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Maize is the principal grain crop of the world. It is also the crop where genetic
engineering has been employed to a great extent to improve its various traits. The
ability to transform maize is a crucial step for application of gene technology in maize
improvement. There have been constant improvements in the maize transformation
technologies over past several years. The choice of genotype and the explant
material to initiate transformation and the different types of media to be used in
various stages of tissue culture can have significant impact on the outcomes of the
transformation efforts. Various methods of gene transfer, like the particle bombardment,
protoplast transformation, Agrobacterium-mediated, in planta transformation, etc.,
have been tried and improved over years. Similarly, various selection systems for
retrieval of the transformants have been attempted. The commercial success of maize
transformation and transgenic development is unmatched by any other crop so far.
Maize transformation with newer gene editing technologies is opening up a fresh
dimension in transformation protocols and work-flows. This review captures the various
past and recent facets in improvement in maize transformation technologies and
attempts to present a comprehensive updated picture of the current state of the art
in this area.
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INTRODUCTION

Maize (Zea mays L.) or corn is the principal crop of the world and stands first among the
grain crops in terms of production. It is primarily used as animal feed and raw materials for
various industries, and only a minor proportion is used as direct human food. The ever increasing
human population and consumption of animal-derived foods is leading to enhanced demand for
maize grains. However, various biotic and abiotic stresses are the bottleneck in enhancing maize
production, productivity, and quality in the limited cultivable land available. To overcome these
challenges, genetic engineering of maize with desired target genes have been extensively employed
to produce transgenic maize cultivars with improved traits. The first transgenic maize cultivars
were launched commercially 20 years ago in 1996 in the USA. Since then, maize has become the
main target crop for plant genetic engineering. Among all crops, maize has the highest number
of transgenic events that have been commercialized. Thus, transformation to develop transgenic
maize has been a forefront technology for the genetic improvement of this crop.
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CHOICE OF GENOTYPES AND
EXPLANTS FOR IN VITRO
REGENERATION AND
TRANSFORMATION

The selection of a particular maize genotype for transformation
is the first and a crucial step in maize transformation. Usually,
the selection of the genotype is not primarily dependent upon its
agronomic superiority, but on its amenability for tissue culture
and transformation. Once the desired gene is introduced in
a tissue culture friendly genotype, it can be transferred much
conveniently to any agronomically superior genotype through
marker assisted conversion. Tomes and Smith (1985) and Hodges
et al. (1986) suggested that regeneration capacity of maize
genotypes in tissue culture was genetically determined by nuclear
genes. Further, Willman et al. (1989) indicated that at least one
gene or a block of genes influenced somatic embryogenesis of
maize in tissue cultures. Bohorova et al. (1995) also described
the effect of the different genotypes on somatic embryogenesis
capacity.

Hi-II (High type II callus production) is one of the most
widely used genotype for commercial maize transformation.
Callus induction is a critical step in maize transformation. Most
maize genotypes produce a less compact and less regenerable
type of callus termed as Type I callus. On the other hand,
Type II calluses are friable, embryogenic, and transformable
(Green, 1982; Armstrong et al., 1991; Hansen and Wright,
1999). Interestingly, Hi-II is an F1 hybrid line. Its parents
(“Hi-II Parent A” and “Hi-II parent B”) were derived from
F2 population of A188 X B73 cross through four generations
of tissue culture, selfing and sib-pollinations. The immature
embryo explants from Hi-II have been reported to give 100%
Type II response (Armstrong and Green, 1985). Hi-II genotype
showed maximum transformation efficiency with a range of
12–18% (Vega et al., 2008), while with A188, occasionally, 30%
transformation efficiency with Agrobacterium-mediated method
has been reported (Ishida et al., 1996). An Egyptian genotype-
Line Gz 643 exhibited 42.2% regeneration frequency (El-itriby
et al., 2003). Among tropical maize genotypes, IL3 was found to
be most amenable to transformation and proved to be superior
to A188 temperate genotype with a transformation frequency of
31.7 and 5.82%, respectively (Rasha et al., 2013). Embryogenic
callus initiated from immature embryos and cell suspension
cultures of embryogenic callus are most preferred targets for
maize transformation (Armstrong, 1999; Hansen and Wright,
1999; Torney et al., 2007). Apart from immature embryos
from Hi-II, a number of other genotypes and various other
explants have also been used with varying success (Table 1). It is
interesting to note that few other genotypes, have been reported
to exhibit transformation frequencies better than Hi II, yet the
latter has remained popular for commercial transformation. This
might be due the fact that, apart from a moderately higher
transformation frequency, Hi II transformed plantlets would
exhibit vigorous growth as it is essentially an F1 hybrid.

