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Appearance andmilling quality are two crucial properties of rice grains affecting its market

acceptability. Understanding the genetic base of rice grain quality could considerably

improve the high quality breeding. Here, we carried out an association analysis to

identify QTL affecting nine rice grain appearance and milling quality traits using a diverse

panel of 258 accessions selected from 3K Rice Genome Project and evaluated in two

environments Sanya and Shenzhen. Genome-wide association analyses using 22,488

high quality SNPs identified 72 QTL affecting the nine traits. Combined gene-based

association and haplotype analyses plus functional annotation allowed us to shortlist

19 candidate genes for seven important QTL regions affecting the grain quality traits,

including two cloned genes (GS3 and TUD), two fine mapped QTL (qGRL7.1 and

qPGWC7) and three newly identified QTL (qGL3.4, qGW1.1, and qGW10.2). The most

likely candidate gene(s) for each important QTL were also discussed. This research

demonstrated the superior power to shortlist candidate genes affecting complex

phenotypes by the strategy of combined GWAS, gene-based association and haplotype

analyses. The identified candidate genes provided valuable sources for future functional

characterization and genetic improvement of rice appearance and milling quality.
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INTRODUCTION

As a major cereal crop, rice (Oryza sativa L.) is crucial to food security for more than half of the
world’s population. Rapid population growth coupled with the climate change creates an urgent
need for rice varieties with high yield, high quality and stress tolerances. In the past half century,
rice production has been significantly improved benefiting from the green revolution and the wide
adoption of hybrid rice (Xu J. L. et al., 2015). However, for rice breeders and consumers, rice
grain quality is also a foremost consideration which includes appearance, milling, cooking and
eating, and nutritional quality. Grain appearance quality is a crucial factor affecting its market
acceptability. Mainly, appearance quality indicates grain shape and chalkiness. Grain shape can
be described by grain length (GL), grain width (GW), and grain length to width ratio (GLWR),
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which are closely associated with grain weight (Zheng et al.,
2007; Qiu et al., 2015). Chalkiness is usually evaluated by the
degree of endosperm chalkiness (DEC) and the percentage of
grain with chalkiness (PGWC). Rice variety with PGWC more
than 20% is not generally acceptable in most world markets
(Chen et al., 2011). Milling quality is usually measured as brown
rice rate (BRR), milled rice rate (MRR), and head-milled rice
rate (HMRR).

Breeding rice varieties with desirable appearance and high
milling quality is a paramount consideration for rice breeders.
Understanding the genetic basis of these traits could considerably
improve breeding efficiency. Rice grain appearance and milling
related traits are quantitatively inherited and controlled by
multiple genes/QTL (Tan et al., 2000). To date, many genes
governing grain shape have been identified and cloned, such
as GW2 (Song et al., 2007), GIF1 (Wang et al., 2008), qSW5
(Shomura et al., 2008), GS3 (Mao et al., 2010), GS5 (Li et al.,
2011), qGL3 (Zhang et al., 2012), GW8 (Wang S. et al., 2012),
GS6 (Sun et al., 2013), GS2 (Hu et al., 2015), GL7/GW7 (Wang
S. et al., 2015; Wang Y. et al., 2015), OsMAPK6 (Liu S. et al.,
2015), and GLW7 (Si et al., 2016). Besides these genes, many
QTL affecting grain size have been identified through linkage
mapping and association studies (Zhao et al., 2011; Singh et al.,
2012; Zhang W. et al., 2013; Yang et al., 2014; Liu D. et al., 2015;
Qiu et al., 2015; Edzesi et al., 2016; Feng et al., 2016), and some of
them have been fine mapped such as GW1-1 and qGRL1.1 (Singh
et al., 2012), GW3 and GW6 (Guo et al., 2009), qGL-7 (Bai et al.,
2010), qGRL7.1 (Singh et al., 2012). For grain chalkiness, only one
gene, Chalk5 is cloned (Li et al., 2014). One QTL for PGWC,
qPGWC-7 was fine mapped to 44 kb region on chromosome
7 (Zhou et al., 2009), and one QTL cluster for chalkiness on
chromosome 4 flanked by id4007289 and RM252 was detected
by single environment analysis and joint mapping across nine
environments (Zhao et al., 2016). No gene affecting milling
quality is cloned. But recently, qBRR-10 for BRR was narrowed
to a 39.5 kb region on chromosome 10 and two candidate genes
were determined (Ren et al., 2016).

The usefulness of some of the well characterized genes/QTL
for grain shape and chalkiness is proven in an Xian (indica)
population of diverse breeding lines (Zhao et al., 2015).
Therefore, it’s worthwhile to explore new genes/QTL regulating
rice grain appearance and milling quality. Genome-wide
association study (GWAS) of complex traits in rice has been
successful promoted by the recent advances in high-throughput
sequencing technologies. The high density SNP markers and
gene annotation based on reference genome facilitate the rapid
identification of candidate genes associated with interested traits.
Recently, Yano et al. (2016) identified four new genes associated
with agronomic traits in rice using GWAS and gene-based
association analysis. The combination of GWAS and gene-
based association analysis will accelerate the investigation of
mechanism for rice quality.

In the present study, GWAS and gene-based association
analysis were carried out to identify candidate genes associated
with rice grain appearance and milling quality. A diverse panel
consisting of 258 accessions selected from 3K Rice Genome
Project (3K RGP) (3K RGP, 2014) was evaluated in two

environments. GWAS was performed using 27K SNPs generated
from 3K RGP through high-throughput sequencing technologies
(Zheng et al., 2015). Then, for important QTL regions, gene-
based association analysis was performed using all available SNP
from Rice SNP-Seek Database (Alexandrov et al., 2015). By this
way, a number of new candidate genes governing rice grain
appearance traits were identified.

