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The role of seabirds as sea-land biovectors of nutrients is well documented. However,
no studies have examined whether and how colonial seabirds that differ in diet may
influence terrestrial vegetation. Therefore, the purpose of the study was to describe
and compare plant communities located in the vicinity of the two most common
types of seabird colonies in Arctic, occupied by piscivorous or planktivorous species.
Within 46 plots arranged in four transects in the vicinity of planktivorous (little auk, Alle
alle) and piscivorous colonies (mixed colony of Brunnich’s guillemot, Uria lomvia, and
black-legged kittiwake, Rissa tridactyla) we measured the following: guano deposition,
physical and chemical characteristics of soil, total nitrogen and its stable isotope
signatures in soil and plants, ground vegetation cover of vascular plants and mosses,
and the occurrence of lichens, algae and cyanobacteria. Using LINKTREE analysis, we
distinguished five plant communities, which reflected declining influence along a birds
fertilization gradient measured as guano deposition. SIMPROOF test revealed that these
communities differed significantly in species composition, with the differences related
to total soil nitrogen content and 15δ N, distinctive levels of phosphates, potassium
and nitrates, and physical soil properties, i.e., pH, conductivity and moisture. The
communities were also clearly distinguished by distance from the bird colony. The
two colony types promoted development of specific plant communities: the immediate
vicinity of the planktivorous colony characterized by a Deschampsia alpina–Cerastium
arcticum community while under the piscivorous colony a Cochlearia groenlandica–
Poa alpina community was present. Despite the similar size of the colonies and
similar magnitude of guano input, differences between ornithogenic communities were
connected mostly to phosphate content in the soil. Our results show that the guano
input from seabirds which have different diets can affect High Arctic vegetation in specific
and more complex ways than previously realized.

Keywords: guano deposition, bird cliff vegetation, plant communities, soil chemistry, little auk, kittiwake,
guillemot
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INTRODUCTION

The chronic lack of nutrients and harsh climatic conditions of
the polar regions result in terrestrial ecosystems generally having
a simplified structure, with low primary production, and low
species diversity (Odum, 1993). In this environment, seabirds
acting as bio-vectors play a central role in tundra vegetation
development (e.g., Wojciechowska et al., 2015; Zwolicki et al.,
2016). They are intimately connected to the marine environment
where they feed, while on land they form colonies in the breeding
season as well as molt. Seabirds are among the most numerous
birds in the world (del Hoyo et al., 1996). In the polar regions,
they dominate the avifauna both in terms of the number of
species and abundance. In the Arctic, the largest colonies are
formed by a few common seabird species from the auk (Alcidae)
and gull (Laridae) families, with the most numerous being the
little auk, Alle alle. Its population is estimated at ca. 35 million
pairs, making it the most abundant bird species from either
polar region (Wojczulanis-Jakubas et al., 2011). Slightly less
numerous are guillemots (Brünnich’s guillemot, Uria lomvia, and
common guillemot, U. aalge) and the black-legged kittiwake,
Rissa tridactyla, which often nests together with them, whose
population numbers are estimated at 30, 14, and 18 million
individuals, respectively (del Hoyo et al., 1996).

During the roughly 3 months of the polar breeding period
seabirds deposit substantial amounts of marine derived organic
matter on land (Bokhorst et al., 2007; Zwolicki et al., 2013,
2016). This consists primarily of excrement (guano) produced
by chicks and adults, but also feathers, food remains, eggs and
dead birds, all contributing to the nutrients available locally
in the soil (Polis et al., 1997; Smith and Froneman, 2008).
For instance, during one breeding season in Hornsund (south-
west Spitsbergen), little auks provide ca. 60 t dry mass of
feces km−2 within the breeding colony, and ∼25 t km−2

area around the colony (Stempniewicz, 1990). Such enormous
amounts of fertilization, constituting locally the major source
of nutrients for terrestrial ecosystems, have large impacts on
arctic plant communities (Erskine et al., 1998; Ellis, 2005; Ellis
et al., 2011; Zwolicki et al., 2015, 2016). Seabird nesting sites and
their vicinities are characterized by much higher concentrations
of ammonium, nitrate, phosphate, and many other salts as
compared to areas beyond the influence of the birds (Anderson
and Polis, 1999; García et al., 2002; Zwolicki et al., 2013, 2015).
Local soil fertilization causes a significant increase in plant
biomass and changes in life history strategy (Anderson and
Polis, 1999; Vidal et al., 2003; Ellis et al., 2006; Zmudczyńska-
Skarbek et al., 2013; Wojciechowska et al., 2015). The enhanced
primary production in the vicinity of seabird colonies generates
further changes in local trophic networks through encouraging
greater use of ornithogenic tundra by herbivores (Jakubas et al.,
2008). Accumulating organic matter consequently increases food
resources for saprophytes, such as springtails and mites, which
causes changes in community composition in these areas (Byzova
et al., 1995; Zmudczyńska et al., 2012; Zawierucha et al., 2015;
Zmudczyńska-Skarbek et al., 2015).

Hutchinson (1950) reported that the strong seabird influence
on the habitat around their nesting sites resulted from several

factors, including the high density of nests, feces usage as a
nest-building material, and the deposition of a large amount
of guano in the nest and around it. More recent studies have
suggested that the response of the tundra ecosystem to marine-
origin nutrient supplies may also be influenced by the birds’
diet (Stempniewicz et al., 2007; Mulder et al., 2011; Zwolicki
et al., 2013). Such differential responses may be driven by
differences in the chemical composition of the feces of birds
that feed on plankton, fish or molluscs (Bédard et al., 1980).
Furthermore, the microbial communities developing on guano
produced by seabirds with different diets, and the amount and
composition of products of their biochemical activities, may also
vary (Stempniewicz et al., 2007).