Recently, transgenic maize genotypes, especially suited
for transformation have been developed. Transgenic maize

overexpressing the maize Baby boom (ZmBbm) and maize
Wuschel2 (ZmWus2) genes, showed high transformation
frequencies in numerous previously non-transformable maize
inbred lines (Lowe et al., 2016). Earlier, the maize streak virus
replication-associated protein A (RepA) was shown to enhance
transformation frequency and callus growth rate in maize
transformation cycle. The RepA-containing transgenic maize
calli were reported to remain embryogenic, readily regenerable,
and capable of producing fertile plants that transmitted transgene
expression in a Mendelian fashion (Gordon-Kamm et al., 2002).
Similarly, overexpression of an embryo development related
Lec1 gene in maize was shown to aid further re-transformation
(Lowe et al., 2002).

In vitro regeneration in maize has been reported from
immature embryos (Duncan et al., 1985; Bohorova et al., 1995;
Ishida et al., 1996; Aguado-Santacruz et al., 2007), mature
embryos (Huang and Wei, 2004; Al-Abed et al., 2006; Tiwari
et al., 2015), nodal explants (Vladimir et al., 2006; Tiwari et al.,
2015), leaf (Conger et al., 1987; Ahmadabadi et al., 2007),
anthers (Ting et al., 1981; Barloy and Beckert, 1993), tassel
and ear meristems (Pareddy and Petolino, 1990), protoplast
(Mórocz et al., 1990), and shoot meristems (Sairam et al.,
2003). Germinated split-seeds were also used as target tissue for
callus formation and regeneration by Al-Abed in 2006. Abhishek
et al. (2014a) analyzed the effect of using of immature embryos
harvested from different Indian maize genotypes of different
ages on callus induction, embryogenic Type II calli initiation
and regeneration. The mean callus induction, embryogenic Type
II calli production, and regeneration were found to be highest
across all the genotypes in 12 days old immature embryos. The
highest regeneration capacity was observed for the Indian maize
genotypes- HKI 1105 and CM 300.

One of the major drawbacks of using immature embryos
as explants is the limited availability of appropriate stage
explant material. Recently, callus induction and regeneration
of complete plants was demonstrated using split nodes derived
from germinating mature embryos derived from sub-tropical
maize (Tiwari et al., 2015). The VQL 2 genotype performed
best with a regeneration frequency of 34% in callusing medium
supplemented with 2.2 mg l−1 picloram and 0.5 mg l−1 2,4-
dichlorophenoxyacetic acid (2, 4-D). Significantly, transgenic
maize overexpressing Wus2 and Bbm genes enabled direct
Agrobacterium-mediated transformation of mature seed-derived
embryo axes or leaf segments, without an intervening callus or
meristem culture step (Lowe et al., 2016). The availability of
a robust transformation protocol in tropical/sub-tropical maize
genotypes using readily available explants like mature seed would
be a major achievement toward engineering maize suitable for
tropical and sub-tropical countries.

MEDIA FOR IN VITRO REGENERATION
AND TRANSFORMATION

Optimization of culture medium components is most important
for establishment of tissue culture. Green and Phillips (1975)
produced the first somatic embryos in maize. They regenerated
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TABLE 1 | Summary of genotype, explant, media, and transformation methods used in various maize transformation studies.

S.No. Genotype Explant Media Transformation
method

Gene Transformation
frequency

Reference

1 HKI 163 Seedling plumule N6 Agrobacterium-
mediated in planta
transformation

cry1Ab;bar; gus 4% Abhishek et al.
(2014b)

2 Pa91 X H99 hybrid Leaf N6 and KT Biolistic
transformation

phosphomannose
isomerase (pmi)
promoter CMPS

NA Ahmadabadi et al.
(2007)

3 Tropical lines
CML72, CML216,
CML323, CML327,
CML72, CML216,
CML67, CML216,
CML216, CML72.

Immature embryos N6 basal medium Biolistic
transformation

ubi:cry1ab+35s:bar-
gus
ubi:cry1ac+35s:bar-
gus

1–2% Bohorova et al.
(1999)

4 H99, A188, Pa91 X
H99, A188 X H99

Immature embryos N6, MSC, and MS Biolistic
transformation

uidA; pat 2–4% Brettschneider
et al. (1997)

5 AT-3 Pistil filaments Agrobacterium-
mediated

gus; npt II NA Chumakov et al.
(2006)

6 Sweet corn Aleurones and
isolated embryos

MS Biolistic
transformation
(Low-pressure
BioWare gene gun)

gus NA Kao et al. (2008)

7 Inbred line H99 and
Pa91

Immature embryo
and Type I callus

N6 Electroporation nptII NA D’Halluin et al.
(1992)

8 Egyptian inbred
lines Gz 643

Scutellar tissues of
immature embryos
(1.0–2.0 mm long)

N6-based media Biolistic
transformation

gus; bar NA El-itriby et al. (2003)

9 A188 X B73 Immature zygotic
embryo

N6 and MS Silicon carbide
whisker-mediated
transformation

bar NA Frame et al. (1994)