MATERIALS AND METHODS

Plant Materials
To minimize the influence of flowering time on rice grain
appearance and milling quality traits to be measured, we selected
258 rice accessions from the 3K RGP which have similar
heading dates. These rice accessions are from 51 countries or
regions and were used as the materials in this study. This panel
consisted of seven types, including Xian (indica) (174), temperate
Geng (japonica) (32), tropical Geng (japonica) (24), subtropical
Geng (japonica) (14), admixture type (7), aus/boro (3), and
basmati/sadri (4) (Supplementary Table S1).

Field Trials and Trait Measurements
All of these accessions were grown in two environments,
including Sanya (18.3◦N, 109.3◦E) during Dec 2014–April, 2015
and Shenzhen (22.6◦N, 114.1◦E) during March–July, 2015. In
both environments, each accession was planted in a two-row plot
with 10 individuals planted in each row at a spacing of 20 cm
× 25 cm with two replications for each accessions. The field
management followed the local farmers’ standard management
practices. At maturity (about 40 days after flowering), eight
uniform plants in the middle of each plot were bulk harvested
and air-dried for 3 months in the drying houses. Then, around
150 g seeds were dehulled in an electrical dehuller (model JLGJ-
45, China) and milled by a desk-top rice miller (JNMJ 6, China).
Three traits related to grain milling quality were measured
according to the National Rice Grain Quality Assessment
Standard of China (GB/T17891-1999), including brown rice rate
(BRR, %), milled rice rate (MRR, %) and head milled rice rate
(HMRR, %). Then, all full head milled rice kernels of each
accession were used to measure grain length (GL, mm), grain
width (GW, mm), grain length-width ratio (GLWR), degree
of endosperm chalkiness (DEC, %), percentage of grain with
chalkiness (PGWC, %) and transparency (Tr) using a rice
grain appearance quality scanning machine (SC-E, Wanshen
Technology Company, Hangzhou, China). All measurements
were conducted with samples of the two replications and the
average trait value of each accession was used in data analyses
of GWAS.

Genotyping
The 27K SNP genotype data of the 258 accessions was generated
from the 3K RGP (Zheng et al., 2015). For those SNPs with
more than two alleles, only two alleles of highest frequency in
the 258 panel were retained and other alleles of low frequency
were considered missing. The heterozygous was also regarded as
missing. SNP loci with missing rate over 20% and minor allele
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frequency (MAF) less than 0.05 were removed. Finally, a total of
22,488 SNPs were used in the GWAS.

Population Structure and Kinship
For the 22,488 SNP, we further removed SNP loci with
missing rate over 10% and MAF less than 0.1. Then, 8038
evenly distributed SNPs with average marker spacing around
50 kb were sampled to calculate population structure (Q) and
kinship (K). For the population structure analysis, a model
based Bayesian clustering analysis method implemented in
STRUCTURE software version 2.3.4 (Pritchard et al., 2000) was
used. The program was run with the following parameters: k,
the number of groups in the panel varying from 1 to 10; 10
runs each k value; for each run, 10,000 burnin iterations followed
by 10,000 MCMC (Markov Chain Monte Carlo) iterations. For
K calculation, the default method, Centered_IBS, implemented
in TASSEL 5.2.23 was utilized (Bradbury et al., 2007). The IBS
was scaled to have the mean diagonal element equal to 1+F,
where F is the inbreeding coefficient of the current population
(Endelman and Jannink, 2012). The Q and Kmatrix were used in
the following association analysis.

Linkage Disequilibrium (LD) Analysis
LD was measured by squared allele frequency correlations (r2)
values between the pairs of markers using 8038 SNP calculated
by TASSEL 5.2.23 (Bradbury et al., 2007). Marker pairs were
discretized into bins of 5 kb and the average r2 value was used
as the estimate of r2 of a bin. The LD decay rate was measured
as the chromosomal distance at which the average r2 dropped to
half of its maximum value (Huang et al., 2010).

GWAS and of Candidate Genes
Identification for QTL Affecting Measured
Traits
We performed a genome wide association study (GWAS) to
detect the trait-SNP associations for all measured traits using
22,488 SNPs and the mean trait values of the 258 accessions
from each of the environments. All statistical analyses for GWAS
were performed using the SVS software package (SNP and
Variation Suite, Version 8.4.0). An EMMAX (Efficient Mixed-
Model Association eXpedited) (Kang et al., 2010; Vilhjalmsson
and Nordborg, 2013) implementation of the single-locus mixed
linear model was applied to the marker dataset. This mixed
linear model allowed correction for cryptic relatedness and other
fixed effects using a kinship matrix and population stratification
using principle components. The Bonferroni multiple testing
correction was applied to identify significant markers. A QTL
affecting the measured traits were claimed when the test statistics
reached P < 1.0× 10−4 in at least one of the two environments.

Gene-based association analysis was carried out for to detect
candidate genes for important QTL. Here, QTL regions meeting
at least one of the following criteria were considered as important:
(1) consistently identified in both environments; (2) affecting
more than one trait; (3) accounting for over 10% of phenotypic
variance, and/or (4) close to reported cloned genes or fine-
mapped QTL. The following five steps were conducted to identify
candidate genes for important QTL identified. We, firstly, found

all the genes located in 0.31 LD block region of the peak SNP of
each important QTL from the Rice Annotation Project Database
(RAP-DB). Then, all available SNPs located inside of these genes
were searched from 32 M SNPs data generated from 3K RGP
in the Rice SNP-Seek Database (Alexandrov et al., 2015). The
genotype manipulation was done in the same way as described
above. Thirdly, the high quality SNPs inside of these candidate
genes of each important QTL were used to perform gene-based
association analyses through MLM using the Q and K applied
in GWAS. For each QTL region, the SNPs whose –log10 (p)
located in the interval of 1 unit of the maximum value were
regarded as significant. Fourthly, haplotype analysis was carried
out for each of the candidate genes in each important QTL
region using all non-synonymous SNPs located inside of the
gene CDS region. Finally, candidate genes were determined
by testing the significant differences among major haplotypes
(containing more than 10 samples) for each important QTL
through ANOVA.

