxin biosynthesis (Ajiro et al.,
2010). This host-specific toxin is released during the germination
of conidia, rapidly affecting the plasma membrane integrity of
susceptible host cells (Kohmoto et al., 1993). There is also indirect
evidence suggesting the presence of toxin receptors in susceptible
citrus genotypes (Tsuge et al., 2012).

Due to constraints of the citrus reproductive system, such
as polyembryony in most mandarins, specific characteristics or
capacity to produce triploid hybrids (Aleza et al., 2010b), several
ABS-susceptible cultivars are being used as parents in many
mandarin breeding programs, both at diploid and triploid level
(McCollum, 2007; Aleza et al., 2010a,b; Cuenca et al., 2010;
Grosser et al., 2010; Aleza et al., 2012). This is the case of the
monoembryonic cultivar “Fortune,” widely used as female parent
in the triploid breeding programs in Spain (Navarro et al., 2012),
France and Italy (Recupero et al., 2005; Froelicher et al., 2012);
the susceptible cultivars “Murcott” and “Ponkan” are widely used
as male parents in many diploid breeding programs carried out
in Japan and Brazil (JinPing et al., 2009; Schinor et al., 2012).
Also, this is the case for “Dancy,” “Minneola,” “Nova,” “Fairchild,”
“Fremont,” “Page,” “Orlando,” “Pixie,” and “Daisy,” which are also
used as male parents or for induced mutations in diploid and
triploid breeding programs in Spain (Navarro et al., 2012) and
USA (Williams, 2012). On the other hand, previous studies stated
that the inheritance of ABS resistance in citrus is controlled
by a single recessive allele (Dalkilic et al., 2005; Gulsen et al.,
2010; Cuenca et al., 2013). Therefore, segregation is expected in
progeny arising from crosses between resistant and heterozygous
ABS-susceptible parents or even between two heterozygous ABS-
susceptible ones.

Genetic mapping of agronomical traits is of principal
importance in breeding programs, and its usefulness has been
widely demonstrated for marker-assisted selection (MAS) and
for candidate gene identification and cloning (Dirlewanger et al.,
2004; MacKay and Powell, 2007; Sorkheh et al., 2008). In
addition, defining the exact chromosomal position for genes
of interest, i.e., fine-mapping, is critical for improving the
effectiveness of MAS, since the smaller the distance from the gene
controlling the trait, the more accurate will be the selection (Lörz
and Wenzel, 2008).

Genetic mapping can be achieved mainly by linkage mapping
and/or association mapping. Linkage mapping, in which a
progeny segregating for the trait of interest is analyzed, has been
a useful approach to map many agronomical traits in several
crops (Würschum, 2012), including the mapping of resistance
genes to fungal pathogens. In contrast, association mapping
studies a collection of genotypes with a broader genetic variation
in a more representative genetic background than in linkage-
mapping (Ingvarsson and Street, 2011; Khan and Korban, 2012).

In a recent study (Cuenca et al., 2013), we located a region
containing the so-called ABSr locus, near the centromere on

chromosome III using bulked-segregant and half-tetrad analyses
from triploid populations. The identified region was flanked by
a Simple Sequence Repeat (SSR) marker (TTC8) and a Single
Nucleotide Polymorphism (SNP) marker (CiC3248-06), found at
3.77 and 1.71 cM from the ABSr locus, respectively, delimiting
a 3.3 Mb genome region. Moreover, no recombination was
observed between another SSR marker (AT21) and the ABSr
locus. This locus appears to be included in a genomic region very
rich in disease resistance homologous genes.

In the present study, we have developed new SNP markers to
perform fine-linkage mapping of the previously located region.
The ABSr locus has now been restricted to 366 kb, containing
several candidate genes that may be involved in ABS-resistance.
Moreover, a new SNP marker with very little recombination
frequency with the phenotype has been tested for a large set of
genotypes used as breeding mandarin parents, demonstrating its
usefulness in MAS for a wide range of breeding populations.

MATERIALS AND METHODS

Linkage Mapping Population
A 268-diploid mapping population obtained from a cross
between “Fortune” mandarin (C. clementina × C. tangerina;
ABS heterozygous susceptible—“Aa”) and a hybrid between
clementine and sweet orange –“C×SO-1” (C. clementina ×

C. sinensis; ABS resistant—“aa”) was used to perform linkage
mapping. The cross was made in spring 2011 and seedlings were
maintained in the greenhouse during the experiments.

Phenotyping Method for Resistance to
Alternaria alternata
The evaluation of ABS response was assessed by in vitro
inoculation of young detached leaves from the mapping
population, their parental genotypes and controls, following the
procedure described by Vicent et al. (2004).

Inoculum Production
A virulent single-spore isolate of A. alternata (IVIA-A005)
isolated from an infected “Fortune” mandarin fruit was used
for inoculations. Abundant conidia were obtained by a method
adapted from Everts and Lacy (1996). The isolate was grown
on potato dextrose agar (PDA) plates at 25◦C in darkness
for 8–10 days and then, illuminated with fluorescent lamps
(Philips TLD 18 W/33) at 25◦C for 8 h to initiate conidiophore
formation, and placed in the dark at 18◦C for 12 h. Conidial
suspensions were prepared by pouring sterile water over the
colonies and gently rubbing the surface with a sterile glass rod.
The suspension was filtered through two layers of cheesecloth,
and the spore concentration was adjusted to 105 conidia·ml−1

with a haemocytometer. Suspensions with conidial germination
lower than 90% were discarded.