Various phytosociological studies have been conducted
in Arctic tundra, including the Svalbard archipelago, but
none have yet attempted to distinguish differences in plant
communities associated with colonies of different bird species
(e.g., Vanderpuye et al., 2002; Hodkinson et al., 2003; Węgrzyn
and Wietrzyk, 2015). Indeed, some studies have concluded that
the observed large variation of plant communities near intense
sources of ornithogenic nutrients such as bird cliffs remains
uninvestigated (Eurola and Hakala, 1977; Elvebakk, 1994).

We have previously addressed the soil chemistry in the
vicinity of the two major types of Arctic seabird colonies, i.e., of
planktivorous little auks and piscivorous Brunnich’s guillemots
and black-legged kittiwakes, based on the same study areas
and sample plots set as presented in this paper. These studies
demonstrated that the soil phosphate content pH were much
higher near the piscivorous colony (Zwolicki et al., 2013). This
leads to the hypothesis that the colony-specific soil chemistry
could lead to the formation of distinctive plant communities,
known as ‘ornithogenic’ or ‘bird cliff vegetation’ (Eurola and
Hakala, 1977), in terms of their species composition and
functioning.

Therefore the aim of this study was to compare the influence
of planktivorous and piscivorous seabird colonies on arctic plant
communities by testing the following hypotheses:

(1) Plant communities developing in the vicinity of
planktivorous and piscivorous seabird colonies will
differ as a result of physical and chemical differences in soil
properties around these colonies.

(2) The abundance of particular plant species and the
distribution of plant communities will change along the
guano deposition gradient at different rates around the two
colony types.

MATERIALS AND METHODS

Study Area
The research was conducted in the summer months of 2005
and 2006, on the northern coast of Hornsund fjord (south-west
Spitsbergen). Two areas influenced by two large seabird colonies
were investigated (Figure 1):

(1) The vicinity of a planktivorous little auk colony situated
on Ariekammen mountain (77◦00’N 15◦31′E) (Figure 1A).
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FIGURE 1 | Study area and the location of transects: the vicinity of the planktivorous little auk colony (A), and that of the piscivorous mixed Brunnich’s
guillemot and kittiwake colony (B). Map based on Zwolicki et al. (2013).

The area consisted of a gentle talus slope (inclination 35–
45◦), that became near-horizontal tundra approaching the
seashore (a ca. 1000 m transect).

(2) The area stretching between a mixed colony of piscivorous
Brunnich’s guillemots and kittiwakes situated on
Gnålberget cliff (77◦01′N 15◦52′E), and the ca. 500 m
distant seashore (Figure 1B). The inclination of the scree-
covered slope was 40–50◦ directly under the cliff, flattening
to almost horizontal ground at the coast.

Both colonies are long-established and of similar size, each
consisting of ca. 10,000 breeding pairs (Isaksen, 1995). Typical
simple Arctic soils, mostly gleysols and regosols, occur in the
study areas, ranging in depth from 15 to 20 cm (Fischer and Skiba,
1993).

Two colony transects were defined within both study areas,
starting from the zone of the highest colony impact (the center
of the little auk colony and the foot of the guillemot/kittiwake
nesting cliff), running down the slope and ending on the
seashore (Figure 1). Both transects were exposed to the south-
east and covered an altitudinal range from sea level to ca. 200 m
asl. The transects consisted of 10 (piscivorous colony) and 12
(planktivorous colony) sample plots (each 160 cm × 160 cm).
A greater proportion of plots were situated in the vicinity of each
colony, where the greatest variety of vegetation zones was present,
than in the more distant and homogeneous coastal area. The
little auk colony covered a large area of the relatively gentle slope
and had a less clear-cut boundary than was the case for the cliff
colony. Sampling plots were located at increasing distance from
the starting points (plot 1), as follows: plot 2 (6 m), 3 (15 m), 4
(29 m), 5 (49 m), 6 (79 m), 7 (125 m), 8 (193 m), 9 (296 m), 10
(449 m), 11 (680 m), and plot 12 (1026 m) (the latter two plots
only for the little auk colony).

In both study areas, control transects were defined in
topographically similar locations but not under the routine flight

route of the seabirds, hence experiencing negligible ornithogenic
impact (Zwolicki et al., 2013). Eleven (piscivorous colony) and 12
(planktivorous colony) plots were designated along the control
transects following the principle described above. The transects
situated close to the little auk colony were annotated as P
(planktivorous) and Pc (control), while those situated under the
fish-eaters’ colony were annotated as F (piscivorous) and Fc
(control).

Guano Deposition Measurements
Along all four transects guano deposition was assessed using
black plastic sheets (150 cm × 150 cm) placed next to each
sampling plot for 24 h (extended or shortened depending on
weather conditions, in the range of 20–36 h, in a few cases). After
exposure, a digital photograph of each sheet was taken (Canon
PowerShot A95, resolution 5.0 million pixels). Then the sheets
were cleaned and re-exposed for the next 24 h cycle. Depending
on logistics, wind and precipitation conditions the total lengths
of exposition on the four transects were as follows: P = 144 h,
Pc = 144 h, F = 216 h, Fc = 24 h. The guano-covered area
in each photograph was analyzed using SigmaScan Pro 5.0.0
software.