RESULTS

Trait Variance and Correlations
In general, most of the traits appeared to be normally distributed,
but some traits showed skewed distributions especially for Tr
(Figure 1A). The panel showed a large variations for all the
measured traits. Significant variations between SY and SZ were
observed for DEC, PGWC, Tr, and HMRR, but not for other
traits (Figure 1A). The phenotype pairwise correlations between
the measured traits were similar in both environments. GL and
GLWR were positively correlated with each other, and negatively
correlated with GW. Positive correlations were observed between
DEC, PGWC, and Tr, and they were negatively correlated with
GL and GLWR, but positively correlated with GW. Overall,
the correlations between appearance quality and milling quality
traits were very weak. The three milling traits BRR, MRR
and HMRR showed positive correlations with one another, but
their correlations between two environments were very poor
(Figure 1B).

Basic Statistics of Markers
For the 22,488 high quality SNPs data, the number of markers
per chromosome ranged from 1360 on chromosome 9–2783
on chromosome 1. The size of chromosome varied from
22.9 Mb for chromosome 9 to 43.2 Mb for chromosome 1.
The whole genome size was 372.2 Mb. The average marker
spacing was 16.6 kb with spacing ranging from 15.3 kb for
chromosomes 8 and 10–18.7 kb for chromosome 7 (Table 1).
More than half (57.4%) of the markers had MAF more than 0.20
(Supplementary Figure S1).

Population Structure and LD Patterns
The screen plot generated through STRUCTURE recommended
k = 2 as informative, where ascent changed gradually
(Figure 2A). There were two distinct subpopulations (Pop I
and Pop II) in the current panel according to the results of
STRUCTURE and kinship (Figures 2A,B). Pop I consisted of
58 accessions, most of which were temperate Geng (22), tropica
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FIGURE 1 | (A) Box plots of nine rice grain appearance and milling quality traits in two environments. SY, Sanya; SZ, Shenzhen; GL, Grain length; GW, Grain width;

GLWR, Grain length to width ratio; DEC, Degree of endosperm chalkiness; PGWC, Percentage of grains with chalkiness; Tr, Transparency; BRR, Brown rice rate;

MRR, Milled rice rate; HMRR, Head milled rice rate. (B) Correlations between nine evaluated traits in SY (upper triangular) and SZ (lower triangular). The values on

principal diagonal indicated correlations between SY and SZ. The values were correlation coefficients (r) multiplied by 100. The areas and colors of ellipses showed the

absolute value of corresponding r. Right and left oblique ellipses indicated positive and negative correlations, respectively. The values without glyphs indicated

insignificant at 0.05.

TABLE 1 | Distributions of markers on chromosomes.

Chr Marker no. Size (Mb) Spacing (kb)

Chr1 2783 43.2 15.5

Chr2 2268 35.9 15.8

Chr3 2086 36.3 17.4

Chr4 1964 35.5 18.1

Chr5 1740 29.7 17.1

Chr6 1911 31.1 16.3

Chr7 1583 29.7 18.7

Chr8 1864 28.4 15.3

Chr9 1360 22.9 16.8

Chr10 1510 23.1 15.3

Chr11 1869 29.0 15.5

Chr12 1550 27.4 17.7

Total 22,488 372.2 16.6

Geng (16) and subtropical Geng (9). Pop II consisted of 200
accessions, most of which were Xian (167). In this panel, 53%
(136/258) of the accessions did not show any admixture and 37%
(96/258) showed less than 10% admixture, while the remaining
10% (26/258) were found to be highly admixed (Figure 2C).
Overall, the LD decay in Pop II was much faster than Pop I. The
maximum LD was 0.62, 0.87, and 0.70 in the whole population,
Pop I and Pop II, respectively. LD reached half of its initial value
at around 100 kb in Pop II, and 300 kb in Pop I and the whole
population (Figure 2D).

Detection of QTL by GWAS
A total of 72 QTL for all investigated traits were identified in
SY and SZ, ranging from two QTL for HMRR to as many as
18 QTL for GW. Among them, 21 (36) QTL were detected only
in SY (SZ), and 15 QTL were commonly identified in both two
environments (Table 2).

For GL, 14 QTL were detected on chromosomes 2–4 and 6–
9. Two QTL, qGL3.2 and qGL6.1 were detected only in SY and
explained 6.8 and 6.5% of phenotypic variance, respectively. Six
QTL were detected only in SZ including qGL2, qGL4.1, qGL4.2,
qGL6.2, qGL8, and qGL9, and accounted for 7.5 to 11.1% of
phenotypic variance. Six QTL including qGL3.1, qGL3.3, qGL3.4,
qGL3.5, qGL4.3, and qGL7 were detected in both environments
and the phenotypic variance explained ranged from 7.2 (6.6) to
9.6% (9.5%) in SY (SZ) (Table 2).

Eighteen QTL for GW were detected on all chromosomes
except 2 and 12. Two QTL, qGW7.2, and qGW7.3, were
detected only in SY, and accounted for 7.8 and 6.7% of
phenotypic variance, respectively. ElevenQTLwere detected only
in SZ including qGW1.2, qGW3.1, qGW4.1, qGW4.2, qGW6,
qGW7.1, qGW8.1, qGW8.2, qGW9, qGW10.1, and qGW11 with
phenotypic variance explained ranging from 7.1 to 9.5%. Five
QTL were identified in both SY and SZ including qGW1.1,
qGW3.2, qGW5, qGW7.4, and qGW10.2 with phenotypic
variance accounted for ranging from 6.7 (6.5) to 10.4% (8.5%)
in SY (SZ) (Table 2).