Leaf Inoculations
Bioassays were performed immediately after leaf harvest.
Young leaves (about 50% developed) were inoculated with 105

conidia·ml−1. This suspension was sprayed over both upper and
lower surfaces of each leaflet, using five leaves per genotype.
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FIGURE 1 | Symptoms observed 48 h after in vitro inoculation of young

detached leaves from control genotypes. (A) Susceptible cultivar

“Fortune.” (B) Resistant cultivar “CXS0-1.”

Controls were inoculated by spraying sterile distilled water.
Leaves were incubated in a moist chamber in the dark at 27◦C. In
susceptible genotypes, leaf symptoms appear during the second
day after inoculations and very clear necrosis induced by the
ACT-toxin can be observed after 48–72 h, when the results were
evaluated (Figure 1). A genotype was considered resistant when
no symptoms of ABS were observed in any leaf, whereas presence
of infection was recorded when a clear symptom of ABS was
observed in at least one leaf. The inoculations were repeated
when there were doubts regarding interpretation. Experiments
inoculating the whole population were carried out twice each
spring in 2013, 2014, and 2015.

DNA Isolation
Genomic DNA of the mapping population and germplasm
accessions was isolated using the Plant DNeasy kit from Qiagen,
Inc. (Valencia, CA, USA), following the manufacturer’s protocol.
DNA concentrations were estimated with PicoGreen R© and
adjusted to 30 ng/µl for further analyses.

Simple Sequence Repeat (SSR) Genotyping
Polymerase chain reactions (PCRs) were performed with
wellRED oligonucleotides (Sigma-Aldrich R©, St Louis, MO,
USA) using the following protocol: Mastercycler ep Gradient
S (Eppendorf Scientific Inc., Westbury, NY, USA); reaction
volume, 15 µl; 0.8 U Taq polymerase (Fermentas R©, Burlington,
VT, USA); reaction buffer [750 mMTris-HCl (pH 9), 50 mMKCl,
200 mM (NH4)2SO4, 0.001% bovine serum albumin], 0.1 mM
of each dNTP, 5 mM MgCl2, 3 mM of each primer and 30 ng
of total DNA. The PCR program was as follows: 94◦C for 5
min; 40 cycles of 30 s at 94◦C, 1 min at 55◦C, and 30 s at 72◦C;

final elongation 10 min at 72◦C. Separation was carried out by
capillary gel electrophoresis (CEQ 8000 Genetic Analysis System;
Beckman Coulter Inc., Fullerton, CA, USA). Data collection
and analysis were carried out using the GenomeLabGeXP10.0
software (Beckman Coulter Inc.). The molecular markers used
for SSR genotyping were AT21 and TTC8 (Cuenca et al.,
2013).

Fragment Sequencing and SNP Mining
Fragment Sequencing
Twenty DNA 600 bp-fragments spanning the ABSr region
were sequenced in “Fortune” and “C×SO-1” genotypes to
find polymorphisms that could be heterozygous (Aa) in
“Fortune” and homozygous (aa) in “C×SO-1.” Information
on location of the corresponding sequences on the haploid
clementine reference genome (www.phytozome.org/clementine)
and annotation is given in Table 1. In order to obtain more
information correlated with the expected polymorphisms
in relation with the response to the disease, “Clemenules”
clementine (C. clementina) and “Minneola” tangelo (C.
paradisi × C. tangerina), which are homozygous resistant
and homozygous susceptible, respectively (from available
segregation data) were also included for fragment sequencing.
Twenty-two diallelic SNPs were found useful (heterozygous in
“Fortune,” homozygous in “C×SO-1” and “Clemenules” and
the alternative homozygous type in “Minneola”). Nine SNPs,
included in 9 sequenced fragments, were selected for subsequent
analysis.

SNP Analyses
Polymorphisms found as related to response to the disease were
used to develop SNP markers. SNP genotyping was performed
by Kbioscience R© services, using the KASPar technique. Detailed
explanation of specific conditions and reagents can be found in
Cuppen (2007).

Linkage Mapping
The mapping population was genotyped with two previously
developed SSRs flanking the ABSr locus (Cuenca et al., 2013) and
nine new SNP markers developed from the sequences shown in
Table 1. Besides, it was phenotyped as described above.

The fine linkage map was constructed using the JoinMap 4.1
software package (Stam, 1993), where markers were coded as lm
× ll (i.e., pseudo-test cross), using Kosambi’s mapping function.
The recombination threshold was of 0.35, and default values
were set for all other parameters. Markers were subjected to
segregation distortion analysis.