In order to provide an accurate estimate of guano
deposition (dry mass) from the photographs obtained, we
performed an initial calibration. We exposed stiff plastic sheets
(150 cm × 150 cm) covered with a thin plastic film of known
mass. After these sheets were exposed and photographed,
the plastic films were removed, dried and re-weighed to
obtain the dry mass of guano. Regression equations for guano
area to mass relation were calculated for each study area
separately [planktivorous colony, y = 0.003 x, R2

= 0.7,
N = 31; piscivorous colony, y = 0.008 x, R2

= 0.7, N = 10;
where: x – area covered by guano (cm2), and y – guano dry
mass (g)].
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Physical and Chemical Analyses of Soil
Soil samples were collected from three points on the same
diagonal of each sampling plot (one from the center and two
from the corners of the plot) (N = 123). Samples were taken
from the soil surface layer to a depth of 10 cm using a shovel.
Each sample contained about 500 cm3 of soil. Larger stones were
avoided or removed during sampling. Soil samples were prepared
for analysis immediately after collection in the field laboratory.
Each sample was divided into three subsamples of 80 cm3 each,
weighed to the nearest 0.1 g and the following were assessed:

(1) Soil dry mass (%) was measured by oven-drying (60◦C) a
sub-sample until constant mass. The % soil dry mass was
calculated from the difference between the initial and final
masses.

(2) Soil conductivity (µS cm−1) and pH – Soil samples of
80 cm3 were mixed with 160 cm3 of distilled water. The
mixture was shaken for ca. 20 min and then filtered through
a sieve (0.5 mm mesh). The conductivity and pH were
quantified in the filtrate using a pH/conductivity/salinity
meter CPC-401 (Elmetron).

(3) Nitrate (NO3
−), ammonium (NH4

+), potassium (K+)
and phosphate (PO4

3−) content (mg 1000 g−1 soil dry
mass) – Soil samples of 80 cm3 were mixed with 200 cm3

0.03 N acetic acid, and left for ca. 60 min while being
shaken regularly. The solution was then filtered through
a sieve (0.5 mm mesh) and filter paper (MN 640 w,
Macherey–Nagel 8 = 125 mm). The filtrate was analyzed
using a photometer LF205 following standard procedures
(Cygański, 1994).

Stable Isotope Analyses
To assess δ15N signatures and total nitrogen content in soil
we used sub-samples left after drying and mass assessment
(N = 117). They were sieved through a 0.25 mm mesh to remove
stones and larger plant debris, and ground with a vibrating mill
(LMW-S, Testchem) to a grain size of less than 0.03 mm diameter.

In the case of plant tissues, we collected three samples from
the above-ground parts of common vascular plants (such as Poa
alpina, Deschampsia alpina, Cochlearia groenlandica, Cerastium
arcticum, Saxifraga oppositifolia, Salix polaris) (N = 350) and
mosses (N = 91) from each sample plot (not less than 5 mg
dry mass in each sample). After collection they were manually
cleaned of contaminants such as guano, soil particles, etc., dried
at 40–60◦C to a constant mass and ground with a vibrating mill.
The results from different species were averaged per plot for the
vascular plants and mosses.

Prior to the isotopic analyses the soil samples were cleaned of
lipids using 4 ml of cyclohexane per 50 mg of soil. After this a
small amount of each soil and plant sub-sample (1–2 mg, weighed
with a microbalance, precision 0.001 mg) was packed into a tin
capsule. Nitrogen isotope ratios were determined by a continuous
flow mass spectrometer (Thermo Fisher, Delta V Advantage)
coupled to an elemental analyzer (Thermo Fisher, Flash EA 1112)
at the University of La Rochelle (France). Results were expressed
in the conventional δ15N notation, according to the equation: δ

X = (Rsample Rstandard
−1
− 1) 1.000 (h), where Rsample was the

stable isotope ratio 15N/14N in the analyzed sample, and Rstandard
was the stable isotope ratio 15N/14N in the reference material, i.e.,
atmospheric N2 (Kelly, 2000).

Vegetation Abundance and Species
Composition
Within each sampling plot we identified vascular plant and moss
species, and visually estimated the percentage contributions of
the species and the entire groups (vascular plants and mosses)
to total vegetation cover. Samples of algae and lichens were
collected and identified in the laboratory without abundance
measurements.

Nomenclature for vascular plants and moss species follows
Elvebakk and Prestrud (1996). Taxonomy of Chlorophyta
was based on Hoek et al. (1995), that of Cyanobacteria
on Anagnostidis and Komárek (1988) and Komárek and
Anagnostidis (1999) [species names updated after Komárek
(2016)], and that of lichens on Kristinsson et al. (2010).

The identified vegetation groups (see below) were defined as
communities (Putman, 1994), and we used the two dominant
species names to create each community’s name.

Statistical Analysis and Data
Management
To distinguish vegetation groups (communities) and to identify
cutoff values of the related environmental variables a linkage
tree analysis (LINKTREE) with SIMPROOF test was performed
(Clarke et al., 2008). Differences in vegetation and soil physico-
chemical properties between the five LINKTREE groups (G1–
G5) identified were examined with one-way ANOSIM (analysis
of similarities, with the Monte Carlo permutation test). These
analyses were run on log-transformed data [x′ = log (x + 1)]
to reduce the influence of dominant species. Soil variables
were additionally standardized because parameters represented
different units and scales. Similarity percentages analysis
(SIMPER) was used to define the contribution of each taxon to
dissimilarities between the distinguished groups and to described
average percentage cover (AC, %) and average similarity (AS)
within each group. LINKTREE, ANOSIM, and SIMPER were run
in Primer 6.1.5 (Clarke and Gorley, 2006).

To explore theoretical environmental gradients in
the data, and to calculate the variability explained by
specific environmental variables, unconstrained Detrended
Correspondence Analysis (DCA) was used. Canonical
Correspondence Analysis (CCA) was used to examine the
influence of soil parameters and guano deposition on vegetation
variability. The influence of guano deposition on plants was
tested separately for each colony, because our previous study
showed that the same amount of guano from the different bird
species influenced soil chemistry differently (Zwolicki et al.,
2013). To identify which of the factors significantly influenced
the CCA model, a Monte Carlo test (with 499 permutations)
was performed. For multiple comparisons we used Holm’s
correction to control the family-wise type I errors (Holm, 1979).
The efficiency of the environmental variable(s) in explaining the
non-random variability existing in the data (%) was calculated
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TABLE 1 | Characteristics of the five distinguished LINKTREE groups (cf. Figure 2) with average percentage cover (AC, %) and average similarity (AS)
within each group, based on SIMPER analysis.