For GLWR, 13 QTL were detected on all chromosomes except
6 and 8. TwoQTL, qGLWR2, and qGLWR11.2were detected only
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FIGURE 2 | (A) Screen plot from STRUCTURE showing the selection of Q for association study. (B) Heat map of kinship from TASSEL with the tree shown on the top

and left. (C) Bayesian clustering of 258 accessions using STRUCTURE program. (D) Comparison of LD decay in the whole and two sub-populations. Y axis was the

average r2 value of each 5 kb region and X axis was physical distance between markers in unit of Mb. The blue, red and green indicated LD decay in the populations

whole, Ppo I and Pop II, respectively.

in SY and accounted for 6.4 and 6.9% of phenotypic variance,
respectively. Eight QTL were detected only in SZ including
qGLWR1, qGLWR3.1, qGLWR4.1, qGLWR4.2, qGLWR9,
qGLWR10, qGLWR11.1, and qGLWR12 with phenotypic
variance explained ranging from 7.3 to 10.3%. Three QTL,
qGLWR3.2, qGLWR5, and qGLWR7, were identified in both
environments and accounted for 6.4 (7.5), 7.8 (6.9), 9.7% (8.7%)
of phenotypic variance in SY (SZ), respectively (Table 2).

Four QTL affecting DEC were detected on chromosomes
1, 3, 7, and 8. One QTL, qDEC7, was identified only in SY
and explained 8.2% of phenotypic variance. The other three
QTL, qDEC1, qDEC3, and qDEC8, were detected only in SZ
with phenotypic variance accounted for being 7.3, 9.3, and
7.5%, respectively. For PGWC, four QTL were identified on
chromosomes 3, 5, 8, 10. Three QTL were detected only in SZ
including qPGWC3, qPGWC8, and qPGWC10 and explained 8.9,
8.4, and 7.4% of phenotypic variance, respectively. One QTL,
qPGWC5, were detected in both of SY and SZ accounting for
7.9 and 9.6% of phenotypic variance, respectively. Six QTL for
Tr were detected on chromosomes 1, 2, 4, and 7. Five QTL were
detected only in SY including qTr1, qTr4, qTr7.1, qTr7.2 with
phenotypic variance explained ranging from 6.5 to 10.6%. One
QTL, qTr2, was identified only in SZ accounting for 8.1% of
phenotypic variance (Table 2).

For BBR, six QTL were detected on chromosomes 1, 3, 7, 9,
and 11. Three QTL, qBRR3, qBRR9, and qBRR11, were identified
only in SY, and explained 6.9, 7.2, and 9.3% of phenotypic
variance, respectively. Three QTL were detected only in SZ
including qBRR1.1, qBRR1.2, and qBRR7 accounting for 7.9, 7.1,
and 7.3% of phenotypic variance, respectively. Five QTL (qMRR3,
qMRR9, qMRR10, qMRR11.1, and qMRR11.2) for MRR were
identified on chromosomes 3, 9, 10, and 11 only in SY, and the
phenotypic variance accounted for ranged from 6.7 to 11.1%.
Two QTL affecting HMRR, were identified on chromosomes 3
and 9. One QTL, qHMRR9 was identified in SY and explained
6.8% of phenotypic variance. The other QTL, qHMRR3, was

identified in SZ and accounted for 7.1% of phenotypic variance
(Table 2).

Candidate Genes for Important QTL
Supplementary Table S2 shows the list of 19 candidate genes
shortlisted for seven important QTL regions based on the
haplotype analyses of non-synonymous SNPs within each of the
genes locating inside 0.31 LD decay of the peak SNPs, ranging
from one to five candidate genes for each region.

For qGL3.4 in the region of 15.68–15.85 Mb on chromosome
3, 503 SNPs in 20 genes were used for association analysis
and then it was narrowed down a ∼100 kb region
containing eight genes, Os03g0391850, Os03g0392000,
Os03g0392050, Os03g0392200, Os03g0392250, Os03g0392300,
and Os03g0392600 (Figure 3A). Highly significant differences
in GL were detected between different haplotypes at five
candidate genes (Os03g0392000, Os03g0392250, Os03g0392300,
Os03g0392400, and Os03g0392600), and in all the five cases,
significantly reduced GL was associated with the minor allele(s)
(Figure 3A and Supplementary Table S2), as originally detected
in the peak SNP (Table 2). Of the five genes, Os03g0392400
was less likely the candidate since a single cytosine deletion
within it that causes a frame shift mutation showed the same
GL phenotype as haplotype CG causing a non-synonymous
mutation.

In the region from 16.6 to 17.0 Mb on chromosome 3
harboring qGL3.5 on chromosome 3, 5046 SNPs of 33 genes
were used for association analysis. qGL3.5 was fined mapped into
a 35 kb region containing a single cloned gene, Os03g0407400
(GS3) (Mao et al., 2010; Figure 3B). Three major haplotypes of
GS3 were found. Haplotype GT was associated with significantly
longer GL than haplotypes CG and GG (Figure 3B and
Supplementary Table S2).

For qGL7, in the region of 22.3 to 22.8 Mb on chromosome 7,
1059 SNPs in 74 genes were used for association analysis, which
narrowed qGL7 down to a ∼80 kb region containing six genes,
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TABLE 2 | QTL identified for nine traits in two environments.