10 Hi-II Type II callus N6 Biolistic
transformation

bar 0–11% Frame et al. (2000)

11 HE/89
Embryogenic
suspension culture
(Ke2/2)

Embryogenic
protoplasts

N6 PEG mediated
direct DNA transfer

mutant
dihydrofolate
reductase (dhfr)

NA Golovkin et al.
(1993)

12 Hi-II and inbreds
P38 and N46

Immature embryo 560P medium and
560Y

Microprojectile
bombardment and
Agrobacterium-
mediated
transformation

RepA; gfp; bar 3–20% Gordon-Kamm
et al. (2002)

13 A188 X B73
A188 X B84

Type II callus of
immature embryo

N6 Microprojectile
bombardment

gus; bar NA Gordon-Kamm
et al. (1990)

14 LH198 X Hi-II Embryos NA Agrobacterium-
mediated
transformation

cp4 epsps NA Huang et al. (2004)

15 A188, W117,
W59E, A554,
W153R’H99, BMS
cultivar

Immature embryo N6 Agrobacterium
tumefaciens-
mediated

gus; bar 5–30% Ishida et al. (1996)

16 Tropical inbred line
Cat-100-6

Immature embryos ML1 Biolistic
transformation

gus NA Kemper et al.
(1996)

17 Black Mexican
Sweet (BMS; ATCC
No 54022)

Intact maize cells in
suspension culture

MS Biolistic
transformation

npt II; gus NA Klein et al. (1989)

18 Hi-II Immature embryos N6 Agrobacterium gus; bar NA Miller et al. (2002)

19 W506, M37W Immature embryos MS and N6 Particle
bombardment

gus; bar NA O’Kennedy et al.
(2001)

20 Hi-II Immature embryos MS Silicon carbide
whisker mediated

bar; uidA NA Petolino et al.
(2000)

(Continued)
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TABLE 1 | Continued

S.No. Genotype Explant Media Transformation
method

Gene Transformation
frequency

Reference

21 Tropical inbred lines L3
and L1345

Immature embryos N6 Biolistic
transformation

bar; uidA 0.9–2.31% Petrillo et al. (2008)

22 Hi-II Coleoptiles N6 Biolistic
transformation

gus 2 Reggiardo et al.
(1991)

23 Inbred H99 Immature embryos N6 Biolistic
transformation

gus; nptII 1–5% Shiva Prakash et al.
(2009)

24 Inbred H99 Immature embryos N6 Biolistic
transformation

nptII 42–54%
30–38%

Shiva Prakash et al.
(2008)

25 Egyptian inbred lines
Giza 650, Sids 34, Sids
62

Immature embryos N6 Particle
bombardment and
Agrobacterium-
mediated
transformation

hva1; bar 1–2% Assem et al. (2008)

26 A188 X B73 Type II calli MS Biolistic
transformation

gus; bar NA Vain et al. (1993)

27 Hi-II A X Hi-II B F2 Immature embryos
(F2)

N6 Agrobacterium-
mediated

gus; bar 17.5% Vega et al. (2008)

28 H99, LH198 X Hi II,
PHA (Pa91 X
H99)XA188, KHI and
proprietary lines LI, L2,
L4, L9, and L9 × L5

Seedling derived
Type I callus

MS Agrobacterium-
mediated

CP4 modified
epsps; gfp; nptII

2–11% Vladimir et al.
(2006)

29 A188 × B73 Immature embryo N6 Biolistic
transformation

hpt NA Walters et al. (1992)

30 Anther culture derived
double haploid plants
XH99 and FR16

Type I callus N6 and Duncan’s
medium

Biolistic
transformation

bar; uid NA Wan et al. (1995)

31 Inbred lines X333,
X301, X90 and Hybrid
lines A1:Q31xZ3,
B1:Q31XZ31, 6X41;
616X680

Immature embryo N6 Biolistic
transformation

sb401; hpt 0–7.3% Wang et al. (2006)

32 CG00526 Type I calli derived
from immature
embryo medium

D callus induction Biolistic
transformation

pmi 45% Wright et al. (2001)

33 Shen 137 NA NA Pollen-tube
pathway in planta
transformation

gfp 4.96% Yang et al. (2009)

34 Hi-II Embryogenic calli NA Biolistic
transformation

uidA; bar NA Zhang et al. (1996)

35 Hi-II Immature embryo NA Agrobacterium-
mediated

gus 32.8–50.5% Zhao et al. (1998)

36 Sweet corn genotypes
HNP, IGES

Shoot tips CSPD Biolistic
transformation

bar; potato
proteinase
inhibitor II

NA Zhong et al. (1996)

NA, not available.