Set of Parental Genotypes to Test the New
SNP Marker Selected for MAS
Forty citrus genotypes from the IVIA citrus germplasm bank,
either already or candidate to be used as parents in mandarin
breeding programs were selected to test the association between
the phenotype (resistance to ABS) and the genotype for
the closest SNP to the ABS resistance gene (Supplementary
Material—Table S1). The set includes 7 citrus species, according
to Tanaka’s classification (Tanaka, 1977) represented by 12
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TABLE 1 | Annotations on the haploid clementine’s reference genome (http://www.phytozome.net/clementine) corresponding to the sequenced

fragments.

#Seq Locus name Position initial Position final Annotation Exon/Intron

1 Ciclev10023819 24585082 24585682 Aluminum response Exon

2 Ciclev10018715 24629196 24629796 Glycosylphosphatidylinositol anchor synthesis protein 3′UTR

3 Ciclev10019689 24798391 24798991 Glycine/serine hydroxymethyltransferase Exon

4 Ciclev10021676 24838352 24838952 Amino acid tRNAsynthetase Exon

5 Ciclev10019906 24898091 24898691 Cysteine protease required for autophagy—Apg4p/Aut2p 5′UTR

6 Ciclev10022372 24943349 24943949 large subunit ribosomal protein L9e 3′UTR

7 Ciclev10019784 24949349 24949949 Mlo family Intron

8 Ciclev10023902 24986520 24987120 Disease resistance Intron

9 Ciclev10024232 24991686 24992286 Resistant protein putative Intron

10 Ciclev10020313 25043084 25043684 Mlo family Intron

11 Ciclev10022861 25074401 25075001 No annotation 3′UTR

12 25163141 25163741 No gene –

13 25264697 25265297 No gene –

14 Ciclev10019183 25443491 25444091 Disease resistance Exon

15 Ciclev10023260 25495794 25496394 Disease resistance Exon

16 25861785 25862385 No gen –

17 26230224 26230824 No gen –

18 26745996 26746596 No gen –

19 Ciclev10018492 27236500 27237100 Disease resistance Exon

20 Ciclev10018528 27868399 27868999 Disease resistance 3′UTR

genotypes and 28 recent hybrids. The selection was done with
the aim of spanning the majority of the diversity found within
mandarins (Garcia-Lor et al., 2015).

RESULTS

SNP Mining from Sequencing
With the objective to perform fine mapping, useful SNPs were
searched in the previously defined 3.3 Mb region spanning
the ABSr locus. In a first step, 20 DNA fragments within
the ABSr region were Sanger-sequenced in the parents of
the analyzed population and two additional genotypes (one
resistant and one homozygous susceptible) to find informative
polymorphisms potentially correlated with the response to the
disease. A total of 9.7 kb corresponding to these sequences were
finally obtained. Consensus sequences have been submitted to
Genbank (accession numbers from KX368965 to KX368984).
Twenty-two SNP were found to have useful polymorphisms
(data not shown). An example for SNP08 development
from sequencing (fragment #16) is shown in Figure 2. At
this position, “Fortune” (heterozygous susceptible parent;
Figure 2A) is heterozygous G/T and “C × SO-1” (resistant
parent; Figure 2B) is homozygous T/T; additional genotypes
are “Clemenules” (resistant, T/T; Figure 2C) and “Minneola”
(homozygous susceptible G/G; Figure 2D). Finally, nine SNPs
included in nine sequenced fragments spanning the entire region
were selected to develop KASPar markers for subsequent analysis
(Table 2). The absence of additional polymorphisms close to
the selected SNP was a major criteria for this second step of
selection.

Fine Mapping of the ABSr Locus
The new map was constructed using two existing SSR markers
and the nine newly developed SNPs markers. Missing data
average was 2.0%, ranging from zero for SNP01, SNP02, SNP04,
SNP05, SNP06, SNP07, and AT21 markers; 0.37% for SNP08;
0.75% for AAT9, and SNP03 markers, to 20.15% of missing
data for the SNP09, (54 individuals). Resistant/susceptible
phenotype segregation was 118 (45%)/150 (55%), showing a
slightly distorted segregation toward susceptible individuals (χ2

= 3.821; p = 0.051; n.s.) according to the 1:1 hypothesis. Most
of the analyzed markers resulted in similar non-significant bias
toward the susceptible genotype. This is a logical observation
because all these markers are closely linked. Only the AAT9
(χ2 = 5.429; p = 0.0198) and the SNP01 (χ2 = 4.313; p
= 0.0378) showed significant distortion at a probability of
95%. Genotyping results for SNP05, SNP06, SNP07, and AT21
markers are identical for all analyzed individuals, so they
were localized at the same position in the map. All markers
maintained expected mapping order based on their physical
location (www.phytozome.org/clementine; Wu et al., 2014).
Figure 3 shows the region where the ABSr locus is located in the
new map compared to the data from Cuenca et al. (2013).

Finemapping showed that theABSr locus is located in a region
of 1.1 cM between the markers SNP05/SNP06/SNP07/AT21 (at
0.7 cM) and SNP08 (at 0.4 cM), limiting the chromosome region
to 365.991 bp between the positions 25.496.094 and 25.862.085
within the chromosome 3 in the clementine reference genome
sequence. Therefore, this analysis allowed us to narrow the ABSr
locus to a region containing a much more limited number of
candidate genes (Table 3).
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FIGURE 2 | Sequence alignment of four genotypes revealing the SNP08. (A) “Fortune”; (B) “CxS0-1”; (C) “Clemenules”; (D) “Minneola.”