QTL Env Peak SNP Allelesa MAF p Effectb R2(%)c

qGL2 SZ S2_7684141 C/T 0.12 2.5E-05 −0.59 8.2

qGL3.1 SY S3_1249933 T/C 0.13 1.7E-05 −0.52 7.8

SZ S3_1249933 T/C 0.14 7.2E-05 −0.49 7.2

qGL3.2 SY S3_5043816 G/A 0.11 6.1E-05 0.74 6.8

qGL3.3 SY S3_15049416 A/G 0.12 3.4E-05 −0.80 7.2

SZ S3_15434503 C/T 0.12 5.1E-06 −0.90 9.5

qGL3.4 SY S3_15745213 C/T 0.13 3.0E-06 −0.77 9.2

SZ S3_15745213 C/T 0.13 3.0E-05 −0.71 8.1

qGL3.5 SY S3_16883926 G/A 0.49 2.4E-06 0.66 9.6

SZ S3_16785761 A/G 0.47 2.3E-05 −0.61 8.5

qGL4.1 SZ S4_17471146 T/C 0.35 3.1E-05 0.45 8.5

qGL4.2 SZ S4_18248441 T/C 0.12 5.2E-05 0.63 7.5

qGL4.3 SY S4_20297417 G/A 0.15 2.8E-05 0.74 8.0

SZ S4_20137296 T/A 0.08 8.7E-05 0.61 7.0

qGL6.1 SY S6_3562109 C/T 0.13 9.2E-05 0.49 6.5

qGL6.2 SZ S6_8736179 C/T 0.09 3.5E-05 −0.67 7.7

qGL7 SY S7_22569856 A/T 0.20 1.7E-05 −0.62 7.8

SZ S7_22569856 A/T 0.22 1.0E-04 −0.57 6.6

qGL8 SZ S8_2849446 A/T 0.11 3.6E-06 −0.67 11.1

qGL9 SZ S9_8688246 C/T 0.32 8.1E-06 −0.49 9.5

qGW1.1 SY S1_10935666 C/A 0.13 3.8E-05 −0.20 7.2

SZ S1_10935666 C/A 0.13 3.2E-05 −0.19 8.0

qGW1.2 SZ S1_35120676 G/A 0.18 1.1E-05 −0.30 8.9

qGW3.1 SZ S3_7012384 T/C 0.21 5.7E-05 −0.51 7.4

qGW3.2 SY S3_15203521 G/A 0.16 2.7E-05 0.22 7.4

SZ S3_15049416 A/G 0.14 3.7E-05 0.29 7.7

qGW4.1 SZ S4_20331973 T/C 0.06 4.8E-05 0.29 7.6

qGW4.2 SZ S4_31788543 G/A 0.04 9.2E-05 0.31 7.1

qGW5 SY S5_5369802 G/A 0.36 8.9E-07 0.17 10.4

SZ S5_5459847 A/G 0.32 1.0E-04 0.14 6.5

qGW6 SZ S6_24696098 C/T 0.07 9.2E-05 0.19 7.3

qGW7.1 SZ S7_19709162 G/A 0.10 5.2E-05 −0.24 7.8

qGW7.2 SY S7_20971202 C/T 0.07 3.5E-05 −0.29 7.8

qGW7.3 SY S7_22569856 A/T 0.20 6.4E-05 0.21 6.7

qGW7.4 SY S7_23080276 G/T 0.13 6.2E-05 0.19 6.7

SZ S7_22980051 G/A 0.06 2.6E-05 −0.34 8.1

qGW8.1 SZ S8_21536949 G/A 0.18 6.8E-05 0.34 7.5

qGW8.2 SZ S8_27055234 G/A 0.19 7.0E-06 −0.29 9.5

qGW9 SZ S9_20389437 A/T 0.06 9.2E-05 0.21 7.1

qGW10.1 SZ S10_13811940 C/T 0.09 8.2E-05 0.22 7.2

qGW10.2 SY S10_19624722 T/C 0.25 1.7E-05 0.20 7.8

SZ S10_19624722 T/C 0.27 1.6E-05 0.21 8.5

qGW11 SZ S11_5752053 C/A 0.16 1.3E-05 0.19 8.8

qGLWR1 SZ S1_2698492 C/T 0.23 9.5E-05 0.29 7.6

qGLWR2 SY S2_34856918 C/T 0.14 8.7E-05 0.42 6.4

qGLWR3.1 SZ S3_14988992 C/A 0.12 2.1E-06 −0.66 10.3

qGLWR3.2 SY S3_16785761 A/G 0.47 9.9E-05 −0.37 6.4

SZ S3_16785761 A/G 0.47 5.6E-05 −0.38 7.5

qGLWR4.1 SZ S4_17267620 G/T 0.08 8.1E-05 0.37 7.3

qGLWR4.2 SZ S4_18248441 T/C 0.12 6.6E-05 0.41 7.3

(Continued)