LINKTREE groups

Group G1 Group G2 Group G3 Group G4 Group G5

Community C. groenlandica–
P. alpina

D. alpina–
C. arcticum

S. uncinata–
S. stramineum

S. uncinata–
S. oppositifolia

S. uncinata–
S. polaris

N plots 7 6 4 7 18

N vascular plants 9 13 9 12 22

N mosses 11 17 18 24 31

N algae 17 18 13 10 30

N lichens 0 3 9 14 40

N total taxa 44 57 53 67 141

Average similarity 38.96 25.45 15.76 22.17 44.76

Taxa AC AS AC AS AC AS AC AS AC AS

Sanionia uncinata 0.01 0 17.83 4.35 37.04 8.9 26.59 11.43 38.6 34.65

Cerastium arcticum 12.14 2.15 24.33 8.57 20.6 3.49 0.91 0.28 0.09 0.03

Cochlearia groenlandica 42.14 28.62 1.03 0.49 0.6 0.08 0.06 0.07 0.03 0.01

Saxifraga oppositifolia 0 0 0 0 4.8 0 21.43 7.05 7.76 5.15

Deschampsia alpina 0 0 33.33 7.68 0 0 0.19 0.07 0.07 0.01

Poa alpina 16.01 6.55 6.72 1.82 6.4 0.85 0 0 0 0

Salix polaris 0 0 7.5 0.36 4 0 0 0 10.25 4.11

Straminergon stramineum 0 0 0 0 20.8 1.28 0 0 0.4 0

Taxa listed (eight most abundant species) according to the average total coverage. In each group, AC and AS values of two dominant species are marked with boxes.
Complete data on all 75 taxa are presented in Supplementary Table S1).

FIGURE 2 | Diagram of linkage tree analysis (LINKTREE) showing distinct clustering of plots based on vegetation composition constrained by
inequalities on environmental variables. For each split ANOSIM R-value was calculated with significance levels ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. All
distinguished groups were confirmed by SIMPPOF test, p < 0.001. For detailed description of groups see Table 1; Supplementary Table S1.

by dividing the percentage variability explained by a given
environmental factor by that explained by the first four axes of
DCA (ter Braak and Smilauer, 2012). All ordination techniques
used log-transformation [x′ = log (x + 1)] in order to normalize
the data.

To explore individual responses of selected plant species to
guano deposition level we employed General Linear Models
(GLM) with Akaike Information Criterion (AIC) to find the best
fit of the model. DCA, CCA, and GLMs were run in Canoco 5 (ter
Braak and Smilauer, 2012).
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We compared the identified vegetation groups with each other
using parametric ANOVA with Welch’s correction (because of
unequal variances between groups) and post hoc Tukey’s test,
using the STATISTICA 9.0 package (StatSoft Inc, 2010).

RESULTS

Vegetation Communities
Within all four transects 75 taxa of plants were determined,
including 27 vascular plants and 48 mosses (Table 1;
Supplementary Table S1). Four successive two-way divisions
split all 45 sample plots to the final five groups each significantly
differing composition (LINKTREE and SIMPROF test, p < 0.05;
Figure 2; Tables 1 and 2; Supplementary Figure S1). The primary
significant division (A) with the highest absolute difference
(B% = 91) distinguished a group of samples containing the first
seven plots below the piscivorous colony (group G1; Figure 2).
This division was linked to a high concentration of phosphates
(>395 mg 1000 g−1 soil dry mass). The next division (B,
B% = 65) was connected to the concentration of nitrates and
separated the G2 and G3 groups (NO3

− > 19.7 mg 1000 g−1),
containing plots from the planktivorous colony transect and
one plot (8) from the piscivorous colony, from groups G4
and G5 (NO3

− < 17.8 mg 1000 g−1) (Figure 2; Table 2). The
latter two groups included plots from the control transects and
the most distant plots from both colony transects. The last
two divisions (C, B% = 39, and D, B% = 60) were based on
conductivity levels and separated groups G2 (>68.3 µS cm−1)
from G3 (<60.2 µS cm−1), and G4 (>86.1 µS cm−1) from G5
(<83.8 µS cm−1) (Figure 2).

Differences between communities were observed in the mean
cover of vascular plants and mosses, and also in the mean number
of algae and lichen species (ANOVA Welch test; p < 0.01,
post hoc, p < 0.01, Figure 3). The highest vascular plant cover
and the lowest moss cover were found in G1 and G2, while

TABLE 2 | Arrangement of sample plots and LINKTREE group (cf. Figure 2;
Table 1) membership within four studied transects.

Sample
plot
No.

Transects

Distance [m] F Fc P Pc

1 0.0 G5

G5

2 6.0 G4
3 15.0

G5

G2
4 28.5 G1
5 48.8

6 79.1

G47 124.7

8 193.0 G2 G3
9 295.5

G4 G5
10 449.3

11 680.0 (((( G4
G5

12 1026.0 (((( ((((

P, planktivorous colony; Pc, planktivorous colony control; F, piscivorous colony; Fc,
piscivorous colony control.

the opposite was found in G3, G4, and G5. The largest mean
number of algae species was found in G1 and G2, and the
lowest in G4. No lichens occurred in G1, and the number
of lichen species increased with subsequent groups, reaching
the highest value in G5 (Table 1; Supplementary Table S2).
The lowest numbers of species of vascular plants, mosses, and
lichens were observed in G1 (N = 44 in total), and the highest
(also the number of algae) in G5 (N = 141). G5 was the
most homogeneous with the highest average internal similarity
(AS = 44.8), while the lowest similarity (15.8) was found in G3
(Table 1).