plants from embryo scutellar tissues which were initiated
and maintained on Murashige Skoog (MS) media inorganic
components, Straus media vitamins and amino acids, 20 g
sucrose and 8 g agar per liter, and 2 mg l−1 2,4-D. Establishment
of robust in vitro regeneration system is a pre-requisite for
venturing into maize transformation. Mostly, MS, N6 (Chu)
or Linsmaier and Skoog (LS)-based culture media have been
used for maize transformation at various stages of tissue culture.
Optimization of different components, such as carbon source,
amino acids, vitamins, and concentration of plant growth

regulators in culture medium is often required while using
these media. Different carbon sources (both reducing and non-
reducing) have been used in the culture media depending upon
genotypes and specific stages of growth. However, sucrose is
most widely used carbon source. Even though cultured plant cells
can synthesize amino acids themselves, a variety of amino acids,
viz. L-glutamine, L-proline, L-asparagine, L-arginine, L-cysteine
have been tested. The effects of various vitamins, viz. thiamine,
riboflavin, niacin, pyridoxine, folic acid, pantothenic acid, biotin,
ascorbic acid, myoinositol, etc., have also been tested. When using
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MS and N6 salts, lower nitrate and high NH4
+ levels induce

compact Type I callus, whereas, high nitrate level and low NH4
+

level induce friable Type II callus (Elkonin and Pakhomova,
2000). The transformation efficiency in maize inbred lines can
also be improved by optimizing MS and N6 salts (Frame et al.,
2006). In culture medium, plant growth regulators play a critical
role. Addition of AgNO3 to co-cultivation and callus induction
media having 2,4-D, proline and casamino acids have shown
induction of type II callus from immature embryos (Armstrong
et al., 1991; Songstad et al., 1991; and El-itriby et al., 2003)
(Table 1). In tropical maize genotypes, media, source of auxin,
and their concentrations significantly influenced induction of
callus (Rakshit et al., 2010).

TRANSFORMATION TECHNIQUES

DNA Transfer to Protoplast by
Electroporation
In this method, DNA of interest is transferred to protoplasts by
applying electric pulse to the mixture of DNA and protoplasts.
The first successful integration of transgene was performed
in maize by transformation of Black Mexican Sweet maize
protoplast by uptake of naked DNA through electrochemical
method (Fromm et al., 1986). At that time, effective regeneration
techniques in maize were not available, therefore full grown
transformed plants could not be produced. The first full grown
transgenic maize plants were developed in 1988 (Rhodes et al.,
1988b). In 1980s, researchers tested different plant materials
as explants for development of transgenic maize but only
few instances became successful in regenerating whole plants
from protoplasts (Rhodes et al., 1988a; Shillito et al., 1989).
In order to obtain protoplasts for transformation by direct
gene delivery, immature embryos became an excellent choice of
explants (Rhodes et al., 1988a). In 1988, Rhodes et al. isolated
protoplasts from embryogenic cell suspension culture of inbred
line A188 and then transformed the protoplasts successfully by
electroporation. The DNA of interest can also be transferred
to the protoplasts by the addition of polyethylene glycol (PEG)
to the mixture of protoplast and DNA instead of using electric
pulse. Fertile transgenic maize plants of He/89 germplasm were
obtained by using this method (Golovkin et al., 1993).

Particle Bombardment
In this technique, target DNA is transferred through cell
wall penetration by tungsten or gold particles coated with
plasmid DNA. Highly accelerated coated particles are used
to target into the desired tissue in maize which can be cell
suspension culture, Type II callus, Type I callus, organogenic
callus from seedlings, immature embryos or shoot meristem
cultures. Among the monocotyledonous grains, maize has been
one of the leading targets for genetic engineering through
particle bombardment technique. In comparison to protoplast
transformation, particle bombardment method generated more
fertile transgenic events from embryogenic callus. Immature
embryos were used as target tissue for particle bombardment
mediated transformation of cry1Ab gene (Koziel et al., 1993). Ever

since the initial development of biolistic transformation method,
several improvements have been made. Songstad et al. (1996)
developed a robust biolistic transformation protocol using Hi-II
genotype. It was also observed that survival and transformation
efficiency can be increased further, if immature embryos were
pre-cultured prior to particle bombardment (Vain et al., 1993).
Transformation frequency was found to be highly increased
when immature embryos were cultured on high osmotic medium
after particle bombardment (Brettschneider et al., 1997; El-
itriby et al., 2003). A number of other studies have reported
successful use of microprojectile bombardment technique for
maize transformation (Klein et al., 1989; Fromm et al., 1990;
Gordon-Kamm et al., 1990; Genovesi et al., 1992; Walters et al.,
1992; Frame et al., 1994; Register et al., 1994; Wan et al., 1995;
Brettschneider et al., 1997; Pareddy et al., 1997). An efficient
biolistic transformation protocol for organogenic calli was also
developed (O’Connor-Sánchez et al., 2002). Zhang et al. (2002)
performed transformation of recalcitrant inbred lines B73 and
PHTE4 by particle bombardment of shoot meristem culture.
In maize, maximum number of commercial events deregulated,
were produced using particle bombardment (Table 2).