TABLE 2 | Information on new SNP markers developed for fine-mapping and their flanking sequences.

SNP Sequence

containing the

SNP

Position in

chromosome 3

(Mb)

Flanking sequence

SNP01 #2 24629496 CTGAGTGGATCAGTACAACATAATACTTCTAACAG[A/T]TGCAAAATTTATCACATTAACATTATTAGATTGAT

SNP02 #5 24898391 CCTGGTTCGACAATGCCTCTCTCATTAGTACAACC[A/G]CAATGACAACATATTCGGTCGGCTTGTATGATTCT

SNP03 #7 24949649 GCTTTTAGTGCGCACCATGGCACCGGCCGTCGCCT[T/C]CTAGCTGATGCAGCCTCTGAGGGCAATTGTCCAAA

SNP04 #9 24991986 GCTGTAAAGTGTATCATACACTTTATTAAATTAGG[G/C]TCAATTGGAGTACTGCCGCACACCAATCCTTTGCA

SNP05 #11 25074701 AGACAATCTGTGCATCTTCAAGGCTGAGGAATCTA[A/G]CGGGACAGGCTGATGATTTAGAAAATAACAAACAA

SNP06 #14 25443791 CAAGATTTGATTAAAGTAAAGAAGAAAAAGAAAAA[A/G]GGTAAGAAAAAGTTAGAGAAGATTGAGAAGAAAAA

SNP07 #15 25496094 ACCAAACACTGCAAATTCTTACAGCAGTTTATCTC[G/A]AGGCTTTTAATACATGACGGTAGCTTCTGCCTCGC

SNP08 #16 25862085 ATTTGGCAACCTATCATCTGGGAGATCGTAGCGAT[G/T]GGCAAATTTCATCACCACTTCCAAGTGAAATTTTA

SNP09 #19 27236800 CCTGAAGGGGCATCATCAACTGCTGCTGCTGCACA[C/T]CAGAGGCCACCCAGTTCAAGCGTCCCACCAGAACG

Identification of Candidate Genes for ABS
Resistance
Twenty-four genes are predicted in the clementine genome
(www.phytozome.org/clementine) within the region delimited
by fine-mapping (Table 3; Figure 4). Twenty of these genes
have a functional annotation, and eight of them may be
related to pathogen resistance. They include seven resistance
gene homologs, harboring Leucine-Rich-Repeat (LRR) and
Nucleotide-Binding-Site (NBS) domains (Ciclev10023260,
Ciclev10018540, Ciclev10018510, Ciclev10023481,
Ciclev10018897, Ciclev10018637, and Ciclev10023511).
Among these resistance genes, Ciclev10018637 and
Ciclev10023511 present LRR receptor-like and serine/threonine
protein kinase domains. Another gen (Ciclev10024361)
related to pathogen resistance encodes a S-adenosyl-
L-methionine-dependent methyltransferases superfamily
protein.

In addition to these genes, there are other four genes
with no functional annotation in www.phytozome.org website.
These genes were then blasted against the NCBI database
(https://blast.ncbi.nlm.nih.gov), where no similarity with any
previously characterized protein was found for Ciclev10019166,
Ciclev10022922, and Ciclev10023674 genes. Blast results for the
Ciclev10024474 gene showed high similarity with a predicted
putative RPP13-like protein annotated in Citrus sinensis.
Therefore, this gene was also considered as annotated for disease
resistance.

Response to ABS Inoculations in Mandarin
Breeding Parents
Detached leaves from 40 genotypes used or selected to be used
as parents in mandarin breeding programs were inoculated
with A. alternata spores as explained in Materials and Methods
Section. Results indicate that 20 of them showed symptoms after
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FIGURE 3 | Physical maps of the ABSr locus from Cuenca et al. (2013) (A) compared with the fine genetic mapping of the region from the present study (B).

Shadowed area in the physical map corresponds to the identified region flanked by the closest markers. Arrows indicate the physical position of each marker used in

the fine mapping. Units are Mbases and centiMorgan in the physical and the genetic maps, respectively.

inoculations, scored as susceptible varieties; 20 varieties did not
show any symptom in any replicate, and then were scored as
resistant genotypes. Results of ABS response are in agreement
with most of the previous studies for all the genotypes for which
information is available (Table 4).

New Reliable SNP Marker for MAS in
Mandarin Breeding Programs
The closet SNP marker flanking the ABSr locus was SNP08,
mapped at 0.4 cM from the responsible gene for ABS resistance.
This marker was analyzed using the KASPar technique in 40
citrus genotypes, including 20 resistant, and 20 susceptible
cultivars. Results from phenotyping and SNP08 genotyping for
these 40 accessions are indicated in Table 4. As previously
identified from the segregating populations, the allele of this

SNP marker linked with the dominant susceptible allele of the
ABSr locus is G. Therefore, considering identity by descent in the
analyzed germplasm, without recombination between themarker
and the ABSr locus, resistant genotypes are expected to be TT,
whereas susceptible genotypes are expected to be GG or GT.