TABLE 2 | Continued

QTL Env Peak SNP Allelesa MAF p Effectb R2(%)c

qGLWR5 SY S5_5369802 G/A 0.36 1.8E-05 −0.31 7.8

SZ S5_5369802 G/A 0.35 9.0E-05 −0.29 6.9

qGLWR7 SY S7_22569856 A/T 0.20 9.0E-05 −0.49 9.7

SZ S7_22569856 A/T 0.22 1.2E-05 −0.44 8.7

qGLWR9 SZ S9_8714326 G/A 0.11 2.7E-05 0.40 8.0

qGLWR10 SZ S10_19552708 T/C 0.38 6.3E-05 −0.32 7.8

qGLWR11.1 SZ S11_5752053 C/A 0.16 3.8E-05 −0.32 7.8

qGLWR11.2 SY S11_17039961 C/G 0.23 4.8E-05 −0.55 6.9

qGLWR12 SZ S12_26246050 C/T 0.06 3.8E-05 0.42 7.6

qDEC1 SZ S1_5420348 G/A 0.23 7.3E-05 −29.8 7.3

qDEC3 SZ S3_7302378 C/T 0.10 8.7E-06 14.7 9.3

qDEC7 SY S7_24749850 C/T 0.05 1.1E-05 12.3 8.2

qDEC8 SZ S8_27055234 G/A 0.19 6.2E-05 −16.9 7.5

qPGWC3 SZ S3_7489318 C/T 0.20 1.2E-05 −48.2 8.9

qPGWC5 SY S5_5369802 G/A 0.36 1.9E-05 19.6 7.9

SZ S5_5369802 G/A 0.35 9.3E-06 23.2 9.6

qPGWC8 SZ S8_27055234 G/A 0.19 2.2E-05 −39.5 8.4

qPGWC10 SZ S10_13811940 C/T 0.09 7.4E-05 31.4 7.4

qTr1 SY S1_29263696 A/T 0.06 1.7E-05 1.4 7.8

qTr2 SZ S2_18924283 C/T 0.30 3.4E-05 1.1 8.1

qTr4 SY S4_923547 C/A 0.23 5.6E-05 0.8 8.8

qTr7.1 SY S7_6134470 A/C 0.05 1.2E-06 1.4 10.6

qTr7.2 SY S7_24749850 C/T 0.05 4.5E-05 1.2 7.0

qTr7.3 SY S7_25428951 T/C 0.29 9.9E-05 1.2 6.5

qBRR1.1 SZ S1_40365293 T/A 0.23 2.8E-05 −2.8 7.9

qBRR1.2 SZ S1_42736913 C/T 0.23 7.5E-05 −1.6 7.1

qBRR3 SY S3_34735871 G/A 0.08 5.4E-05 −3.9 6.9

qBRR7 SZ S7_8452759 C/T 0.06 5.3E-05 −2.9 7.3

qBRR9 SY S9_9144846 T/C 0.28 3.8E-05 −3.7 7.2

qBRR11 SY S11_23855546 C/T 0.25 2.9E-06 3.0 9.3

qMRR3 SY S3_34735871 G/A 0.08 5.2E-07 −5.0 11.1

qMRR9 SY S9_10381563 G/C 0.24 3.6E-05 −5.6 7.5

qMRR10 SY S10_15603572 A/T 0.20 5.8E-05 6.8 6.8

qMRR11.1 SY S11_23855546 C/T 0.25 2.0E-05 2.9 8.1

qMRR11.2 SY S11_27415368 G/A 0.19 7.2E-05 −2.8 6.7

qHMRR3 SZ S3_15745213 C/T 0.14 7.9E-05 13.4 7.1

qHMRR9 SY S9_10381563 G/C 0.24 8.4E-05 -7.4 6.8

aMajor/Minor allele.
bEffect: Allele effect with respect to the minor allele.
cR2 (%): Phenotypic variance explained.

Os07g0563300, Os07g0563700, Os07g0563800, Os07g0564000,
Os07g0564100, andOs07g0564150 (Figure 3C). Three haplotypes
were found for Os07g0563800, and four haplotypes were found
for the other five genes. Significant differences for GL among
haplotypes of all genes were observed except for that of
Os07g0563300 (Figure 3C and Supplementary Table S2).

For qGW1.1, in the region of 10.6–11.1 Mb on chromosome 1,
1068 SNP of 52 genes were used for association analysis and then
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FIGURE 3 | (A–G) Gene-based association analysis of seven important QTL loci and haplotypes analysis of targeted genes of related QTL including qGL3.4 (A),

qGL3.5 (B) qGL7 (C), qGW1.1 (D), qGW3.1 (E), qGW10.2 (F), and qDEC7 (G). Each point was a gene indicated by one of its SNPs having largest LD (r2) value with

the peak SNP of the QTL. Dash line showed the threshold to determine significant SNP. The ** and *** suggested significance of ANOVA at p < 0.01 and p < 0.001,

respectively. The letter on histogram (a, b, and c) indicated multiple comparisons result at the significant level 0.01. The value on the histogram was the number of

individuals of each haplotype. Red and blue color indicated SY and SZ environments, respectively.
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it was fined mapped into∼25 kb region containing a single gene,
Os01g0298400 (Figure 3D). Five major haplotypes were observed
for Os01g0298400. Haplotype GTCC showed significantly wider
GW than the other four haplotypes. The peak SNP of qGW1.1
in Table 2 was just the fourth SNP of haplotype of Os01g0298400
(Figure 3D and Supplementary Table S2).

For qGW3.1, in the region of 6.9–7.1 Mb on chromosome 3,
466 SNPs of 26 genes were used for association analysis, which
narrowed qGW3.1 down to a∼40 kb region containing six genes,
Os03g0232301, Os03g0232400, Os03g0232500, Os03g0232600,
Os03g0232800, Os03g0232900 (Figure 3E). No haplotype was
found in Os03g0232301 and Os03g0232400. Three, five and two
haplotypes were found for Os03g0232500, Os03g0232800, and
Os03g0232900. The difference of GW between two haplotypes
of Os03g0232600 was insignificant. Significant differences in
GW between haplotypes of the other three genes were
observed (Figure 3E and Supplementary Table S2). But for
Os03g0232900, reduced GWwas associated with the major allele,
which was inconsistent with detected in peak SNP (Table 2).
These results indicated thatOs03g0232500 andOs03g0232800 are
the candidate genes for qGW3.1.