Associated with the piscivorous colony, the G1 community
(Cochlearia groenlandica–Poa alpina) had the highest average
cover and similarity of C. groenlandica (AC = 42.1%, and
AS = 28.6) and P. alpina (16.0% and 6.5, respectively), and
relatively high abundance of Saxifraga caespitosa and C. arcticum
(Table 1). These vascular plant species were accompanied by
the green alga Prasiola crispa and the cyanobacteria Phormidium
autumnale, Borodinellopsis texensis. Haematococcus pluvialis,
Excentrosphaera viridis, Ulothrix variabilis, and Woronichinia
compacta (Supplementary Table S3).

The G2 and G3 groups associated primarily with the
planktivorous colony were characterized by relatively high cover
of C. arcticum (24.3 and 20.6%, respectively) (Table 1). The
G2 community (Deschampsia alpina–Cerastium arcticum) was
dominated by D. alpina (AC = 33.3), and Saxifraga hyperborea
was relatively abundant there (4.8). Only in this assembly
was Philonotis tomentella recorded. In terms of algae, G2

FIGURE 3 | Mean percentage cover of vascular plants and mosses
(cumulated to 100%) (A), and mean number of species of vascular plants,
mosses, lichens and algae (B) found in the five LINKTREE groups.
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was distinguished by the presence of Chlamydomonas nivalis,
Chroococcus turgidus, Leptolyngbya cf. foveolarum, the genus
Trochiscia, and P. autumnale (Supplementary Table S3). Amongst
the lichens two Physcia species and Xanthoria candelaria were
found exclusively in this group (Supplementary Table S2). G3,
G4, and G5 included communities dominated by bryophytes,
especially S. uncinata (AC = 37.0, 26.6, and 37.6, respectively,
Table 1).

The Sanionia uncinata–Straminergon stramineum community
(G3) was distinctive due to the high cover of both dominant
species (AC = 37.04 and 20.8, respectively), and relatively high
cover of Plagiomnium ellipticum (AC= 4.0). Characteristic algae
species recorded in this community, besides those identified in
G1 and G2, were Oscillatoria tenuis, Phormidium favosum and
Scotiellopsis terrestris (Supplementary Table S3). Most of the
lichen species belonged to the genus Cladonia (Supplementary
Table S2).

The G4 community (Sanionia uncinata–Saxifraga
oppositifolia) was characterized by the highest abundance
amongst the groups of S. oppositifolia, as well as the presence of
Ceratodon purpureus. The G5 group (Sanionia uncinata–Salix
polaris) was distinctive due to the highest abundance of S. polaris
in comparison with the other communities. In G4 and G5 the
highest numbers of cyanobacteria and algae species were noted.
Numerous species of the genera Gloeocapsa, Calothrix, Nostoc,
Tolypothrix, Scytonema, Dichothrix, and also heterocystous
filamentous members of Nostocales (including Calothrix, Nostoc,
Tolypothrix, and Scytonema) were present. G4 and, particularly,
G5 included the largest number of lichen species, mostly from
the genera Bacidia, Caloplaca, and Lecanora (Supplementary
Table S3).

Soil Characteristics of Vegetation
Communities
Analysis of similarity between the LINKTREE groups, based
on all the physical and chemical parameters measured, revealed
significant differences between each group (ANOSIM; R = 0.71,
p = 0.001, all post hoc tests, p < 0.01, with the exception of
G2 vs. G3, p = 0.48). Detailed comparisons executed separately
for each physical and chemical soil property also revealed
significant differences between the groups (all Welch’s ANOVA
tests, p < 0.01; in all the post hoc pairwise comparisons where
the differences were found p < 0.01), and clear environmental
gradients in subsequent vegetation units for most of the
parameters (Figure 4). In general, the highest values of all the
measured ion concentrations were found in G1 and G2, and they
decreased in G3 and G4, reaching the lowest values in plots from
G5 (Figures 4A–D). Phosphate and nitrate concentrations, and
conductivity, the parameters identified by LINKTREE analysis
as important separating factors between groups, clearly and
significantly differed between these groups (Figures 4A,B,E).
Significant differences between G1 and G2 were found also in
ammonium concentration, pH, conductivity and soil dry mass,
with higher values observed in G1 (Figure 4C). The lowest values
of soil dry mass were found in G2 and G3, which corresponded
with the highest content of organic matter in these groups

(Figures 4G,H). Guano deposition was highest in G1 and G2, and
the lowest in G5, although there were no significant differences
between G1 and G2, and between G4 and G5 (Figure 4I).

Stable Nitrogen Isotope and Total
Nitrogen Content
The five LINKTREE groups showed clear separation in terms
of total nitrogen contents and stable isotope ratios in soil and
vascular plant and moss tissues (Welch’s ANOVA p < 0.01)
(Figure 5). The highest total N and δ15N values both in soil
and plant tissues were found in G1, with intermediate values
characterizing G2 and G3 (no significant differences between
these two groups,), and the lowest levels recorded in G4 and G5
(see detailed results of post hoc comparisons in Supplementary
Table S4). Differences in total nitrogen content in almost all
comparisons followed the differences in stable isotope signatures
(Figure 5).