All genotypes included in the study were correctly classified as
resistant or susceptible using this single SNPmarker, highlighting
its discriminating power between the two groups (Figure 5).

DISCUSSION

ABS is an important fungal disease affecting susceptible citrus
genotypes. Currently, ABS control is primarily based on
fungicide application, but despite a large number of sprays,
disease control is not always satisfactory and cannot be
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TABLE 3 | Annotated genes in the region of interest, indicating their physical position and annotation.

Initial position Final position Transcript name Annotation

25495290 25499648 Ciclev10023260 LRR and NBS-ARC domains-containing disease resistance protein

25539228 25543442 Ciclev10018540 LRR and NBS-ARC domains-containing disease resistance protein

25546089 25546373 Ciclev10023953 Mitochondrial ribosomal protein L11

25558189 25563873 Ciclev10018510 LRR and NBS-ARC domains-containing disease resistance protein

25563004 25563956 Ciclev10024474 No annotation

25577398 25580479 Ciclev10023481 NBS-ARC domain-containing disease resistance protein

25591667 25592171 Ciclev10022922 No annotation

25596184 25598211 Ciclev10019166 No annotation

25598722 25601734 Ciclev10020079 F-box family protein

25605171 25606024 Ciclev10023014 F-box/RNI-like superfamily protein

25612741 25615635 Ciclev10023374 Uridine-ribohydrolase 2

25625682 25630835 Ciclev10019447 Inositol 1,3,4-trisphosphate 5/6-kinase 4

25633452 25636420 Ciclev10018897 Disease resistance protein (CC-NBS-LRR class) family

25639011 25644826 Ciclev10019649 RNA-binding protein

25645230 25649184 Ciclev10021021 Chloroplast outer envelope protein 37

25649848 25653317 Ciclev10024361 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein

25657664 25663490 Ciclev10024293 Endonuclease/exonuclease/phosphatase family protein

25663967 25668616 Ciclev10019293 Ankyrin repeat family protein

25702085 25702716 Ciclev10023674 No annotation

25740008 25740471 Ciclev10023198 Pectin lyase-like superfamily protein

25756520 25759773 Ciclev10018637 Leucine-rich repeat receptor-like protein kinase family protein

25784246 25784449 Ciclev10023998 Mitochondrial pyruvate carrier 2

25838882 25842061 Ciclev10023511 Leucine-rich repeat receptor-like protein kinase family protein

25844828 25845232 Ciclev10024127 Plant self-incompatibility protein S1 family

FIGURE 4 | Physical position of candidate genes for ABS resistance found in the identified mapped within the chromosome 3, between 25.49 and

25.86 Kb. Genes in red box are NBS-LRR genes; Genes remarked in double box present LRR receptor-like and serine/threonine protein kinase domains; Gene in

blue box belongs to the S-adenosyl-L-methionine-dependent methyltransferase family.

considered as a sustainable crop management practice. As a

consequence, cultivation of susceptible cultivars has declined

significantly, as is the case of “Fortune” mandarin in Spain during

recent years. Thus, genetic resistance remains as the best option

for disease control [1]. The objective of this study was (i) to finely
map the ABSr locus identified by Cuenca et al. (2013) on LG
III of the clementine’s genetic map (Ollitrault et al., 2012), (ii)
to identify candidate genes for resistance, and (iii) to develop

SNP molecular markers for efficient MAS in citrus breeding
programs.

A 366 Kb Genomic Region Has Been
Targeted for Alternaria Brown Spot
Resistance in Citrus
In our previous work (Cuenca et al., 2013), the ABSr locus was
located by using a bulked segregant analysis coupled with genome
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TABLE 4 | ABS response, SNP08 genotyping results, and previous data for ABS response for the 40 cultivars analyzed in the present study.

Group Cultivar ABS response SNP08

genotyping

Previous results for ABS response

Clementine Clemenules Resistant TT Resistant: Hutton and Mayers, 1988; Kohmoto et al., 1991; Solel and Kimchi, 1997; Vicent et al.,

2004; Dalkilic et al., 2005; Elena, 2006; de Souza et al., 2009; Kakvan et al., 2012; Pacheco

et al., 2012; Cuenca et al., 2013

Mandarin Anana Resistant TT

Mandarin Campeona Resistant TT Resistant: Vicent et al., 2004

Mandarin Carvahal Resistant TT

Mandarin Dancy Susceptible GG Susceptible: Whiteside, 1979; Solel and Kimchi, 1997

Mandarin Emperor Susceptible GT Susceptible: Pegg, 1966; Vicent et al., 2004

Mandarin King Resistant TT Resistant: de Souza et al., 2009; Susceptible: Solel and Kimchi, 1997

Mandarin Ponkan Susceptible GT Susceptible: Pacheco et al., 2012

Mandarin Scarlet Resistant TT

Mandarin Temple Resistant TT Resistant: Hutton and Mayers, 1988

Mandarin Willowleaf Resistant TT Resistant: Hutton and Mayers, 1988; Solel and Kimchi, 1997; Vicent et al., 2004; Cuenca et al.,

2013

Mandarin hybrid Daisy Susceptible GG Susceptible: de Souza et al., 2009; Stuart et al., 2009