Usually, the vectors used for transformation consist of a
plant expression cassette along with other genetic elements in
a bacterial plasmid. However, only the expression cassette is
required for transgene expression and not the entire plasmid.
In particle bombardment, T-DNA processing and integration
steps are not involved. Therefore, the vector backbone is
redundant and unnecessary. The so called vectors or plant
transformation constructs are used in particle bombardment
at best for operational handiness rather than experimental
requirement. Fu et al. (2000) designed a strategy of particle
bombardment using expression cassette only. In this strategy, all

TABLE 2 | Methods of transformation employed in development of
commercialized events of transgenic maize.

S. No. Methods of transformation Name of deregulated
commercial event

1. Chemically mediated introduction
into protoplasts and regeneration

T14, T25

2. Electroporation MS3, MS6

3. Microparticle bombardment of plant
cells or tissue

676, 678, 680, Bt11
(X4334CBR, X4734CBR),
Bt176 (176), CBH-351,
DBT418, DLL25 (B16), GA21,
LY038, MON801 (MON80100),
MON802, MON809, MON810,
MON832, MON863, NK603,
TC1507

4. Whiskers-mediated plant
transformation

DAS40278

5. Agrobacterium
tumefaciens-mediated plant
transformation

32138, 3272, 33121, 4114,
5307, 59122, 98140, Bt10,
MIR162, MIR604, MON87411,
MON87427, MON87460,
MON88017, MON89034,
TC6275, VCO-Ø1981-5

6. Aerosol Beam Injection HCEM485

Source: ISAAA GM Crops Approval Database.
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the vector sequences were removed prior to particle loading and
the minimal cassette with gene of interest was removed from
the plasmid. This linear cassette containing only transcription
unit for gene of interest was used for transformation. The
results demonstrated that transgene integration and expression
were possible using just minimal cassettes also. As an added
advantage, the resulting transgenic plants exhibited much simpler
transgene integration patterns and lower copy numbers than
the plants transformed with equivalent whole constructs. This
approach was used for multiple gene transfer in plants by Agrawal
et al. (2005), who performed particle bombardment with five
separate marker gene cassettes. The majority of the transformed
plants showed simple integration patterns with a high proportion
of single-copy events, high transgene expression, and inter-
generational transgene stability. Thus, the earlier belief that
particle bombardment generates large, multi-copy events, prone
to instability and silencing may not be true and the refinements
in the particle bombardment technology, especially ‘clean DNA
transformation’ (Agrawal et al., 2000, 2005) demonstrate the
versatility and precision of this method (Altpeter et al., 2005).
This development also opened possibility of development of
marker free transgenic plants with multiple genes. Generation of
high quality transgenic events, in terms of clean site of integration
without disrupting any endogenous gene, getting single-copy
insertions, and ensuring absence of any vector backbone, etc.,
is also important from regulation perspective. Refinements in
transformation technologies that aid recovery of quality events
are very much desirable.

Silicon Carbide Whiskers
Silicon carbide whiskers are needle like structure having size of
20 µm in length. They penetrate cell wall and plasma membrane
of target cell to transfer desired DNA and thus, the transformants
are obtained (Southgate et al., 1998). In maize, non-regenerable
variety Black Mexican Sweet was transformed by silicon carbide
whiskers (Kaeppler et al., 1992). Fertile transgenic maize plants
have been developed successfully from Type II callus and cell
suspension culture using this method (Frame et al., 1994; Petolino
et al., 2000). But this method has certain limitations, such as
low transformation frequency and delivery of DNA only to fine
cell aggregates. Like silicon carbide whisker, another physical
method of gene delivery using an airgun apparatus has also
been used for transient gene expression studies in maize. This
apparatus utilizes compressed air from a commercial airgun to
force macroprojectiles and DNA-coated tungsten particles.

Agrobacterium-Mediated Transformation
Agrobacterium tumefaciens soil pathogen is a natural genetic
engineer which has ability to transform plants. From last
two decades, A. tumefaciens has been frequently used for
transformation of dicot plants. In comparison to direct DNA
transfer methods, Agrobacterium-mediated method has a major
advantage that in this method low copy of relatively large
DNA fragments can be integrated into host plant genome
with minimum rearrangement. This results in high quality
transgenic plants. Initially, it was supposed that this technique
cannot be used for monocot plants. In mid 1980s, it was