For qGW10.2, in the region of 19.2–19.9 Mb on chromosome
10, 2819 SNPs of 92 genes used for association analysis and then it
was narrowed down to a ∼100 kb region (Figure 3F) containing
four genes Os10g0508900, Os10g0509000, Os10g0510300,
and Os10g0510400. Haplotypes analysis revealed significant
differences for GW were between different haplotypes at each
of the four genes (Figure 3F and Supplementary Table S2),
indicating that they are the candidate genes for qGW10.2.

qDEC7 was detected in the region from 24.6 to 25.0 Mb
on chromosome 7 where harboring 976 SNPs of 26 genes.
Gene-based analysis using these SNPs narrowed qDEC7 down
into a ∼70 kb region, in which three genes were harboring
significant SNPs (Figure 3G). Haplotype analysis suggested
that only the haplotypes of Os07g0604500 showed significant
differences in DEC in both environments (Figure 3G and
Supplementary Table S2).

DISCUSSION

Influences of Population Structure and LD
Decay on GWAS
The panel used in this study consisted of two populations,
representing the two major subspecies of rice, Xian (indica, Pop
II) and Geng (japonica, Pop I) (Figures 2A–C), which are known
to differ greatly for the grain quality traits investigated in this
study. Thus, most QTL identified in the panel are those loci
contributing to the subspecific differences. We observed the LD
decay in Xian accessions was approximately three times as fast as
that in Geng accessions (Figure 2D). This strikingly difference in
LD decay between the two major subspecies was expected from
their difference in outcrossing rate (Xian accessions have much
higher outcrossing rate thanGeng accessions), from their distinct
geographic distributions, and from their largely independent
evolutionary (breeding) histories. In fact, the same results were
also reported in previous researches (Huang et al., 2010; Zhao
et al., 2011). Although LD decay distance is an important

factor in determining the association mapping resolution (Flint-
Garcia et al., 2003), the average marker density of 16.6 kb for
the 22,488 SNPs used for GWAS was much smaller than the
highest LD decay of ∼300 kb in Geng accessions. In other
words, the 22,488 SNPs were enough to capture most, if not all,
marker-trait associations in the panel. Furthermore, the 0.31 LD
block region of the peak SNP for each QTL was large enough to
contain the targeted gene of related QTL. Therefore, application
of gene-based association analysis using saturated SNPs in the
0.31 LD region flanking peak SNPs was reasonable to identify
candidate genes.

Candidate Gene Identification of the
Important QTL
Cloning QTL affecting complex traits has been a major challenge
to plant geneticists and molecular biologists since the classical
strategy using map-based cloning for QTL cloning is extremely
troublesome and time-consuming. Using GWAS and gene-
based association analysis combining with haplotype analysis of
candidate genes, we were able to shortlist 19 candidate genes
governing 7 important QTL affecting the measured traits. These
candidates included two cloned QTL genes governing grain size.
The first one was qGL3.5 (qGLWR3.2), for which the results
pinpointed a single candidate, GS3 (Os03g0407400) functioning
as a negative regulator for grain length (Fan et al., 2006). A
nonsense mutation in the second exon of GS3 causing 178-aa
truncation in the C-terminus of the protein was identified inmost
large-grain varieties. The second one was qGW3.1, for which five
candidate genes were identified. One of these genes was TUD1
(Os03g0232600) encoding a U-Box E3 ubiquitin ligase. TUD1
directly interacts with D1 mediating a BR-signaling pathway to
affect plant growth and development including grain size (Hu
et al., 2013).

Besides above two cloned genes, two previously fine-
mapped QTL were also identified. In the region of 22.3–
22.8 Mb on chromosome 7, a QTL cluster (qGL7, qGLWR7,
and qGW7.3) was detected in the region of a fine mapped
QTL (qGRL7.1) affecting GL, GW, and GLWR (Singh et al.,
2012). Our haplotype analysis suggested five candidates for
this QTL, including Os07g0563700 (IKI3 family protein),
Os07g0563800 (a GTPase-activating protein), Os07g0564000
(Conserved hypothetical protein), Os07g0564100 (a UDP-
glucuronosyl / UDP-glucosyltransferase family protein) and
Os07g0564150 (a hypothetical gene). In the chromosome region
of 24.6–25.0 Mb, qDEC7 (qTr7.2) were detected. This region
harbors a fine mapped QTL qPGWC7 flanked by InDel 14 and
InDel 3 (Zhou et al., 2009). One candidate gene was determined
in our analyses, Os07g0604500 (mitochondrial import inner
membrane translocase subunit Tim17).

Our results suggest five candidate genes for qGL3.4, a single
candidate gene for qGW1.1 and four candidates for qGW10.2.
Of the five candidate genes for qGL3.4, the most likely one
wasOs03g0392600 (OsSCP14, a putative serine carboxypeptidase
homolog) because a cloned QTL gene, GS5, that positively
regulates grain size, also encodes an OsSCP26, putative serine
carboxypeptidase (Li et al., 2011; Xu C. et al., 2015). Another
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likely candidate gene for qGL3.4 was Os03g0392300, a putative
ADP-ribosylation factor (ARF) belonging to Ras superfamily
of small GTP-binding proteins (GTPases) (Muthamilarasan
et al., 2016). Overexpression of maize ARFs (ZmARF1 and
ZmARF2) in Arabidopsis could increase seed size (Wang et al.,
2016). The only candidate gene for qGW1.1, Os01g0298400
encodes a MYB family transcription factor. The MYB family
transcription factors include many member genes with diverse
functions in various biological processes including primary
and secondary metabolism, plant development, cell fate and
identity, and responses to biotic and abiotic stresses in all
eukaryotes (Dubos et al., 2010). Some MYBs are known to
be involved in regulating seed size in Arabidopsis and maize
(Gupta et al., 2006; Zhang Y. et al., 2013). Thus, it’s possible
that the Os01g0298400 may affect grain size in rice. Of the four
candidate genes for qGW10.2, Os10g0510300 encodes a putative
ubiquitin carboxyl-terminal hydrolase 1 domain containing
protein. It belongs to deubiquitinating enzyme that plays an
important role in ubiquitination process. Ubiquitin carboxyl-
terminal hydrolase 1 also has functions of ubiquitin ligase
(Wing, 2003). Previous researches found GW2 (Os02g0244100)
governing GW and grain weight in rice encodes RING-type E3
ubiquitin ligase (Song et al., 2007). GW2 negatively regulates cell
division by targeting its substrate(s) to proteasomes for regulated
proteolysis. Therefore, Os10g0510300 is considered as the most
likely candidate gene of qGW10.2. Transgenic experiments are
under way to verify the functionalities of above candidate
genes.