Mandarin hybrid Encore Resistant TT Resistant: Kohmoto et al., 1991; de Souza et al., 2009

Mandarin hybrid Fairchild Susceptible GT Susceptible: Vicent et al., 2004; Dalkilic et al., 2005; Cuenca et al., 2013

Mandarin hybrid Fallglo Susceptible GT

Mandarin hybrid Fortune Susceptible GT Susceptible: Vicent et al., 2004; Dalkilic et al., 2005; Kakvan et al., 2012; Cuenca et al., 2013

Mandarin hybrid Fremont Susceptible GG Susceptible: Pacheco et al., 2012; Resistant: de Souza et al., 2009

Mandarin hybrid Gold Nugget Resistant TT

Mandarin hybrid Honey Resistant TT

Mandarin hybrid Kara Resistant TT Resistant: Hutton and Mayers, 1988; Kohmoto et al., 1991; Vicent et al., 2004; Susceptible:

Solel and Kimchi, 1997

Mandarin hybrid Kinnow Resistant TT

Mandarin hybrid Moncada Resistant TT

Mandarin hybrid Nova Susceptible GT Susceptible: Solel and Kimchi, 1997; Vicent et al., 2004; Dalkilic et al., 2005; Elena, 2006;

Pacheco et al., 2012; Cuenca et al., 2013

Mandarin hybrid Osceola Susceptible GT

Mandarin hybrid Page Susceptible GT Susceptible: Solel and Kimchi, 1997; Vicent et al., 2004; Dalkilic et al., 2005; Elena, 2006;

Kakvan et al., 2012; Pacheco et al., 2012

Mandarin hybrid Palazzelli Resistant TT

Mandarin hybrid Pixie Susceptible GT

Mandarin hybrid Primosole Susceptible GT

Mandarin hybrid Simeto Resistant TT Resistant: Vicent et al., 2004

Mandarin hybrid Sunburst Susceptible GT Susceptible: Pacheco et al., 2012

Mandarin hybrid Wilking Resistant TT

Satsuma Frost Resistant TT Resistant: Vicent et al., 2004; de Souza et al., 2009; Susceptible: Solel and Kimchi, 1997

Tangelo Mapo Resistant TT Vicent et al., 2004

Tangelo Minneola Susceptible GG Susceptible: Whiteside, 1979; Solel and Kimchi, 1997; Peever et al., 1999; Vicent et al., 2004;

Dalkilic et al., 2005; Elena, 2006; Kakvan et al., 2012; Cuenca et al., 2013

Tangelo Orlando Susceptible GT Susceptible: Whiteside, 1979; Solel and Kimchi, 1997; Dalkilic et al., 2005; Kakvan et al., 2012;

Cuenca et al., 2013

Tangelo Seminole Susceptible GT

Tangor CxSO-1 Resistant TT

Tangor Dweet Susceptible GT

Tangor Ellendale Susceptible GT Susceptible: Solel and Kimchi, 1997; Resistant: Vicent et al., 2004

Tangor Murcott Susceptible GT Susceptible: Solel and Kimchi, 1997; Vicent et al., 2004; Dalkilic et al., 2005; de Souza et al.,

2009; Pacheco et al., 2012; Cuenca et al., 2013

Frontiers in Plant Science | www.frontiersin.org 8 December 2016 | Volume 7 | Article 1948

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Cuenca et al. ABS Candidate Resistance Genes and MAS

FIGURE 5 | KASPar genotyping results for the SNP08 for the set of

genotypes selected for this study. Resistant cultivars are represented by

red points (TT); susceptible cultivars are represented by blue points (GT

and GG).

scan and targeted genetic mapping by half tetrad analysis in
a triploid progeny. The region containing the ABSr locus was
flanked by markers TTC8 and CiC3248-06 defining a 5.48 cM
interval, corresponding to 3.3 Mb in the clementine reference
genome. In the present work, the fine-mapping was carried
out using a 268-diploid progeny arising from a heterozygous
susceptible× resistant hybridization. As a result, we have limited
the candidate region containing the ABSr locus to 1.5 cM flanked
by two SNPmarkers at 1.1 and 0.4 cM, corresponding to 366 kb in
the clementine reference genome (between positions 25.496.094
and 25.862.085 in the chromosome III).

Candidate Genes for ABS Resistance
Interactions between pathogens and their hosts are complex
and dynamic. At the early stages of necrotrophic infections,
host cell death is associated with the production of various
secondary metabolites, antimicrobial peptides, hormones and
also with the accumulation of reactive oxygen species, callose,
and some other cell wall modifications (Wen, 2012). Cell death
is a common phenomenon in both resistant and susceptible
responses of plant–pathogen interactions to confine pathogens
by abolishing nutrient supply. However, cell death generally
enhances colonization by necrotrophic pathogens. Effectors
produced by the fungus can be recognized by immune receptors
in plants, generally belonging to the nucleotide–binding site–
leucine–rich repeat (NBS–LRR) protein family. The identified
region contains eight genes harboring NBS-LRR repeats, which
should be considered as candidate genes for ABS resistance.
Nevertheless, the RLM3, a Toll/interleukin 1 receptor domain
R–protein in Arabidopsis is the only NBS-LRR gene found to
be responsible for resistance to necrotrophs (Mengiste, 2012). A
BLAST with this protein results in 200 hits in the citrus genome.