demonstrated that Agrobacterium mediated plant transformation
can be employed for maize (Graves and Goldman, 1986;
Grimsley et al., 1987). Gould et al. (1991) used shoots as
target tissue for transformation. The major breakthrough came
from Agrobacterium-mediated transformation of maize by Ishida
et al. (1996), followed by transformation in other cereals with
similar protocols. Ishida et al. (1996) used Agrobacterium strain
having super-binary vector pTiBo542 containing vir genes to
transform immature embryos. Since Ishida et al. (1996) gave
basic Agrobacterium-mediated transformation protocol, it has
been greatly improved. The improvements include heat pre-
treatment, addition of copper and silver ions to co-cultivation
medium and increase in co-cultivation period from 3 to
7 days. Effects of these changes were quite evident. Traditional
Agrobacterium-mediated transformation can be limited by
host specificity and inability of Agrobacterium to reach cells
in target tissues. A new improved Agrobacterium-mediated
transformation method has been developed that overcomes
above mentioned barriers. It increases transfer of DNA in
different plants. This technique is known as Sonication-Assisted
Agrobacterium-mediated transformation (SAAT) which involves
periodic exposure of target plant tissue to sonication waves in the
presence of Agrobacterium (Trick and Finer, 1997).

In planta Transformation
In planta transformation of Arabidopsis by vacuum infiltration of
whole plants (Bechtold et al., 1993) and the floral dip (Clough
and Bent, 1998) are now routinely used. However, similar
protocols for maize are not feasible. In maize, Otha (1986) and
Yang et al. (2009) have depicted the possibility of pollen-tube
pathway mediated transformation. However, the transformation
frequency was reported to be quite low and the screening of the
transformants by PCR analysis was time-consuming. Abhishek
et al. (2014b) developed a tissue culture independent protocol
for in planta transformation in tropical maize by using plumular
meristems of germinating seeds as explants and transforming
them using Agrobacterium approach.

Most of the methods described above have been used for
developing commercial transgenic events in maize. However,
the maximum numbers of commercial transgenic events have
been developed using particle bombardment, followed by
Agrobacterium-mediated transformation (Table 2).

SELECTION SYSTEMS

Selection system is very important for identification of transgenic
events. It imparts a selective pressure which allows transformed
cells to proliferate, while suppressing the growth or killing of
the non-transformants. An effective selection system should have
no negative impact on plant regeneration. Widely used selection
systems in maize transformation are listed in Table 3.

Antibiotic Resistance
Neomycin phosphotransferase II gene (nptII) obtained from
Escherichia coli Tn5 transposon and kanamycin were used in
early maize transformation experiments. So far, 16 events of
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TABLE 3 | Different selection systems for generating maize transformants.

Category Selectable marker gene Selection agent(s)

Antibiotic resistance Hygromycin
phosphotransferase (hpt)

Hygromycin B

Neomycin
phosphotransferase (npt II)

Kanamycin,
paromomycin, G418

Herbicide resistance Aryloxyalkanoate
dioxygenase (aad-1) from
Sphingobium
herbicidivorans

R-haloxyfop

Maize acetolactate
synthase/acetohydroxy acid
synthase (ALS/AHAS)

Chlorsulfuron,
imazethapyr

Bialaphos resistance (bar),
phosphinothricin
acetyltransferase (pat) from
Streptomyces
hygroscopicus and
Streptomyces
viridochromogenes

Phosphinothricin,
glufosinate, bialaphos

5-enolpyruvoylshikimate-3-
phosphate synthase from
Agrobacterium spp. CP4
(epsps)

Glyphosate

5-enolpyruvoylshikimate-3-
phosphate synthase from
maize (EPSPS)

Glyphosate

Protoporphyrinogen oxidase
(PPO) from Arabidopsis

Butafenacil

Sugar metabolism phosphomannose-isomerise
(pmi); manA gene from
E. Coli

Mannose

transgenic maize containing nptII have been commercialized.
Another antibiotic selection system is based on hygromycin
phosphotransferase (hpt) with hygromycin B as selection agent.
Hygromycin inhibits single cell or small clusters of cells and their
growth but large clumps of cells are less susceptible to antibiotic
selection at later stages of transformation, which require high
concentration of antibiotic that may have damaging effect to
selected cells or plants. For this reason, hpt and hygromycin are
now generally not used widely as selection system in maize and
no hpt containing maize transgenic has been released ever.

Herbicide Resistance
The use of herbicide resistance offers dual advantage of being
a potent selectable marker as well as an important agronomic
trait. The widely used selectable markers- bar and pat genes,
isolated from Streptomyces hygroscopicus and Streptomyces
viridochromogenes, respectively, both encode phosphinothricin
acetyltransferase (PAT). PAT eliminates herbicidal activity of
glufosinate (phosphinothricin) herbicides by acetylation. The
bar gene was the first herbicide selectable marker gene which
was used in selection of transformed maize cells. In maize,
selections of callus using bar and pat selectable marker have
been found to be more efficient than kanamycin. So far, in
maize, 83 events have been commercialized with pat gene, five
events with a synthetic (syn) version of pat gene and seven
events with bar gene. Glyphosate resistance is an important