Limitations of Gene-Based Association
Analysis
Phenotypic variation is usually caused by non-synonymous
mutations inside of genes, such as GS3, GIF1, qGL3, GS2,
GS6, and GLW7, therefore, using SNPs inside of genes
to detect candidate genes associated with investigated
traits is logically applicable. However, polymorphisms
in promoter regions of genes also induce phenotypic
diversity, such as Chalk5, GS5, and GW7. These genes
cannot be detected by the method applied in the present
study. This problem could be partially solved by combining
association analysis with expression profiling data (Yano et al.,
2016).

We utilized gene models in the Nipponbare reference genome
to perform gene-based association analysis. The genes that are
missing in Nipponbare can’t be identified. This was particularly
true in this study as discussed above that we were primarily
detecting loci contributing to the subspecific differences in
the measured traits. For instance, we identified a QTL at
the region of 5.3–5.5 Mb on chromosome 5 affecting GW,
GLWR, and PGWC. A known gene qSW5 governing GW
that was deleted in Nipponbare was also located in this
region. There is no gene locus ID of qSW5 in RAP-DB,
so qSW5 cannot be detected through gene-based association
analysis. Now, more high quality rice reference genomes are
available (Zhang et al., 2016), which will help to solve this
problem.

Application in Rice Breeding for Improved
Grain Quality
In this study, GW was positively correlated with chalkiness
traits including DEC, PGWC and Tr (Figure 1B). The positive
correlations of GW with chalkiness were also reported in
previous studies (Li et al., 2014; Qiu et al., 2015; Zhao et al.,
2015; Zhou et al., 2015). This phenomenon could be partially
explained by tightly linked QTL or QTL pleiotropy for GW
and chalkiness. Qiu et al. (2015) identified a QTL region at 5.3
Mb on chromosome 5 affecting GW, DEC and PGWC with
the same directions of allele effects. Li et al. (2014) reported
that the tightly linkage of Chalk5, GS5 and qSW5 induced the
unfavorable association of grain width and chalkiness. In the
present study, three QTL affecting both GW and chalkiness were
identified. They were qGW5 and qPGWC5, qGW8.2, qDEC8,
and qPGWC8, and qGW10.1 and qPGWC10. The allele effects
on GW and chalkiness traits were consistent at each QTL
region (Table 2). Even so, three Xian accessions, IRIS_313.10430,
IRIS_313.8087, and IRIS_313.8164 with wide GW but low
chalkiness were found in this panel (Supplementary Table S3).
At the three QTL regions mentioned above, these lines had the
alleles reducing GW and chalkiness while they had the alleles
increasing GW at six, six and nine of the other 15 GW QTL
(Supplementary Table S3). At the other nine QTL for chalkiness
traits, these lines had the alleles all decreasing chalkiness
except at qTr2 and qTr7.3 (Supplementary Table S3). Therefore,
improved grain quality with wide GW and low chalkiness of
these three lines could be attributed to appropriate combinations
of above alleles at different QTL for GW and chalkiness. Thus,
these accessions could be used as favorable donors in Geng rice
breeding for improved grain quality with wide grain and low
chalkiness.

Meanwhile, we observed a general negative correlation
between GL and GW, which was apparently due to opposite
gene effects at the detected QTL for the two traits. Unexpectedly,
QTL that increase both GL and GW was previously reported
by Xu et al. (2004). In the present study, three QTL regions
affecting both GL and GW were identified, and two QTL regions
(qGL3.3/qGW3.2, and qGL7/qGW7.3) had opposite directions of
allele effects on GL and GW (Table 2). But for the region of 20.2–
20.4 Mb on chromosome 4 containing qGL4.3 and qGW4.1, the
allele effects on GL and GW were in the same direction in the
two environments. So, This QTL region (qGL4.3 and qGW4.1)
could be a target in rice breeding to simultaneously increase GL
and GW. Actually, six, five, three, and one QTL for GL, GW,
GLWR, and PGWC, were shared between SY and SZ, respectively
(Table 2). These environmental stable QTL could be utilized for
improving grain shape or appearance quality byMAS in both two
environments.

CONCLUSION

Considerable genetic variations for nine grain quality traits
existed in the panel consisting of 258 accessions of two
major subspecies. Through GWAS, a total of 72 QTL for all
investigated traits were identified. A total of 19 candidate genes
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of seven important QTL regions were determined by gene-
based association and haplotype analyses, including two known
genes GS3 and TUD, and two previously fine mapped QTL
qGRL7.1 and qPGWC7. Four most likely candidates of three
new QTL loci (qGL3.4, qGW1.1, and qGW10.2) governing grain
size were inferred according to functional annotation. These
candidate genes of new loci affecting rice grain appearance and
milling quality provide valuable information for future functional
characterization and MAS-based breeding for improving rice
grain quality.
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