Surprisingly, 170 of them are located within chromosome 3,
showing the highest score (E = 8.1e-58), and 37% of them are
physically mapped around the region of interest (i.e., from 21 to
28 Mb in chromosome 3); however, none of them is within the
region identified by fine mapping.

Among the identified resistance genes, Ciclev10018637 and
Ciclev10023511 encode for a Leucine-Rich Repeat (LRR)
receptor-like protein with serine/threonine kinase domain. LRR
receptor-like kinases (LRR-RLK) appear to play a central role in
signaling during pathogen recognition, the subsequent activation
of plant defense mechanisms, and developmental control (Afzal
et al., 2008). Indeed, most of the RLK identified as being involved
in plant defense are of the LRR-RLK class including the rice Xa21
protein and the Arabidopsis FLS2 and EFR receptors (Goff and
Ramonell, 2007). Both genes were mapped very close to the most
significant SNP related to ABS resistance (SNP08). Thus, they
should be considered as strong candidates for resistance.

Another strong candidate for ABS resistance found within
the region of interest and close to the SNP08 is the gene
Ciclev10024361, encoding for an S-adenosyl-L-methionine-
dependent methyltransferases superfamily protein, with
thiopurine S-methyltransferase superfamily protein. The
ACTTS3 gene from A. alternata, involved in the production of
the ACT-toxin, encodes a polyketide synthase with putative β-
ketoacyl synthase, acyltransferase, methyltransferase, β-ketoacyl
reductase, and phosphopantetheine attachment site domains
(Miyamoto et al., 2010). During infections of Brassica juncea
with Alternaria brassicola, the transcriptional activation of
jasmonic acid carboxyl methyltransferase was observed after 2
days post infection (Meur et al., 2015). This gene could be a good
target for achieving resistance against necrotrophic pathogens,
and therefore, it should also be considered as a strong candidate
for resistance to ABS.

There is little information in other plant species about genes
involved in resistance to necrotrophic pathogens in general,
and to A. alternata in particular. In Solanum lycopersicum, the
Asc gene mediates resistance to AAL toxin produced by A.
alternata lycopersici (Spassieva et al., 2002). A BLAST for this
gene in citrus indicates that there are orthologous genes in
two regions of chromosome 3, but none of them within the
region of interest; in addition, many other regions in other
chromosomes contain Asc orthologous genes. In barley, mlo
mutants are resistant to penetration by Blumeria graminis,
overproducing p-coumaroyl-hydroxyagmatine; this compound
has antifungal activity and inhibits haustorium formation in vivo
(Büschges et al., 1997; von Röpenack et al., 1998). BLAST for
mlo family genes in citrus indicates that seven of the nine citrus
chromosomes contain orthologous to this family, including
three genes found to be very close (but outside) to the region
of interest in chromosome 3 (Ciclev10019784, Ciclev10023336,
Ciclev10020313). In Arabidopsis, Coego et al. (2005) showed
that the homeodomain transcription factor OCP3, mediates
resistance to infection by necrotrophic pathogens. BLAST results
for this gene showed that the only orthologous gene in the citrus
genome (Ciclev10010768) is in the chromosome 1. Arabidopsis
RFO1 gene, conferring quantitative resistance against Fusarium
oxysporum (Diener and Ausubel, 2005), had significant BLAST
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in five regions of chromosome 3, but none of them within the
region of interest; in addition, many other regions in other
chromosomes contain RFO1 orthologous genes. Other genes and
transcriptions factors have been found to be implicated in the
resistance to necrotrophs in Arabidopsis, like the BOS1 and BOI,
which appear to restrict necrosis triggered by diverse pathogens
and stress factors (Luo et al., 2010). BLAST for these genes in
citrus reveals orthologous genes in chromosomes 2 and 3, but
outside the region of interest. The WRKY33 transcription factor
is required for resistance to necrotrophic fungal pathogens in
Arabidopsis (Zheng et al., 2006) and BLAST results in citrus
indicate that there are orthologous genes in chromosome 3, but
outside the region of interest. Also, the ATG18a gene, which
interacts with WRKY33, has no orthologous within the region
of interest.

The information generated from sequence comparison and
annotations allows to discard 15 out of the 24 genes found within
the region delimited by fine-mapping. Among the nine genes that
may be related to pathogen resistance, the genes Ciclev10018637,
Ciclev10023511, and Ciclev10024361 are the strongest candidates
for ABS resistance in citrus. This limited number will now
allow to make affordable although time-consuming approaches
to determine whether these genes are really involved in the
Alternaria-citrus interaction. Further experiments, including
differential expression performed during fungal infection and
functional approaches as genetic transformation or reverse
genetics should be performed to accomplish this goal.

A New SNP Marker for Efficient MAS Has
Been Developed
In fruit crops, several molecular markers have been found
to be linked to agronomic traits of interest (van Nocker
and Gardiner, 2014). Examples of successful early selection of
interesting genotypes within breeding programs are found in
grapes (www.vitisgen.org), Prunus and other Rosaceae species
(Dirlewanger et al., 2004).