trait for the control of broad spectrum weeds. The different
forms of 5-enolpyruvoylshikimate-3-phosphate synthase (epsps)
genes have been commonly used for glyphosate resistance.
The epsps gene from three sources have been used in maize
genetic engineering- the most widely used CP4epsps (aroA:CP4)
gene obtained from Agrobacterium tumefaciens strain CP4; the
mutated mepsps and the double mutant 2mepsps gene obtained
from maize itself and the epsps grg23ace5 gene which was
chemically synthesized based on the sequence of epsps grg23
gene from soil bacterium Arthrobacter globiformis. Apart from
epsps, glyphosate oxidoreductase (gox) gene- goxv247 obtained
from Ochrobactrum anthropi strain LBAA and glyphosate
N-acetyltransferase (gat) gene- gat4621 obtained from Bacillus
licheniformis can be used to detoxify glyphosate. More than 90
events of transgenic maize containing glyphosate resistance have
been released. Improved gat marker gave the transformation
frequency of 64% (McCutchen et al., 2007). Mutants of
acetolactate synthase (als), also known as acetohydroxy acid
synthase (ahas), confer resistance in transformants against
ALS inhibitor family of herbicides such as sulfonylurea and
imidazolinone (Le et al., 2010). In maize, mutants of als/ahas
have been successfully used as selectable markers (Bernasconi
et al., 1995). Protoporphyrinogen (ppo) gene is another robust
selectable marker, coding for a double mutant which are resistant
to butafenacil, which inhibits the activity of PPO enzyme which
in turn results in protoporphyrin IX mediated light-dependent
membrane damage (Li et al., 2003). Another gene, aad-1 (also
known as Rdp A gene) isolated from Sphingobium herbicidivorans
encodes aryloxyalkonate dioxygenase which cleaves aryloxy
phenoxypropionate (AOPP) herbicides specifically inhibiting the
monomeric acetyl-CoA carboxylases from monocots. The aad-
1 gene has been efficiently used as selectable marker for maize
transformants (Wright et al., 2010).

Sugar Metabolism
Mannose-6-phosphate isomerase (PMI) encoding gene, manA
allowed selection of maize transformants on mannose containing
media (Negrotto et al., 2000; Wang et al., 2000). PMI have higher
transformation frequency and powerful selection. Another sugar
metabolism based positive selection system based on xyl A gene,
similar to PMI, encoding xylose isomerase have been tested in
maize and in this system, xylose is used as selection agent (Guo
et al., 2007).

Marker Free Transgenics
Huang et al. (2004) emphasized many variations in the approach
for generating marker free transgenics. A strategy referred to as
2T-DNA transformation involves placing the selection marker
and the gene(s) of interest on two separate T-DNAs. As the genes
of interest and the selection markers are physically separate, their
transfer and integration to the plant chromosome are mutually
independent. In the cells that have received both the genes, the
marker gene can be expected to integrate at an independent site
from that of the gene of interest. The plants produced from such
cells would produce segregant progenies in the next generation
that may be free from the selectable marker but contain the gene
of interest.
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COMMERCIAL SUCCESS OF MAIZE
TRANSGENICS

So far, 143 different events of transgenic maize have been
approved for commercial cultivation or food/feed use across
30 countries (with European Union counted as one country).
The released events belong to six major trait groups- herbicide
tolerance (121 events), insect resistance (115 events), modified
product quality (12 events), pollination control system (6 events),
and abiotic stress tolerance (4 events), with stacking of events
being a common phenomenon. In 2015, out of 185 million ha
of global maize area, 29%, i.e., 53.6 million ha was planted with
maize cultivars with transgenic traits (James, 2015).

TRANSFORMATION FOR “NEW
BREEDING TECHNIQUES”

While the first transgenics in maize were commercialized about
20 years ago, there has been evolution of transgenic landscape in
terms of techniques, regulation, and public perception. A set of
new techniques, popularly termed “New Breeding Techniques”
are rapidly evolving. Some of these, like, gene editing, cisgenesis,
intragenesis, RNA-dependent DNA methylation, etc., would
necessitate further fine tuning of the maize transformation work-
flows.

Cisgenics and Intragenics
In cisgenesis, the complete coding sequence (CDS) including
introns of a gene originating from the sexually compatible gene
pool of the recipient plant along with gene’s own promoter
and terminator are used for transformation (Schouten et al.,
2006). In this case, the cisgene should be used in its normal
sense orientation only. In intragenesis, the full or partial CDS
of genes originating from the sexually compatible gene pool
of the recipient plant can be used in sense or antisense
orientation. In this case, the promoter and terminator could
originate from sexually compatible gene pool of the recipient
plant and not necessarily from the ‘cisgene’ itself (Rommens
et al., 2004). Since, both cisgenics and intragenics would be
essentially “marker free,” transformation strategies directed at
recovering marker-free plants, had to be essentially employed.
In both these cases, particle bombardment using ‘clean DNA
transformation’ may be employed. So far, there are no reports
of cisgenic or intragenic maize under commercialization or
advanced development.