Environmental Gradient Identification
Considering all 45 plots together, all seven soil parameters tested
explained all of the variability (100% efficiency) in vegetation
composition, and four of them were statistically significant (CCA,
Monte Carlo permutation test, p = 0.014). The most important
variable was PO4

3− concentration, which explained 38.9% of
variation, while those of secondary importance were soil dry
mass, NO3

− and K+ concentrations (Table 3). The constrained
ordination diagram shows clear separation of the groups in terms
of vegetation composition in relation to the soil parameters
(Figure 6A), despite a similar guano deposition level (Figure 6B).

Guano deposition was tested independently for each
colony (see Statistical Analysis and Data Management) and
had statistically significant effects on the plant community
composition in both cases (CCA, Monte Carlo permutation test
p < 0.01). It explained 57.4% of the variation of plants close
to the planktivorous colony (P and Pc combined), and 54.0%
near the piscivorous colony (F and Fc combined) (Table 3).
GLM analysis revealed that, with increasing planktivore guano
deposition the percentage cover of D. alpina increased (Table 4;
Figure 7A), while a high level of piscivore guano deposition
promoted C. groenlandica and P. alpina (Figure 7B). In both
areas C. arcticum demonstrated a unimodal response along the
guano deposition gradient, and S. uncinata showed a negative
relationship with guano supply (Figure 7).

DISCUSSION

Arctic Vegetation Response to Seabird
Influence
Our data strongly suggest that the colony of planktivorous
little auks and the mixed colony of piscivorous guillemots
and kittiwakes affect the neighboring vegetation in different
ways. This was manifested by the development of specific
plant communities, where the ornithogenic vegetation could
be subdivided into different subtypes based on the diet of the
respective influencing bird colonies.
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FIGURE 4 | Levels of physical and chemical soil parameters (A-H) and guano deposition level (I) in each of the LINKTREE vegetation groups. Significant
differences between pairs of groups are indicated by horizontal lines (p < 0.01).
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FIGURE 5 | Relationships between δ15N (h) and total nitrogen content
(%) in vascular plants, mosses and soil samples within the LINKTREE
groups G1–G5. Points represent mean values and error bars show standard
deviations. For post hoc pairwise comparisons see Supplementary Table S4.

The distinction between the two bird cliff vegetation sub-types
was most evident between the G1 and G2 groups. G1 (Cochlearia
groenlandica–Poa alpina) communities were located in the
immediate vicinity of the piscivorous colony (from the bird cliff
to 125 m down the slope), while the G2 community (Deschampsia
alpina–Cerastium arcticum) occurred within the little auk colony
(down the slope to ca. 50 m from the colony center). The
G1 community was characterized by the domination of one
species, C. groenlandica, resulting in low diversity and the lowest
numbers of vascular plant, moss and lichen species compared
to all the other communities. Domination of C. groenlandica
in ornithogenic plant communities seems to be characteristic of
piscivorous colonies in many places in the Svalbard archipelago,
while in case of planktivorous little auk colonies this species is
also present but never as a dominant (Eurola and Hakala, 1977;

Odasz, 1994; Rønning, 1996; Zwolicki et al., 2016). Within G2
community, the co-domination of two vascular plant species,
D. alpina and C. arcticum, as well as one bryophyte species,
S. uncinata, was observed. Differences between communities
were also noticeable in the proportion of species of secondary
importance in a community structure. Relatively high abundance
of saxifrages, e.g., S. caespitosa and S. cernua, was distinctive for
G1, while in G2 S. hyperborea, and the mosses T. mnioides and
Cyrtomnium hymenophylloides were characteristic.

Differences between the colonies were also apparent in species
responses to the guano deposition gradient. We found a strong
positive correlation between amount of guano and abundance
of D. alpina (planktivorous colony) and C. groenlandica
(piscivorous colony). Even C. arcticum, which occurred in the
vicinity of both colonies and showed full gaussian curves,
responded differently to the same amount of guano input (with
peak of response curve in 0.35 (guano dry mass g m−2 day−1) for
plankton-eaters when 0.21 for fish-eaters). This suggests a higher
tolerance of this plant to little auk than guillemot/kittiwake
excreta and qualitative differences between colonies influence.

The LINKTREE analysis indicates that the clear differences
in vegetation apparent around the two colonies were probably
related to significant differences in soil chemical and physical
parameters, which may themselves be related to differences in
the birds’ diet and excreta (Gilham, 1956). These differences
were further supported by the nitrogen stable isotope signatures,
which were significantly higher in samples collected near the
piscivore colony. Higher values of δ15N in soil were associated
with higher levels in vascular plant and moss tissues, indicating
that vegetation developing close to the studied colonies uptakes
the different nutrients delivered by the seabirds. Because higher
phosphate content is present in fish tissues than those of
zooplankton (Andersson et al., 1988), the G1 community
associated with the piscivore colony was characterized by
nearly twice the amount of phosphorus being present in the
soil. Large differences were also observed in soil pH, with
G2 characterized by being acidic although, at the same time,
showing the greatest variation in this parameter. Higher pH
beneath the piscivore colony could be very important for
the development of the Cochlearia groenlandica–Poa alpina
community, as it can change the availability of phosphorus and
nitrogen, and reduce the negative effects of over-fertilization

TABLE 3 | Total and explainable conditional effects of different environmental variables on plant community composition (CCA) (cf. Figure 4).

Response data Explanatory variable Total variation % Efficiency1 pseudo-F p(adj)2

All transect PO4
3− log 11.2 38.9 5.3 0.014

Dry mass of soil 6.2 21.5 3.1 0.014

NO3
− log 5.4 18.7 2.8 0.014

K+ log 4.0 13.9 2.1 0.014

pH 2.9 10.1 1.6 0.090

NH4
+ log 1.8 6.2 1.0 0.900

Conductivity 1.4 4.9 0.7 0.900

Plankton-eaters (P and Pc combined) Guano deposition 13.1 57.4 4.5 0.002

Fish-eaters (F and Fc combined) Guano deposition 11.3 54.0 3.4 0.002

1The result of comparison with the unconstrained model, 2Adjusted by the Holm correction.
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FIGURE 6 | (A) CCA sample plots ordination based on vegetation (vascular plants and mosses) community composition, indicating the LINKTREE groups G1–G5
and relationship with significant soil parameters (see Table 3), and (B) guano deposition level indicated by circle size, within each sample plot.