In citrus, a few characters of agronomic interest have been
linked to molecular markers, such as RAPD markers linked to
dwarfing (Cheng and Roose, 1995) or fruit acidity (Fang et al.,
1997), SSR markers linked to CTV resistance from Poncirus
trifoliata (Gmitter et al., 1996; Bernet et al., 2004), AFLP markers
linked to nucellar embryony (García et al., 1999; Kepiro and
Roose, 2010), and the dominant PCR assay for the anthocyan
content of pulp from blood orange due to a transposable element
in the 5′ extremity of the Ruby gene (Butelli et al., 2012).
Other characters of interest have been tagged to QTLs, such as
salinity tolerance (Ben-Hayyim and Moore, 2000) and nematode
resistance (Ling et al., 2000). However, for citrus scion breeding
programs, only the Alternaria resistance presented in this paper,
along with the anthocyanin content, are currently subjected
to MAS.

ABS resistance has also been previously tagged with molecular
markers. Dalkilic et al. (2005) reported two RAPD markers with
loose linkage with the locus (15.3 and 36.7 cM far from ABS
resistance locus in the same side). More recently, Gulsen et al.
(2010) identified two flanking SRAP markers at 3 and 13 cM.

However, due to the distance between markers and the resistance
gene as well as the dominant characters of RAPDs and SRAP,
these studies did not resulted in concrete MAS application.

In the present work, we have developed a SNP marker
(SNP08) mapped at 0.4 cM from the ABS resistance gene, which
greatly improves the selection of resistant genotypes in early
development stages and avoid growing and evaluating susceptible
genotypes. The SNP08 marker is diallelic (G/T), in which the
G base is phased with ABS dominant susceptibility. It means
that when the G allele is present, i.e., GT and GG genotypes,
the cultivar is expected to be susceptible and therefore, only TT
genotypes are expected to be resistant. With 0.4 cM distance,
in a progeny between a heterozygous susceptible parent and
a resistant one, only 0.4% of GT hybrids are expected to be
resistant and the same proportion is expected for TT hybrids
to be susceptible. Flanking markers at 0.7 cM from the ABSr
locus have also been identified on the other side of the gene.
By coupling the SNP08 and one of these markers, the error rate
would fall to 0.0028% (<3 false resistant hybrids per 100.000).

This SNP08 marker has been tested for association in 40
mandarin genotypes used as breeding parents and covering
a large range of the mandarin diversity (Garcia-Lor et al.,
2015). ABS inoculations revealed 20 resistant and 20 susceptible
genotypes. Citrus clementina, C. nobilis, C. temple, C. deliciosa,
and C. unshiu species resulted resistant, whereas the analyzed
genotype from C. tangerina is susceptible. Citrus reticulata and
the group of hybrid mandarins include both resistant and
susceptible genotypes. In the latter group, hybrids between
resistant genotypes are resistant, in agreement with the recessive
inheritance of the ABS resistance.

Since SNP08 is very close to the ABS resistance gene, it is
expected to obtain a very close correlation between the observed
SNP08 genotyping and the actual allele configuration of the
resistance gene in the germplasm. However, the development of
this new marker is based on the segregation of only one progeny,
and, a priori, the transferability between different citrus species
or interspecific hybrids may not be efficient. In this work, we
confirmed this transferability by comparing the results observed
for some varieties with segregation progenies obtained from
previous works. GG genotypes for the SNP08 are susceptible
presumably homozygous for the gene, and no segregation is
expected in their progeny. This has been demonstrated for
“Minneola” by Cuenca et al. (2013), from which no resistant
genotypes were obtained in a progeny of 127 hybrids. Moreover,
segregations in the response to ABS were observed by the same
authors in progenies arising from “Fortune,” “Nova,” “Orlando,”
“Fairchild,” and “Murcott,” confirming that all these cultivars
(genotyped as “GT” for the SNP08) are heterozygous for the
ABSr locus. Therefore, this marker appears to be phased with
the ABS resistance gene in the analyzed germplasm and it could
be very useful not only for discriminating between resistant and
susceptible cultivars, but also for inferring the allele configuration
of the ABS resistance gene. It is therefore a valuable tool for
selecting susceptible heterozygous genotypes that can be used
as parents in breeding programs and conversely to discard
homozygous susceptible varieties. The fact that susceptible
yet heterozygous genotypes can be used as parents allows

Frontiers in Plant Science | www.frontiersin.org 10 December 2016 | Volume 7 | Article 1948

http://www.vitisgen.org
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Cuenca et al. ABS Candidate Resistance Genes and MAS

the exploitation of more genetic diversity in citrus breeding
programs.

The SNP08 is currently used for the assisted selection of
ABS-resistant genotypes in the citrus breeding programs carried
out at IVIA and CIRAD. Since its development, it has been
successfully applied to select 2187 resistant hybrids from 4517
total hybrids arising from 10 different parental combinations.
This analysis avoided to keep growing for a long time more
than 2000 susceptible genotypes, which were removed from the
breeding program at a very early stage of development and,
therefore, saving a considerable amount of time, personnel and
money resources.
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