Gene Editing
Targeted genome modifications or gene editing with the
help of site-specific nucleases (SSNs) have the potential to
avoid many regulatory issues regarding transgenics. Site-
specific nucleases include Zinc-finger nucleases (ZFNs),
Transcription activator-like effector nucleases (TALENs), and
Clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated (Cas). ZFNs and TALENs are
artificial proteins composed of a specific DNA-binding domain
and DNA cleavage domain. In these approaches, double strand

breaks (DSBs) are introduced at targeted sites in the DNA.
The DSBs are immediately repaired by two mechanisms, viz.
non-homologous end joining (NHEJ), which is a type of error
prone repair and by Homology direct repair (HDR). With the
help of these molecular repair processes, researchers have been
able to disrupt specific genes either by inserting exogenous
DNA elements into desired genomic sites or by introducing
single-nucleotide substitutions. CRISPR together with Cas
proteins form CRISPR-Cas system, is the newest genome
modification technique. ZFN method has been used to modify
endogenous loci in crop plants, like maize. The CRISPR/Cas9
system has been used for gene editing in crop plants like, rice,
wheat, sorghum, tomato, tobacco, etc.; with few examples
in case of maize as well (Feng et al., 2016). Transformation
for gene editing may require co-bombardment of separate
DNA vectors containing Cas9 and gRNA. However, stable
integration and constitutive expression of gRNAs and Cas9
might lead to somatic mutations and generation of chimeric
plants. In this scenario, gRNA may be delivered in form of
in vitro synthesized RNA molecule, together with Cas9 as
DNA construct. Bombardment of RNA molecules posses
further challenges of optimization of particle preparation
and gene gun operation protocols. Genetic transformation
usually involves transgene integration into the host genome.
However, introduction of genes without genomic integration
is more desirable for HDR, and other transient expression
requiring genome editing tools. Bombardment of single-
stranded DNA has been used as one of the approach to evade
template integration during HDR-mediated genome editing in
maize (Svitashev et al., 2015). Refinements in Agrobacterium-
mediated transformation and further development of RNA
viruses and geminiviruses based transformation techniques
may result in gene transfer protocols with superior genome
editing properties (Altpeter et al., 2016). In targeted genome
modification by SSNs, modifications performed in organisms’
endogenous gene to develop desired traits do not employ
transgene of other species or organism. Targeted genome
modified products are essentially mutation based products.
Therefore, plants developed using these technologies may be
treated at par with mutation breeding products and could be
regulated as such. This would ensure faster commercialization
and easier availability of this technology for the welfare of the
farmers.

FUTURE PERSPECTIVES

This review attempted to provide a summary of the
advances in maize transformation involving all available
transformation methods. Despite significant progress made,
the success rate of genetic transformation of maize is still
insufficient. This is because of various limitations with the
presently available maize tissue culture and transformation
protocols. There is a need for further efforts to develop
genotype-independent versatile maize transformation
workflows that can be adapted in any laboratory. While
there has been tremendous progress in fundamental
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research aimed at unraveling biological processes and pinning
underlying genetic regulation in plants, the techniques of
transformation have largely remained archaic. Improvement
of transformation workflows that can lead to automation and
increased throughput, represent biological as well engineering
challenges. The particle bombardment technique could be
further improved. The basic design and operation of the
gene gun has remained almost same for the last 20 years.
Advances in nanotechnology can be harnessed to develop
new nano-based micro-projectiles which may cause minimal
damage to target tissue and facilitate delivery in precise
and clean manner. Greater focus is also required to study
transformation responses of a wide range of tissues and
genotypes. A plethora of genetic and epigenetic mechanisms
have been found to modulate callus induction, differentiation,
embryogenesis, and other developmental pathways, that are
so crucial in a tissue culture cycle. However, little efforts
have gone into employing endogenous predispositions in
developmental biology through genetic manipulation or
identification of natural or mutant genotypes with these
predispositions for advancing tissue culture. Similarly,
manipulation of infection-responsive host genes may lead to
better maize transformation efficiency through Agrobacterium.
Use of geminiviruses in maize transformation should also be
explored as novel viral delivery systems. Maize transformation
techniques have evolved from single cell approaches, like
protoplast transformation and presently overwhelmingly
rely on immature embryo tissues as explants. There might

be a need to revisit protoplast transformation in light of
greater automation potential that it can offer. The use
of a plant transformation and genome editing robot was
recently demonstrated in Bright Yellow 2 (BY-2) tobacco
suspension cultures (Dlugosz et al., 2016). Similar approaches
for maize transformation may be attempted. Only when maize
transformation techniques become simpler, cheaper, and robust,
the genetic modification technology would be used for greater
public good in public institutions, especially in the developing
world.
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