(Arnesen et al., 2007). Also, differences between communities,
related to colony types, were associated with differences in
the soil organic matter content, which was higher in the G2
and G3 communities associated with the planktivore’s colony.
Thus, the two types of bird colonies favor plants with different
environmental requirements, and this was especially evident
closest to the colonies. The hypothesis that different colony
types encourage the development of different habitats was also
strongly supported by the similar values of soil properties
found between control transects, as noted previously (Zwolicki
et al., 2013). It is also worth noting that fresh birds’ excreta
could be poisonous for plants due to high acidity of uric
acid, especially in high concentrations. Large penguin colonies
that are completely denuded of plants could be an extreme
example of such influence (Zwolicki et al., 2015). Also, a direct
deposition of feces on leaves could create osmotic stress or even
mechanically block the stomata. Future experimental studies
concerning controlled environmental conditions, pot, transplant,
or common garden experiments could unravel the mechanism of
relationship between the type of colonies and plant communities
formation.

Eurola and Hakala (1977) studied bird cliff vegetation in
Svalbard in the vicinity of colonies occupied by different seabird
species, mostly guillemots, kittiwakes and little auks. They
described ornithocoprophilous vegetation as Chrysosplenium
tetrandrum–Oxyria digyna type and divided it into three
subtypes: meadow, ledge, and boulder communities. However,
their study did not attempt to match plant community
differentiation with bird species or diet. This distinction has
been overlooked till now possibly because plant communities’
composition changes with other important environmental
variables connected to, e.g., geographical localization.
Such comparison of five locations across the Svalbard
archipelago revealed that plant communities occurring near
little auk colonies were locally mostly dependent on birds
fertilization intensity, but, more than that, their geographical
distribution was an important factor modifying plants’
community structure (Zwolicki et al., 2016). Therefore, the
comparison between types of colonies could be verified
only in similar locations, as we present in our research,
where the same pool of species could be recruited to local
communities.

TABLE 4 | Response of specific plant species to guano deposition level (GLM model; for response curves, see Figure 7).

Study area (colony) Species Type R2 (%) F p

Plankton-eaters (P and Pc combined) Cerastium arcticum Quadratic 81.6 35.6 <0.001

Deschampsia alpina Linear 89.5 149.4 <0.001

Sanionia uncinata Quadratic 34.1 5.9 0.009

Tetraplodon mnioides Quadratic 94.3 171.3 <0.001

Fish-eaters (F and Fc combined) Cerastium arcticum Quadratic 81.3 28.9 <0.001

Cochlearia groenlandica Quadratic 78.0 22.1 <0.002

Poa alpina Quadratic 33.8 4.3 0.031

Sanionia uncinata Linear 37.0 9.8 0.006
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FIGURE 7 | GLM species response curves to guano deposition level: (A) planktivores (P and Pc combined), (B) piscivores (F and Fc combined). Detailed
results of the models are given in Table 4.

Despite the different effects the two colony types had on
their surrounding vegetation, there were also some common
characteristics of their influence. Guano deposition had similarly
high importance for plant community composition variability,
which could indicate similar impact strength on vegetation
development beneath both colonies. Guano deposition was
similarly the most important factor influencing physical and
chemical parameters of the soil, where it had similar importance
for both colonies (Zwolicki et al., 2013).

Both ornithogenic community sub-types were characterized
by high abundance of grasses (D. alpina, P. alpina, and
F. rubra), the plant group previously proposed to be the primary
creators of meadow communities in the Arctic (Elvebakk,
1994). Nitrophilous dicotyledonous species, such as C. arcticum
and C. groenlandica, commonly occurring within G1 and
G2, are also frequently recorded in the vicinity of seabird
colonies in the Arctic (e.g., Odasz, 1994; Aiken et al., 1999;
Brysting et al., 2001). Areas closest to both colonies hosted
an unique composition of green algal species, including the
ornithocoprophilous P. crispa and P. autumnale, and the highly
eutrophic cyanobacterium Pseudanabaena sp. (Matuła et al.,
2007; Richter et al., 2009). However, the detailed qualitative and
quantitative studies conducted in the same locations revealed
that cyanobacterial and algal assemblages were also differentiated
by the colony type (Pietryka et al., 2016). The ornithogenic
communities G1 and G2 were largely devoid of lichens, except
for the ornithocoprophilous Physcia spp. and X. candelaria near
the little auks colony (Øvstedal, 2009; Wirth, 2010).

A decline in vascular plant abundance and increase in mosses,
as well as an increase in the total number of vascular plant, moss
and lichen species, were observed with progression through the
G1–G5 communities, with clear zonation with distance from
the colonies. The immediate vicinity of both studied colonies
favored fast growing and short-lived species (e.g., C. arcticum
lives around 10 years, C. groenlandica about 5 years), while

those growing further from the colony were often much longer-
lived (e.g., Salix sp. about 59 years) (Callaghan and Emanuelson,
1985). This zonation pattern has been recorded in previous
studies (cf. Croll et al., 2005; Ellis, 2005; Zwolicki et al.,
2015). Plant communities developing in polar areas without or
with a relatively low ornithogenic impact experience a chronic
shortage of nutrients and are dominated by mosses, lichens,
and stress-resistant vascular plants, with long-lived leaves and
high nutrient use efficiency (Grime, 1979; Chapin, 1980). In our
study, this strategy was represented primarily by S. oppositifolia
and S. polaris. These species have been described as early
colonizers (S. oppositifolia) and as plants typical of the late
succession stage (S. polaris), and their abundances decreased with
nutrient inflow (Hodkinson et al., 2003; Nakatsubo et al., 2010).
Nutrient availability determines plant life history strategies, and
the ability to respond rapidly to increased nutrient supplies
should give a competitive advantage over species adapted
to low nutrient levels (Hill et al., 2011). Furthermore, in
harsh environmental conditions, stress resistance had greater
importance for plants than the ability to compete with other
species (Theodose and Bowman, 1997). Sanionia uncinata–
Saxifraga oppositifolia (G4) and Sanionia uncinata–Salix polaris
(G5) communities dominated the control transects, representing
plants inhabiting poor habitats with no or negligible ornithogenic
impact, such as are common on the coast of south-western
Spitsbergen (Elvebakk, 1994; Hodkinson et al., 2003; Węgrzyn
and Wietrzyk, 2015). Perennial dwarf woody shrubs comprising
these communities are well adapted to unpredictable resource
availability that limits their growth, and are able to store
their restricted resources; hence, they are widespread in the
Arctic deserts (Grime, 1979; Chapin et al., 1990). Cyanobacterial
and algal assemblages from these nutrient-poor habitats were
characterized by numerous species, particularly heterocystous
cyanobacterial taxa forming the biological soil crust, in which
the deficiency of nitrogen and carbon are compensated through
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biological N2-fixation by free living cyanobacteria (Zielke et al.,
2005; Matuła et al., 2007; Stewart et al., 2011; Skrzypek et al.,
2015). These habitats are also characterized by a large number
of lichen species that prefer oligotrophic and dry habitats, such as
moribund mosses (Caloplaca spp., Mycobilimbia spp., Bilimbia
spp., Ochrolechia frigida, Bacidia bagiettoana), or rocks (e.g.,
Lecanora spp.; Øvstedal, 2009; Wirth, 2010).

Implications for the Ecosystem
Ornithogenic fertilization enhances the nutrient levels of soil and
available to plants, as assessed by total nitrogen content, reaching
its highest levels in communities growing closest to bird colonies
(G1, G2, and G3). High nitrogen content in soil favors plant
productivity, increases N content in plant tissues, and promotes
species of better palatability, such as grasses, constituting an
attractive food source for vertebrate herbivores (Van der Wal
and Loonen, 1998). This underlies the much more numerous
local populations of geese, ptarmigan and reindeer associated
with ornithogenic tundra on Svalbard (Van der Wal et al., 2004;
Stempniewicz et al., 2007). Mean values of total nitrogen content
in vascular plants near the two colonies were similar. However,
the piscivore colony, situated on a coastal cliff, fertilizes a smaller
area of tundra, whereas the planktivore colony is located further
inland and supports a larger area, and therefore a higher number
of herbivores (Stempniewicz et al., 2006, 2007; Jakubas et al.,
2008).

Recent oceanographic and climatic changes in the Arctic
are leading to changes in the structure of marine zooplankton
communities. Large copepods (e.g., Calanus glacialis), dominant
in cold Arctic waters, and favored by planktivorous seabirds
such as little auks, are being replaced by smaller counterparts
(e.g., C. finmarchicus), characteristic of warmer Atlantic waters.
This potentially redirects energy flow through the food chain
to planktivorous fish and, finally, to piscivorous guillemots
and kittiwakes (Stempniewicz et al., 2007; Carstensen et al.,
2012; Weydmann et al., 2014). If this results in a change
in balance (numbers) between planktivorous and piscivorous
seabird populations, one outcome may be to modify the

proportion of the ornithogenic vegetation supported by each.
Such changes could therefore have important consequences
for the structure and functioning of the terrestrial part of
the Arctic ecosystem, as exemplified by ornithogenic plant
communities reduced to the piscivorous sub-type (Stempniewicz
et al., 2007).
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Stempniewicz. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 14 December 2016 | Volume 7 | Article 1959

https://doi.org/10.1111/j.0906-7590.2004.03688.x
https://doi.org/10.1139/z98-033
https://doi.org/10.1111/j.1654-1103.2002.tb02117.x
https://doi.org/10.1007/s00300-015-1751-7
https://doi.org/10.1007/s00300-015-1751-7
https://doi.org/10.3354/meps10694
https://doi.org/10.13158/heia.23.2.2010.229
https://doi.org/10.13158/heia.23.2.2010.229
https://doi.org/10.1007/s00300-015-1755-3
https://doi.org/10.1007/s00300-015-1755-3
https://doi.org/10.1007/s00300-010-0941-6
https://doi.org/10.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2
https://doi.org/10.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2
https://doi.org/10.1007/s00300-012-1169-4
https://doi.org/10.1007/s00300-013-1385-6
https://doi.org/10.1007/s00300-015-1730-z
https://doi.org/10.1371/journal.pone.0154950
https://doi.org/10.1371/journal.pone.0154950
https://doi.org/10.1007/s00300-012-1265-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	Differential Responses of Arctic Vegetation to Nutrient Enrichment by Plankton- and Fish-Eating Colonial Seabirds in Spitsbergen
	Introduction
	Materials And Methods
	Study Area
	Guano Deposition Measurements
	Physical and Chemical Analyses of Soil
	Stable Isotope Analyses
	Vegetation Abundance and Species Composition
	Statistical Analysis and Data Management

	Results
	Vegetation Communities
	Soil Characteristics of Vegetation Communities
	Stable Nitrogen Isotope and Total Nitrogen Content
	Environmental Gradient Identification

	Discussion
	Arctic Vegetation Response to Seabird Influence
	Implications for the Ecosystem

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


